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The phase analysis of the dynamic equations obtained in [13] on
the basis of both a microscopic representation of the polarization
of a quantum-dot ensemble and the difference of electron-level pop-
ulations is carried out. It is shown that, under pumping and real
relations between the parameters of a quantum-dot ensemble, the
superradiance is realized in the form of a giant pulse regardless
of the resonator frequency detuning and the coupling parameters.
The obtained results are compared with experimental data.

1. Introduction

The phenomenon of superradiance in atoms and
molecules is well known and thoroughly investigated
(see, e.g., [1, 2]). Recently, superradiance was also ob-
served for Bose–Einstein condensates of atoms [3], nu-
clear spins [4], and magnetic molecules [5]. In [6], it
was assumed that, in the case where the distances be-
tween quantum dots or wells do not exceed the radi-
ation length, they get involved in the effective inter-
action through the electromagnetic field, due to which
nanostructures can pass also to the superradiant mode.
The development of up-to-date technologies allows one
to form ensembles of nanoobjects with a density suffi-
cient to provide such a mode [7]. As a result, superradi-
ance was discovered for quantum dots [8], semiconductor
heterostructures [9], and photon crystals [10].

From the physical point of view, such a behavior is
explained by the fact that the motion of charge carri-
ers in quantum wells, wires, and dots is confined to one,
two, and three directions, respectively. Due to that, the
indicated nanoobjects are characterized by quantum en-
ergy levels typical of either isolated atoms or molecules
(that is why quantum dots are called “artificial atoms”)
[11, 12]. Taking into account that, with increase in the

dimensions of nanoobjects, the density of their electron
states considerably decreases, so that the quantum prop-
erties are most pronounced in quantum dots and get
much weaker in wires and wells.

A consistent theory of the superradiance of a
quantum-dot ensemble based on a microscopic represen-
tation was developed in the recent work [13]. It was
shown that the evolution of the system can be reduced
to the following stages:

• fluctuation mode lasting during a short time inter-
val of 10−15÷10−14 s, in which quantum dots rep-
resenting electric dipoles autonomously emit elec-
tromagnetic waves but do not yet interact with one
another;

• quantum stage lasting till the time moment 10−14÷
10−13 s is characterized by the effective photon ex-
change between dipoles, but the coherence is still
absent;

• coherent stage lasts till the time tcoh ∼ 10−13 ÷
10−12 s; quantum dots imitate a superradiance
pulse (with a maximum reached at the end of the
delay time interval of the order of 5tcoh, while its
duration approximately equals 2tcoh);

• after the emission of the pulse of electromagnetic
radiation, the system relaxes to a non-coherent
state during the time T ∼ 10−9 s;

• at t > T , the quantum-dot ensemble not subjected
to the external pumping or consisting of weakly
interacting dipoles passes to the stationary state
corresponding to the attracting node of the phase
plane; otherwise, there arises a sequence consisting
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of nearly 10 pulses with a period of the order of
10−13 s.

A peculiarity of the approach [13] consists in that the
transition from microscopic to macroscopic quantities is
performed with the use of two fundamentally different
averaging procedures: in the framework of the first one,
one searches for statistical states of the quantum sys-
tem using the mean-field splitting of all correlators; in
the following averaging of dynamic quantities over the
stochastic variable, one keeps the even correlators of the
amplitudes of their fluctuations. Such an approach al-
lows one to successively consider collective effects result-
ing in a renormalization of the effective values of param-
eters of the system (in contrast to the superradiance of
atoms and molecules, these effects play the main role in
the ensemble of semiconductor nanoobjects).

The technique proposed in [13] not only describes the
developed superradiant mode but also consistently re-
produces the mechanism of its reaching due to the am-
plification of the electromagnetic radiation. In this case,
the use of the single-mode approximation appears insuffi-
cient as the noncontradictory picture of the phenomenon
requires to consider the total collection of the transverse
radiation modes, over which the space averaging is to be
performed. The procedure yielded the dynamic equa-
tions connecting the rates of change of the polarization
of the quantum-dot ensemble P and the differences of the
electron-level populations S with the values of P and S.
The numerical solution of these equations shows that, at
certain relations between the parameters, the system can
generate both single pulses of electromagnetic radiation
and their sequences. However, the values of parame-
ters used in this case are not realized in semiconductor
nanoobjects (for example, the nonmonotonous time de-
pendences given in Fig. 3 of work [13] were obtained at
the anomalously large attenuation parameter of the pop-
ulation difference γ1 hereinafter denoted by γS). That is
why a more detailed investigation of the possible modes
of generation of electromagnetic radiation by a quantum-
dot ensemble is considered urgent.

As is known from synergetics, the simplest way to
perform such an investigation is to employ the phase-
plane method that considers a self-consistent change of
the quantities P and S (instead of their time depen-
dences P (t) and S(t)) expressed by the phase relation
P (S) [17–20]. The proposed work is devoted to such a
study. Section 2 briefly describes the technique given in
[13] that yields dynamic equations for the polarization
P and the population difference S. In Section 3, these
equations are used for the study of the conditions of su-

perradiance. The conclusions about the possible modes
of superradiance at real values of the parameters of a
quantum-dot ensemble are presented in Section 4.

2. Statement of the Problem

According to [13], the microscopic behavior of a system
is determined by the time dependences of the pseudospin
operators σ−i (t), σ+

i (t), and σzi (t) distributed over nodes
i = 1, . . . , N , the vector potential, and the intensities of
the electromagnetic radiation field, as well the currents
induced by quantum dots and their semiconductor envi-
ronment. Moreover, the behavior of the pseudospins is
specified by the Heisenberg equation, whereas the elec-
tromagnetic field obeys the Maxwell operator equations.
Solving the latter, one can express the field potential
in terms of the corresponding currents. As a result, it
can be presented in the form of a sum of contributions
caused by the self-action of dipole momenta of quan-
tum dots, their radiation, and a stochastic component
related to random changes of the fields of the dipoles
and their environment. The use of this potential results
in a closed system of equations for the pseudospins in-
teracting through the electromagnetic radiation field.

The macroscopic behavior of the system is deter-
mined by the quantum averages of the radiation field
intensity Ei(t) = 2

〈
σ−i (t)

〉
, the polarization Pi(t) =

(2/N)
∑
j( 6=i)

〈
σ+
i (t)σ−j (t) + σ−i (t)σ+

j (t)
〉
, and the pop-

ulation difference Si(t) = 2 〈σzi (t)〉. As the distance be-
tween the quantum dots is much less than the radiation
wavelength, one can pass from the summation over the
nodes to the integration over the coordinate. On the
other hand, the size of the medium the radiation passes
through considerably exceeds its wavelength, that is why
it is suitable to present it in the form of a cylinder with
the z-axis parallel to the wave vector k of the radiation
field. In this case, one can average all the space de-
pendences over the direction normal to the cylinder axis
and describe the longitudinal dependence of the radia-
tion field by the plane wave ei(kz−ωt) with frequency ω.
As a result, the effective force acting on a quantum dot
takes the form f = Fe−iωt + ξ(t), where the amplitude
F determines the deterministic component and the term
ξ(t) denotes the stochastic contribution caused by ran-
dom changes of the dipole fields and the semiconductor
medium.

The equations of motion obtained due to the indicated
transformations must be averaged over the stochastic
additive ξ(t). In this case, it is worth to consider the
following fundamental fact [13]: whereas the quantum

ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 9 1027



I.A. SHUDA

averaging marked above by the angle brackets supposes
the splitting of the pseudospin correlators correspond-
ing to different nodes, the averaging over the noise ξ(t)
must be performed, by assuming that ξ∗(t)ξ(t′) 6= 0 at
ξ(t) = 0 (hereinafter, the bar over symbols marks the
averaging over ξ(t)). As a result, the equations of mo-
tion that describe the stochastic radiation of quantum
dots take the form [13]

dE

dt
= − [iΩ(S) + ΓP (S)]E + fS, (1)

dP

dt
= −2ΓP (S)P + (f∗E + E∗f)S, (2)

dS

dt
= −γS (S − Se)− gP γPP −

1
2

(f∗E + E∗f)S. (3)

Here, the collective frequency of radiation Ω = Ω(S)
and the effective attenuation decrement ΓP = ΓP (S) are
determined by the expressions

Ω ≡ ω0 + gSγPS, ΓP ≡ γP (1− gPS) , (4)

where ω0 stands for the resonator’s natural frequency,
while γP , γS and gP , gS are the attenuation parameters
and the coupling constants of the quantities P and S,
respectively.

In system (1)–(3), the attention is attracted by the
large factor Ω(S) on the right-hand side of Eq.(1). That
is why assuming that

γS
ω0
� 1,

γP
ω0
� 1, (5)

one can accept that the field E(t) changes much faster
than the polarization P (t) and the population difference
S(t). This allows one to integrate Eq.(1), by assuming
the two last quantities to be constant. As a result, we
obtain the time dependence of the radiation field inten-
sity in the form [13]

E =
(
E0 −

FS

δ + iΓP

)
e−(iΩ+ΓP )t +

FS

δ + iΓP
e−iωt+

+S

t∫
0

ξ(t′)e−(iΩ+ΓP )(t−t′)dt′. (6)

Here, the quantity

δ ≡ ω − Ω = Δ− gSγPS (7)

is specified by the frequency deviation Δ ≡ ω − ω0.
The substitution of expression (6) into Eqs.(2) and (3)

results in the appearance of the terms proportional to the
correlator ξ∗(t)ξ(t′) that quickly changes depending on
the times t and t′. Averaging over the latter, one obtains
the attenuation decrement

γ ≡ < lim
T→∞

1
T

T∫
0

dt

t∫
0

ξ∗(t)ξ(t′)e−(iΩ+ΓP )(t−t′)dt′. (8)

In this case, Eqs. (2) and (3) take the form

dP

dt
= −2γP (1− gPS)P + 2ΓS2, (9)

dS

dt
= γSSe − (γS + Γ)S − gP γPP, (10)

where the effective attenuation decrement

Γ ≡ γ +
|F |2ΓP
Γ2
P + δ2

(
1− e−ΓP t

)
' γ +

|F |2ΓP
Γ2
P + δ2

, (11)

takes on a constant value at t� Γ−1
P .

Analyzing system (9), (10), it is suitable to measure
the time t in units of ω−1

0 and to relate the frequency
ω, the attenuation decrements γP , γS , γ, and Γ and the
field amplitude F to the natural frequency ω0, and the
polarization P to g−2

P , whereas the population difference
S is related to to g−1

P . After that, Eqs. (9) and (10) take
the simplified form

dP

dt
= −2γP (1− S)P + 2ΓS2, (12)

dS

dt
= γSSe − (γS + Γ)S − γPP (13)

containing the effective attenuation decrement

Γ ' γ +
γP |F |2 (1− S)

γ2
P (1− S)2 + [(ω − 1)− gγPS]2

(14)

with the ratio of the coupling constants g ≡ gS/gP ∼ 1.

3. Investigation of the Conditions of
Superradiance

According to the technique given in [14], the solution of
Eqs.(12) and (13) is determined by the stationary state
P = P0, S = S0, in which the polarization and the
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Fig. 1. Phase portraits of the quantum-dot superradiance at γP = 10−1, γ = 2×10−1, ω = 1, F = 10−2, g = 1, Se = 1, and γS = 10−3

(a), γS = 10−1 (b)

population difference do not depend on the time. In this
case, system (12), (13) results in the equations

P =
γS
γP

(Se − S)S, (15)

(1− S) (Se − S) =
Γ(S)
γS

S, (16)

where the effective attenuation decrement Γ = Γ(S) is
given by expression (14). In the general case, these equa-
tions cannot be solved analytically due to the compli-
cated form of the dependence Γ(S). The boundary con-
ditions of the weak and strong detunings of the resonator

Γ ≈ γ +


|F |2(1−S)

γP [(1−S)2+g2S2] , |ω − 1| � γP,SSe,

γP |F |2

(ω−1)2
(1− S) , |ω − 1| � γP,SSe

(17)

show that the estimate Γ(S) ≈ γ always can be used due
to the condition |F |2 � γP . As a result, the stationary
values of the population difference and the polarization
are given by the expressions

S0 ≈ p+ −
√
p2
+ − Se,

P0 ≈
γS
γP

(
−p− +

√
p2
+ − Se

)(
p+ −

√
p2
+ − Se

)
, (18)

where p± = 1
2

[(
1 + γ

γS

)
± Se

]
. Taking the dependence

Γ(S) into account demonstrates that, with increase in

the detuning |ω− 1|, the quantity S0 grows weakly. The
lower the decrement γS , the stronger the change of S0.
Moreover, the less the value of γP , the stronger the sta-
tionary polarization P0 falls. Since γS � γP . γ, the
stationary values are presented by the estimates

S0 ≈
γS
γ
Se, P0 ≈

γ2
S

γγP
S2

e , (19)

by demonstrating that, in the stationary state of quan-
tum dots, the population difference is much less than
the pumping level, while the polarization appears pro-
portional to its square with a still lower coefficient.

In order to analyze the stability of the stationary state
(19), it is convenient to put down Eqs. (12), (13) in the
symbolic form ẋα = fα, α = 1, 2, where the point marks
the time differentiation, the coordinates xα correspond
to the polarization P and the population difference S,
while the forces fα are given by the right-hand sides
of the indicated equations. Then the stability of the
stationary state xβ = xβ0 is determined by the Jacobi
matrix [15]

Λαβ =
∂fα
∂xβ

∣∣∣∣
xβ=xβ0

, α, β = 1, 2, (20)

taking the following form in the case of Eqs.(12) and
(13):

Λ̂ ≈
(
−2γP 4γSSe

−γP − (γ + γS)

)
. (21)

In a vicinity of the stationary state, the law of motion
is expressed by the exponential dependence xα − xα0 ∝
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Fig. 2. Time dependences of the polarization (a) and the population difference (b) measured in units of ω−1
0 at γP = 10−1, γ = 2×10−1,

ω = 1, F = 10−2, g = 1, and Se = 1 (solid lines correspond to γS = 10−3, dashed lines – to γS = 10−1); the inset in Fig. 2,a present
the polarization pulses obtained experimentally in [8] (the lower peak corresponds to the resonance conditions, the upper one -– to the
absence of a resonance)

eλt, whose substitution into the equations of motion
(12) and (13) yields the Lyapunov factors λP ≈ −2γP ,
λS ≈ −γ. Their negative values testify to the fact that
the stationary state (19) corresponds to the attractive
node of the phase plane, which results in the stability of
the quantum-dot superradiance relative to fluctuations
of the polarization and the population difference.

The evolution of the system is described by the phase
portraits given in Fig. 1. They demonstrate that, at
the real relation between the parameters |F |2 � γP ,
γS � γP . γ and in the presence of the pumping Se, the
quantum-dot superradiance is realized in the giant-pulse
mode [16] independent on the detuning of the resonator
ω − 1 and the coupling parameters F and g. It is sig-
nificant that an increase of the attenuation parameter of
the population difference up to anomalously high values
γS ∼ γP results only in a slight nonmonotonicity of the
variation of P and S and a rise of their stationary values
(19). But the attenuation oscillations discovered in [13]
do not manifest themselves in this case.

Figure 2 presents the time dependences of the polar-
ization P (t) and the population difference S(t) that cor-
respond to the phase portraits in Fig. 1. These de-
pendences confirm the conclusion that an increase of
the attenuation parameter of the level populations to
anomalously high values γS = γP = 10−1 results in a
slight nonmonotonicity in the variation of the polariza-
tion and the population difference and an increase of
their stationary values. As concerns the vibrational de-
pendence given in Fig. 3 of work [13], we did not manage

to reproduce it, by choosing various values of γS , γP , γ,
ω, F , g, and Se (except for anomalously large values of
the attenuation coefficient γS , which can be due to the
choice of the coupling parameter F designated in [13] as
ν1 and the frequency ω, whose values are not specified
in [13]).

4. Conclusions

The performed phase analysis demonstrates that, in the
presence of the pumping Se 6= 0 and the relations be-
tween the parameters |F |2 � γP , γS � γP . γ realized
in a quantum-dot ensemble, the superradiance is realized
in the form of a giant pulse regardless of the resonator
detuning ω − 1 and the coupling parameters F and g.
This conclusion is confirmed by the experimental data of
work [8], where the authors registered only single pulses,
whose form coincided with that obtained in our study
(Fig. 2,a).
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ФАЗОВИЙ АНАЛIЗ КОГЕРЕНТНОГО
ВИПРОМIНЮВАННЯ АНСАМБЛЮ
КВАНТОВИХ ТОЧОК

I.О. Шуда

Р е з ю м е

Проведено фазовий аналiз динамiчних рiвнянь, отриманих у
роботi [13] на основi мiкроскопiчного подання поляризацiї ан-
самблю квантових точок i рiзницi заселеностей електронних
рiвнiв. Показано, що за наявностi накачки та спiввiдношення
параметрiв, що реалiзуються в ансамблi квантових точок, ко-
герентне випромiнювання протiкає у режимi гiгантського iм-
пульсу незалежно вiд розладу резонатора i параметрiв зв’язку.
Проведено порiвняння з експериментальними даними.
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