

удк 539 ©2012 [•]Институт ботаники им. Н.Г. Холодного НАН Украины (Ул. Терещенковская, 2, Киев 01601)

Золь-гель синтезом с последующей гидротермальной обработкой были получены образцы мезопористого наноразмерного TiO2 (анатаз с размером сферических кристаллитов менее 10 нм и диаметром пор свыше 17 нм), из которых гидротермальным процессом в концентрированном растворе щелочи при 130 °С синтезированы титанатные нанотрубки. Текстура и морфология новых материалов была исследована с использованием методов SEM, TEM, XRD и изотерм адсорбции-десорбции $\mathrm{N}_2.$ Однородные нанотубулярные частицы, открытые с обоих концов, диаметром ~8 нм и длиной более 1 мкм собраны в пучки толщиной ~64 нм, которые, в свою очередь, образуют агломераты. Прокаливание на воздухе при 300 °C титанатных нанотрубок приводит к кристаллизации в их стенках анатаза (размер кристаллитов составляет 5,7 нм), что сопровождается уменьшением удельной поверхности образца от 255 м $^2/{\rm r}$ до 190 м²/г.

1. Введение

Наноструктурированные TiO₂ материалы, особенно мезопористые (с диаметром пор от 2 до 50 нм), занимают одно из лидирующих мест среди объектов передовых нанобиотехнологий. Широкие перспективы их использования в различных областях медицины и биологии связаны с созданием новых биоматериалов: биосенсоров, мембранных реакторов, контейнеров биоактивных молекул (в качестве новых форм фармпрепаратов), поглотителей микроволнового излучения, экофотокатализаторов и т. д. [1–6].

TiO₂ кристаллизируется в виде трех основных полиморфов (анатаз, рутил, брукит). Полагают [7, 8], что наибольшей биоактивностью обладает анатаз. Вместе с тем, существует точка зрения [9], согласно которой, рутил и анатаз демонстрируют одинаковую биоактивность, причем последняя определяется, главным образом, размером их тонких частиц

ISSN 2071-0194. Укр. фіз. журн. 2012. Т. 57, №7

и количеством OH^- групп. TiO_2 пленки на поверхности биометаллов относят к идеальным биоматериалам, так как они обеспечивают устойчивость к коррозии, химическую инертность и хорошую совместимость с кровью [5, 10–14]. Кроме протекторных свойств TiO_2 покрытия обладают еще и способностью определенным образом взаимодействовать с поверхностью костей [15, 16]. Такая биоактивность принисывается образованию OH^- групп на поверхности TiO_2 . Особые перспективы исследователи связывают с покрытиями на основе титановых нанотрубок, обладающих, наряду с высокой удельной поверхностью, рядом специфических свойств, обусловленных морфологией этих материалов [6, 17–19].

Ранее нами был предложен подход к темплатному золь-гель синтезу мезопористого нанокристаллического TiO_2 [20], позволивший получить новые TiO_2 материалы, которые по своим текстурным характеристикам и фотокаталитическим свойствам не уступают известным аналогам, а в ряде случаев значительно их превосходят [21].

Целью данной работы было синтезировать образцы мезопористого нанокристаллического TiO_2 (анатаз) с различными текстурными характеристиками для использования их в качестве источников титана в синтезе образцов TiO_2 нанотрубок (TNT) и исследовать влияние природы прекурсора на текстуру и морфологию нанотрубок.

2. Экспериментальная часть

Образцы мезопористого наноразмерного TiO₂ были получены золь-гель синтезом в сочетании с последующей гидротермальной обработкой (ГТО) по предложенной нами методике [20]. В качестве источника титана служили тетрабутоксид (ТВОТ, Aldrich) или

N⁰	Образец	Алкоксид	$S_{\rm yg}$,	Объем пор,	Диаметр	Размер кристаллитов анатаза, нм		
п/п	TiO_2	титана	${}_{\mathrm{M}}{}^{2}\cdot {}_{\Gamma}{}^{-1}$	$cm^3 \cdot r^{-1}$	пор, нм	XRD	TEM	
1	1 TiO_2	TPOT	110	0,66	23,0	8,4	8,8	
2	2 TiO_2	TBOT	78	0,41	21,0	$7,\!3$	8,0	
3	3 TiO_2	TBOT	117	$0,\!69$	23,5	8,1	8,3	
4	4 TiO_2	TBOT	100	0,51	20,4	7,0	7,7	
5	5 TiO_2	TBOT	86	$0,\!69$	17,3	$_{9,0}$	$_{9,0}$	

Т а б л и ц а 1. Текстурные и структурные характеристики образцов мезопористого нанокристаллического TiO₂ (анатаз)

тетраизопропоксид титана (ТРОТ, Aldrich), а краун эфир дибензо-18-краун-6 (Fluca), в виде его натриевого комплекса [Na(DB16C6)]Cl – в качестве темплата (необходимость использования комплекса связана с очень низкой растворимостью дибензо-18-краун-6 в пропаноле и бутаноле, в которых осуществлялся синтез). Гидротермальную обработку образцов проводили в автоклаве из нержавеющей стали при температуре 175 °C в течение 24 ч. Кальцинирование проводили на воздухе при температуре 500 °C в течение 4 ч.

TiO₂ нанотрубки были синтезированы щелочным гидротермальным процессом согласно методике, описанной группой Касуги [22, 23]. В качестве источника титана использовали образцы синтезированного мезопористого нанокристаллического TiO_2 (анатаз). Гидротермальную обработку образцов концентрированным водным раствором щелочи (10M NaOH) проводили при 130 °C в течение 24 ч. Обработанные таким образом образцы отделяли фильтрованием и промывали сначала большим количеством дистиллированной воды, затем 0,1М раствором соляной кислоты, потом вновь дистиллированной водой до тех пор, пока pH промывных вод не достигнет ≤ 7 . Отмытые образцы нанотрубок сушили сначала на воздухе в течение 48 ч, потом при 80 °C – 7 ч. Кальцинирование проводили на воздухе при 300 °C в течение 4 ч.

Дифрактометр Дрон-ЗМ (СuK α) был использован для рентгенофазового анализа кристаллической структуры образцов. Средний размер TiO₂ кристаллитов рассчитывали по ширине пика анатаза при $2\Theta = 25, 4^{\circ}$ (101) на дифрактограмме (XRD), используя хорошо известную формулу Шеррера.

Пористая текстура TiO₂ описана по изотермам адсорбции-десорбции N₂ при 77 K (система Autosorb-6, Quantachrome). Перед адсорбцией образец откачивали при 200 °C в течение 20 ч. Удельную поверхность образцов определяли по методу ВЕТ. Распределение пор по размерам получали из десорбционной ветви изотермы с помощью метода NLDFT. Общее количество N₂, адсорбированного при $p/p_0 = 0,997$, было использовано для определения общего объема пор. Морфология и состав образцов были исследованы методами трансмиссионной электронной микроскопии (TEM, микроскоп JEM-1230) и сканирующей электронной микроскопии (SEM, микроскоп JEOL JSM-6060LA). Предварительно небольшое количество порошка помещали в этанол и перемешивали (или диспергировали с помощью ультразвука в течение 5 мин). Для TEM каплю раствора помещали на углеродную пленку, нанесенную на медную сетку. SEM микрографии получали после покрытия тестируемых образцов тонким слоем золота.

3. Результаты и их обсуждение

В табл. 1 представлены текстурные и структурные характеристики мезопористого TiO₂ (анатаз), полученных золь-гель синтезом по нашей методике [20]. Как видно, TiO₂ во всех образцах имеет высокоразвитую поверхность ($S_{\rm yg}$ составляет от 78 до 117 м²/г), значительный объем пор (от 0,41 до 0,69 см³/г) и большие мезопоры (свыше 17 нм).

Во всех образцах TiO₂ представляет собой чистый анатаз без примесей рутила и брукита. Размеры сферических кристаллитов анатаза (первичных частиц), определенные по формуле Шеррера, не превышают 9 нм. Эти первичные сферические частицы образуют агломераты (вторичные частицы), представляюцие собой наносферы (размером 35–40 нм), которые, в свою очередь, и формируют большие мезопоры. Таким образом, мезопоры – это поровое пространство внутри ансамблей, образованных вторичными частицами.

В табл. 2 приведены текстурные характеристики TiO₂ нанотрубок (1TNT-5TNT), полученных щелочным гидротермальным методом [22, 23] из соответствующих образцов мезопористого TiO₂ (1TiO₂– 5TiO₂). Как известно [2–4, 6, 22–27], кристаллическая структура и морфология нанотрубок зависят от условий синтеза и выбора исходного источника титана. Все полиморфы TiO₂ (анатаз, рутил, брукит) при температуре гидротермального синтеза 100–160 °C трансформируются в нанотубулярные продукты, а аморфные формы ${\rm TiO}_2$ производят нанофиброзные ${\rm TiO}_2$ материалы.

Из приведенных в табл. 1 и 2 данных следует, что нанотрубки, так же как и исходные образцы TiO_2 , имеют различные текстурные характеристики. В результате щелочной обработки происходит почти трехкратное увеличение удельной поверхности (S_{yq}) и резкое уменьшение диаметра пор образцов. При этом для образцов 1TNT-3TNT одновременно наблюдается и очень значительное уменьшение объема пор, в то время как для образцов 4TNT и 5TNT, наоборот, имеет место увеличение объема пор.

На рис. 1 представлены дифрактограммы образцов исходного диоксида титана 5TiO_2 и соответствующего образца нанотрубок 5TNT. Исходный образец 5TiO_2 (рис. 1,a) представляет собой анатаз, поскольку все пики идентифицируются как рефлексы (101), (004), (200), (105), (211) кристаллической фазы анатаза при полном отсутствии каких-либо признаков наличия рефлексов брукита и рутила. Размер кристаллитов анатаза по Шерреру составляет 9,0 нм. Как видно, структура нанотрубок 5TNT (рис. 1, 6) коренным образом отличается от структуры прекурсора – образца 5TiO_2 (рефлексы анатаза полностью исчезли). Профиль, наблюдаемый на дифрактограмме образца 5TNT, аналогичен профилям, представленным в работах других авторов [4, 6, 24–26, 28–35].

Чен и др. [26, 28, 30] считают, что наблюдаемые дифракционные пики намного шире, чем пики обычных кристаллов и, с учетом имеющихся литературных данных, такой профиль нельзя отнести ни к одной из известных кристаллических структур TiO_2 . Но с другой стороны [26], все наблюдаемые XRD пики могут быть отнесены к $H_2Ti_3O_7$ -структуре, которая проявляет свойства слабой кислоты Бренстеда и может существовать в щелочных растворах. Учитывая тот факт, что при использованном нами способе отмыва раствором HCl полученных нанотрубок в них остае-

Т а б л и ц а 2. Текстурные характеристики образцов TiO_2 – нанотрубок, полученных из соответствующих образцов мезопористого TiO_2 (табл. 1)

Образец	$S_{\rm yd},$	Объем пор,	Диаметр
нанотрубок	$M^2 \cdot \Gamma^{-1}$	${ m cm}^3 {\cdot} { m r}^{-1}$	пор, нм
1TNT	269	0,25	3,7
2TNT	204	0,20	3,9
3TNT	191	0,17	3,6
4TNT	290	1,24	3,3
5TNT	254	0,73	9,4
5TNT-300	190	0,60	9,4
	Образец нанотрубок 1TNT 2TNT 3TNT 4TNT 5TNT 5TNT-300	$\begin{array}{ c c c }\hline O{\rm 6pa3eq} & S_{\rm yg}, \\ \hline {}_{\rm HaHOTPyGOK} & M^2 \cdot r^{-1} \\ \hline 1TNT & 269 \\ 2TNT & 204 \\ 3TNT & 191 \\ 4TNT & 290 \\ 5TNT & 254 \\ 5TNT-300 & 190 \\ \hline \end{array}$	Образец $S_{\rm уд},$ м ² ·г ⁻¹ Объем пор, см ³ ·г ⁻¹ 1TNT 269 0,25 2TNT 204 0,20 3TNT 191 0,17 4TNT 290 1,24 5TNT 254 0,73 5TNT-300 190 0,60

*образец 5TNT после кальцинирования при 300 °С.

Рис. 1. Дифрактограммы образцов:
 a – 5TiO2; b – 5TNT;
 e – 5TNT-300

тся некоторое количество ионов Na⁺ [25, 34, 35], следует полагать, что полученные трититанатные нанотрубки описываются формулой Na_xH_{2-x}Ti₃O₇·nH₂O. Пики около 10° и 28° являются характерными для Na–TNT формы, а H–TNT форма демонстрирует широкий пик от 2 Θ =23° до 25° [25, 34]. Авторы [25] показали наличие большого количества воды в нанотрубках и пришли к заключению, что ионы Na⁺ находятся не только в физически адсорбированном состоянии, но и частично входят в кристаллическую решетку.

На рис. 2 и 3 представлены результаты ТЕМ и SEM исследований образцов 5TiO_2 и 5TNT. Как видно (рис. $2, a, \delta$), исходный диоксид титана демонстрирует однородность и сферическую форму первичных частиц (размер кристаллитов анатаза 9,0 нм совпадает с величиной, рассчитанной по формуле Шеррера). Соответствующая электронная дифрактограмма приведена на рис.2, *a*. Первичные частицы образуют агломераты сферической формы размером около 40 нм (вторичные частицы), которые, в свою очередь, собраны в частицы сфероидальной формы (рис. 3, a) микрометрового масштаба, образуя внутри последних мезопоры.

Как следует из данных ТЕМ (рис. 2,*в*,*г*), полученные титанатные нанотрубки (образец 5TNT) представляют собой чистые (без примеси вокруг частиц прекурсора 5TiO₂) с гладкой поверхностью, однородные нанотубулярные частицы, которые открыты с обоих концов и имеют диаметр ~8 нм. Результаты SEM исследований (рис. 3,*б*,*в*) показывают, что нанотрубки собраны в однородные пучки толщиной примерно 64 нм и протяженностью более 1 мкм. Пучки формируют ансамбли размером от 2,7 до 3,2 мкм

Рис. 2. ТЕМ (при разных увеличениях) образцов: a^* , $\delta^* - 5$ TiO₂ (с электронной дифрактограммой); e, e - 5TNT; $\partial, e - 5$ TNT-300. (*образец после обработки ультразвуком)

Рис. 3. SEM (при разных увеличениях) образцов: *a* – 5TiO₂; *б*, *6*^{*} – 5TNT; *г*, *д*^{*} – 5TNT–300. (*образец после обработки ультразвуком)

(рис. 3,*б*), которые в совокупности напоминают скопления морских кораллов.

Установлено, что при нагревании нанотрубок на воздухе в их стенках происходит кристаллизация анатаза, о чем свидетельствуют появления характерных рефлексов на дифрактограмме образца 5TNT– 300 (рис. 1, *в*). Кальцинирование нанотрубок при 300 °C в течение 4 ч приводит к образованию кристаллической фазы анатаза с размером кристаллитов 5,7 нм. Как видно из данных ТЕМ (рис. 2, e-e) и SEM (рис. $3, 6-\partial$) морфология образца 5TNT–300 не имеет значительных отличий от морфологии образца 5TNT. Однако следует отметить, что после кальцинирования средняя толщина пучков нанотрубок уменьшилась от 64 нм до 53 нм (рис. $3, 6-\partial$).

ISSN 2071-0194. Укр. фіз. журн. 2012. Т. 57, №7

На рис. 4 приведены изотермы адсорбциидесорбции N_2 исходного образца 5TiO_2 и титанатных нанотрубок до и после кальцинирования, а также соответствующие кривые распределения пор по размерам. Все образцы показывают IV тип изотерм, что является свидетельством наличия в этих материалах однородных мезопор (2–50 нм) [36].

Удельная поверхность исходного образца 5TiO_2 составляет 86 м²·г⁻¹, в то время как у соответствующего образца нанотрубок 5TNT она очень высока и составляет 254 м²·г⁻¹. В процессе нагревания нанотрубок происходит уменьшение величины удельной поверхности и для образца 5TNT–300 она равна 190 м²·г⁻¹. Диаметр пор образца 5TNT, полученный этим методом (9,4 нм), отличается от среднего диаметра, определенного по данным TEM (внутренний диаметр нанотрубок составляет примерно 4 нм), поскольку учитывается не только поровое пространство внутри трубок, но также и поры между трубками [4].

4. Выводы

Большинство описанных в литературе процедур получения титанатных нанотрубок предполагают использование в качестве прекурсоров непористых коммерческих марок TiO₂. В рамках предложенного нами ранее способа синтезированы образцы мезопористого нанокристаллического TiO₂ (анатаз с размером сферических кристаллитов менее 10 нм с различными текстурными характеристиками), и показано, что использование их в качестве прекурсоров позволяет получать образцы титанатных нанотрубок с различной текстурой. Синтезированный из образца TiO₂ (анатаз с размером кристаллитов 9,0 нм, S_{vд} $= 86 \text{ м}^2 \cdot \Gamma^{-1}$, объем пор – 0,69 см³ · Γ^{-1} и диаметром пор – 17,3 нм) образец титанатных нанотрубок представляет собой однородные, гладкие нанотубулярные частицы, открытые с обоих концов, диаметром ~8 нм и длиной более 1 мкм, которые собраны в пучки толщиной ~64 нм, образующие, в свою очередь, ансамбли частиц размером от 2,7 до 3,2 мкм. При нагревании нанотрубок до 300 °C в их стенках происходит кристаллизация анатаза (с размером кристаллитов 5,7 нм), что приводит к изменению удельной поверхности материала нанотрубок от 254 м² · Γ^{-1} до 190 м²·г⁻¹. Такой подход в дальнейшем позволит установить факторы, влияющие на текстуру и морфологию титанатных нанотрубок, в целях оптимизации выбора TiO₂ прекурсора для синтеза титанатных нанотрубок с необходимой текстурой и морфологией, что

Рис. 4. Изотермы адсорбции-десорбции N_2 образцов 5 TiO_2 , 5TNT, 5TNT-300 и соответствующие этим образцам NLDFT распределения пор по размерам

расширит перспективы получения биоматериалов с уникальными свойствами.

- C.A. Grimes and G.K. Mor, in *TiO*₂ Nanotube Arrays: Synthesis, Properties, and Applications (Springer, Dordrecht, 2009), p. 358.
- 2. X. Chen and S.S. Mao, Chem. Rev. 107, 2891 (2007).
- S.M. Gupta and M. Tripathi, Chinese Sci. Bull. 56, 1639 (2011).
- D.V. Bavykin, J.M. Friedrich, and F.C. Walsh, Adv. Mater. 18, 2807 (2006).
- Y. Cui, H. Du, and L. Wen, J. Mater. Sci. Technol. 24, 675 (2008).
- H.-H. Ou and S.-L. Lo, Separat. Purif. Technol. 58, 179 (2007).
- M. Uchida, H.M. Kim, T. Kokubo *et al.*, J. Biomed. Mater. Res. A **64**, 164 (2003).
- X.X. Wang, S. Hayakawa, K. Tsuru *et al.*, Biomaterials 23, 1353 (2002).
- J.M. Wu, S. Hayakawa, K. Tsuru *et al.*, Am. Ceram. Soc. 87, 1635 (2004).
- F. Zhang, Z. Zheng, Y. Chen *et al.*, J. Biomed. Mater. Res. 42, 128 (1998).
- H.C. Cheng, S.Y. Lee, C.C. Chen *et al.*, Appl. Phys. Lett. 89, 173902 (2006).
- X. Liu, P.K. Chu, and C. Ding, Mater. Sci. Eng. 47, 49 (2004).
- 13. M. Long and H.J. Rack, Biomaterials 19, 1621 (1998).
- A. Cambell, D. Hamai, and S.C. Bondy, Neurotoxicology 22, 63 (2001).
- T. Kokubo, T. Matsushita, and H. Takadama, J. Eur. Ceram. Soc. 27, 1553 (2007).
- T. Kokubo, H.M. Kim, and M. Kawashita, Biomaterials 24, 2955 (2003).
- K.C. Popat, M. Elgroth, T. La Tempa *et al.*, Biomaterials 28, 4880 (2007).

ISSN 2071-0194. Укр. фіз. журн. 2012. Т. 57, №7

- M. Paulose, K. Shankar, O.K. Varghese *et al.*, Nanotechnology **17**, 1446 (2006).
- N.I. Ermokhina, V.I. Litvin, V.G. Ilyin, and P.A. Manorik, Ukr. Khim. Zh. **73**, 21 (2007).
- A.V. Korzhak, N.I. Ermokhina, A.L. Stroyuk, V.K. Bukhtiyarov, A.E. Raevskaya, V.I. Litvin, S.Ya. Kuchmiy, V.G. Ilyin, and P.A. Manorik, J. Photochem. Photobiol. A **198**, 126 (2008).
- T. Kasuga, M. Hiramatsu, A. Hoson *et al.*, Adv. Mater. 11, 1307 (1999).
- T. Kasuga, M. Hiramatsu, A. Hoson *et al.*, Langmuir 14, 3160 (1998).
- M. Qamar, C.R. Yoon *et al.*, J. Korean Phys. Soc. 49, 1493 (2006).
- M. Qamar, C.R. Yoon *et al.*, Catalysis Today **131**, 3 (2008).
- 25. Q. Chen, W. Zhou et al., Adv. Mater. 14, 1208 (2002).
- 26. D. Wang, B. Yu, F. Zhou *et al.*, Mat. Chem. Phys. **113**, 602 (2009).
- 27. G.H. Du, Q. Chen *et al.*, Appl. Phys. Lett. **79**, 3702 (2001).
- Y. Yuan, W. Zhou, and B.-L. Su, Chem. Commun. XX, 1202 (2002).
- Q. Chen, G.H. Du, S. Zhang *et al.*, Acta Crystallogr. B58, 587 (2002).
- 30. J. Yu, H. Yu, B. Cheng *et al.*, J. Mol. Catal. A **249**, 135 (2006).
- M.A. Khan, H.-T. Jung, and O.-B. Yang, J. Phys. Chem. B 110, 6626 (2006).
- 32. L. Zhang, H. Lin, N. Wang *et al.*, J. Alloys Compounds 431, 230 (2007).
- 33. L.Q. Weng, S.H. Song *et al.*, J. Eur. Ceram. Soc. 26, 1405 (2006).
- E. Morgado, jr., M.A.S. de Abreu *et al.*, Solid State Sci. 8, 888 (2006).
- 35. M. Kruk and M. Jaroniec, Chem Mater. **13**, 3169 (2001). Одержано 04.11.11

СИНТЕЗ НАНОТРУБОК З МЕЗОПОРИСТОГО НАНОКРИСТАЛІЧНОГО ДИОКСИДУ ТИТАНУ

Н.І. Ермохіна, В.А. Невинський, П.А. Манорик, В.Г. Ільїн, М.М. Циба, А.М. Пузій, М.М. Щербатюк, Д.А. Климчук

Резюме

Золь-гель синтезом з подальшою гідротермальною обробкою було отримано зразки мезопористого нанорозмірного TiO₂ (анатаз з розміром сферичних кристалітів менше 10 нм і діаметром пор понад 17 нм), з яких гідротермальним процесом у концентрованому розчині лугу при 130 °C синтезовано титанатні нанотрубки. Текстура і морфологія нових матеріалів була досліджена за допомогою методів SEM, TEM, XRD і ізотерм адсорбції-десорбції N₂. Однорідні нанотубулярні частинки, відкриті з обох боків, діаметром ~ 8 нм і довжиною більше 1 мкм зібрані в пучки товщиною ~ 64 нм, які, в свою чергу, утворюють агломерати. Кальцинування на повітрі при 300 °C титанатних нанотрубок приводить до кристалізації в їх стінках анатазу (розмір кристалітів становить 5,7 нм), що супроводжується зменшенням питомої поверхні зразка від 255 м²/г до 190 м²/м.

SYNTHESIS OF NANOTUBES FROM MESOPOROUS NANOCRYSTALLINE TITANIUM DIOXIDE

N.I. Ermokhina¹, V.A. Nevinskiy¹, P.A. Manorik¹,

 $V.G.\ Ilyin^1,\ N.N.\ Tsiba^2,\ A.M.\ Puziy^2,\ N.N.\ Shcherbatyuk^3,\ D.O.\ Klymchyuk^3$

¹L.V. Pysarzhevskyi Institute of Physical Chemistry, Nat. Acad. of Sci. of Ukraine
(31, Nauka Ave., Kyiv 03028, Ukraine; e-mail: v.a.nevinsky@gmail.com)
²Institute for Sorption and Problems of Endoecology, Nat. Acad. of Sci. of Ukraine
(13, Gen. Naumov Str., Kyiv 03164, Ukraine)
³M.G. Kholodnyi Institute of Botany, Nat. Acad. of Sci. of Ukraine
(2, Tereshchenkivska Str., Kyiv 01601, Ukraine)

Summary

Mesoporous nanocrystalline TiO_2 (the anatase phase with spherical crystallites smaller than 10 nm and with the pore diameter larger than 17 nm) is obtained by the sol-gel synthesis followed by a hydrothermal treatment. It is used for the fabrication of titanate nanotubes using the hydrothermal process in a concentrated aqueous NaOH solution at 130 °C. The SEM, TEM, XRD, and nitrogen adsorption-desorption methods were used to study the texture and morphology of new materials. Uniform nanotubular open-ended particles characterized by an average outer diameter of about 8 nm and a length larger than 1 μ m are observed. The particles are assembled into bundles about 64 nm in diameter, and the bundles were also aggregated. The calcination of titanate nanotubes in air at 300 $^{\circ}$ C gave rise to the formation of the anatase phase (the size of crystallite was 5.7 nm), which was accompanied by a reduction of the specimen specific surface area from 255 to $190 \text{ m}^2/\text{g}.$

ISSN 2071-0194. Укр. фіз. журн. 2012. Т. 57, №7