HIGH-ORDER NONLINEAR
SCHRÖDINGER EQUATION FOR THE ENVELOPE
OF SLOWLY MODULATED GRAVITY WAVES
ON THE SURFACE OF FINITE-DEPTH FLUID
AND ITS QUASI-SOLITON SOLUTIONS

I.S. Gandzha1, Yu.V. Sedletsky1, D.S. Dutykh2

1Institute of Physics, Nat. Acad. of Sci. of Ukraine
(2, 46, Prosp. Nauky, Kyiv 03028, Ukraine;
e-mails: gandzha@iop.kiev.ua, sedlets@iop.kiev.ua),
2Université de Savoie Mont Blanc
(CNRS–LAMA UMR 5127, Campus Universitaire,
73376 Le Bourget-du-Lac, France;
e-mail: Denys.Dutykh@univ-savoie.fr)

S u m m a r y

We consider the high-order nonlinear Schrödinger equation derived earlier by Sedletsky [Ukr. J. Phys. \textbf{48}(1), 82 (2003)] for the first-harmonic envelope of slowly modulated gravity waves on the surface of finite-depth irrotational, inviscid, and incompressible fluid with flat bottom. This equation takes into account the third-order dispersion and cubic nonlinear dispersive terms. We rewrite this equation in dimensionless form featuring only one dimensionless parameter kh, where k is the carrier wavenumber and h is the undisturbed fluid depth. We show that one-soliton solutions of the classical nonlinear Schrödinger equation are transformed into quasi-soliton solutions with slowly varying amplitude when the high-order terms are taken into consideration. These quasi-soliton solutions represent the secondary modulations of gravity waves.