PSEUDO JAHN–TELLER ORIGIN OF THE PROTON TUNNELING IN ZUNDEL CATION CONTAINING WATER CLUSTERS

Ion Geru, Natalya Gorinchoy, Iolanta Balan

Institute of Chemistry, Academy of Sciences of Moldova (3, Academiei Str., Kishinev MD-2028, Republic of Moldova; e-mail: iongeru@yahoo.com)

Summary

The pseudo Jahn-Teller (PJT) origin of the proton transfer barrier in the Zundel cation at different O-O distances and in an $H_5O_2^+(H_2O)_4$ cluster is revealed by means of *ab initio* calculations of their electronic structures and the adiabatic potential energy curves. The vibronic constants in this approach were estimated by fitting the *ab initio* calculated adiabatic potential to its analytical expression. It is shown also that the high-symmetry nuclear configurations of proton-centered water clusters of the type $H^+(H_2O)_n$ (n = 6, 4, 3)are unstable with respect to the low-symmetry nuclear distortions leading to forming the dihydronium cation $H_5O_2^+$ and the appropriate number of water molecules: $H_{2n+1}O_n^+ \rightarrow (n-2)H_2O + H_5O_2^+$. The reason for this instability and the subsequent decay is the PJT coupling between the ground and excited electronic states.