QUASIPARTICLE SPECTRA AND PSEUDOGAP PHENOMENA IN HIGH- T_c SUPERCONDUCTORS V.M. Loktev Bogolyubov Institute for Theoretical Physics, Nat. Acad. Sci. of Ukraine (14b, Metrolohichna Str., Kyiv 03143, Ukraine) Summary We attempt to discuss the present status of the high-temperature superconductivity theory. The main experimental data and theoretical approaches suggested for their interpretation are briefly summarized. We emphasize one of the most unexpected features of high- T_c superconducting copper oxides — the existence of a pseudogap in their quasiparticle spectrum, or the suppression of the density of states in a vicinity of the Fermi surface. The theory of the phase fluctuations of the order parameter is presented. It leads to the idea of that the high- T_c superconducting transition in cuprates is the Berezinskii—Kosterlitz—Touless transition when a homogeneous condensate is not formed. We discuss the peculiarities of physical properties of superconducting compounds which cause the absence of the well-defined Fermi-type quasiparticles. This demonstrates that their description in the framework of the standard Landau theory Fermi liquid is not possible. We stress the special role of dopants: without them, copper oxides are just nothing more than antiferromagnetic insulators.