REGULARITIES IN FULLERENE C₆₀ FRAGMENTATION ACCORDING TO LASER-DESORPTION MASS-SPECTROMETRIC AND QUANTUM CHEMICAL DATA

A.B. Karpenko, V.S. Kuts, S.V. Snegir, V.A. Pokrovskiy

O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine (17, General Naumon Str., Kyiv 03164, Ukraine; e-mail: alexandr_karpenko@ukr.net)

Summary

Experimental and theoretical results concerning the regularities in the fullerene C_{60} fragmentation are reported. The destruction of C_{60} thermally deposited onto a silicon substrate is studied with the use of laser-desorption mass spectrometry and provided various values of laser radiation power. The intensity of $[C_{60}]^+$ ions in the mass spectrum is shown to increase linearly, when the laser radiation power grows from 30 to 70%of its maximum. At the same time, the relative degree of C_{60} fragmentation first increases and then saturates at 50% of the laser power maximum. Two possible mechanisms of fullerene ionization are proposed. The electron structures of molecular, C_{60-2n} , and cationic, $[C_{60-2n}]^+$, fullerene forms, where the parameter n = 0to 4 indicates the number of lost C_2 fragments, are calculated within the quantum chemistry method. The boundary molecular orbitals (EHOMO and ELUMO), adiabatic ionization potentials, and electron affinities are calculated.