INFLUENCE OF GROWTH CONDITIONS ON STRUCTURAL AND OPTICAL PROPERTIES OF $\rm Zn_{0.9}Cd_{0.1}O$ FILMS

I. Shtepliuk¹, G. Lashkarev¹, V. Khomyak², O. Lytvyn³, P. Marianchuk², I. Timofeeva¹, A. Evtushenko¹, V. Lazorenko¹

¹I.M. Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine (3, Krzhyzhanivskyi Str., Kyiv 03142, Ukraine; e-mail: shtepliuk_ 1987@ukr.net) ²Yu. Fedkovych Chernivitsi National University (2, Kotsyubynskyi Str., Chernivtsi 58012, Ukraine) ³V. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine (45, Prosp. Nauky, Kyiv 03028, Ukraine)

Summary

The influence of the magnetron power and the gas ratio $Ar:O_2$ on the microstructure and the optical properties of $Zn_{0.9}Cd_{0.1}O$ films is studied. The films were deposited with the use of the dc magnetron sputtering technique at a temperature of 250 °C. Atomic force microscopy (AFM) and X-ray diffraction (XRD) researches of a surface morphology demonstrated a strong influence of deposition procedure parameters on the film microstructure. The XRD analysis revealed that all grown films were polycrystalline and single-phase. The increase of the gas ratio $Ar:O_2$ was found to be beneficial for the crystalline structure of $Zn_{0.9}Cd_{0.1}O$ ternary alloys. Peculiarities of the control over the band gap and the surface morphology for $Zn_{0.9}Cd_{0.1}O$ ternary alloys by varying the growth parameters are discussed.