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We constructed a mathematical model of radial vibrations of a ring
made of a polycrystalline ferromagnetic (magnetostrictive) mate-
rial. We show the appearance of the resonance absorption of the
energy of a magnetic field source at certain frequencies, which is
accompanied by a resonant increase and decrease in the inductance
of a toroidal coil, whose core is a ring of the material under study.
We propose an algorithm for the determination of material con-
stants of a polycrystalline ferromagnetic by measured frequencies
of magnetomechanical resonances.

1. Introduction

At the magnetization, ferromagnetics (FMs) change
their sizes and a shape due to the magnetostriction
(MS). On the other hand, at a mechanical deforma-
tion of preliminarily magnetized FMs, their magnetiza-
tion is also changed. It is the so-called Villari effect or
the inverse MS effect [1,2]. Magnetostrictive constants
are determined experimentally within the well-known
methods of direct measurements of small displacements,
namely: tensometric [3], interferometric [4], capacitance,
and other methods. These methods are characterized by
an insufficient accuracy, a low sensitivity in some cases,
and a certain boundedness of the frequency range. The
measurement of the magnetization of FMs at various
types of their deformation is carried on, as a rule, by
observing the hysteresis loops of FMs [5] or with the
help of the Faraday effect [6]. These methods are labor-
consuming and cannot give exact results. Among the
fundamental works, in which a great attention was given
to the measurement of magnetostrictive constants, it is

worth to separate works [7] and [8]. However, these
works are of applied character and are oriented to the en-
gineering calculation of magnetostrictive transducers of
specific types and to the construction of their equivalent
electric circuits [8]. Thus, the problem of the determi-
nation of material constants of ferromagnetic materials
remains unsolved from the view point of the statement of
a physical experiment up to now. The studies of MS and
the Villari effect can be joined in the frame of a single
experiment, which is proposed in this work. If a FM is
simultaneously placed in an external constant magnetic
field and an external variable magnetic field of a certain
frequency, it begins, as a mechanical system, to vibrate
in a resonant manner due to MS. These vibrations cause
the appearance of mechanical stresses, a further change
in the magnetization, and, respectively, a change of the
total magnetic field in a FM.

2. Mathematical Model of Inductance Coil with
a Radially Vibrating Ferromagnetic Core

We consider a mathematical model of a physical state of
the specimen made of a magnetostrictive material under
study and, on its basis, propose a new method of mea-
surement of material constants of a polycrystalline FM
by resonance frequencies of radial vibrations of a ring
positioned into a toroidal coil. As material constants,
we mean the collection of the following quantities: com-
ponents of the tensor of elasticity moduli of a demag-
netized FM, components of the tensor of piezomagnetic
constants, and components of the magnetic permittivity
tensor of a FM.
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The structure of the model of a coil with inductance
Lk is shown in Fig. 1.

Coil 1 contains N windings of a wire on the core. Core
2 is produced of a polycrystalline ferromagnetic (mag-
netostrictive) material and is placed in the middle of a
casing (the casing is not shown) touching it at several
points. The core sizes are as follows: R1 and R2 are
the inner and outer radii, respectively, and h is the core
thickness. A specific feature of the coil structure consists
in that that the core is not squeezed by windings, which
would hamper the appearance of elastic mechanical vi-
brations in the core. The coil under study is fed by a
direct current I0 which creates a circular constant bias
field with strength H0

ϑ = NI0/R0, where ϑ is the circu-
lar coordinate (polar angle) of a cylindrical coordinate
system (ρ, θ, z), whose origin is placed at the coil core
center, and R0 = (R1 +R2) /2 is the mean radius of the
core. Simultaneously, the coil is fed by an alternating
current I∗ so that I0 � I∗, which is equivalent to the
condition H0 � H∗, where H0 and H∗ are the strength
vectors of the constant and variable magnetic fields.

If the strength of the constant bias field is chosen so
that the ring core is not magnetized to the saturation,
then the joint action of the constant and variable mag-
netic fields, whose strength vectors have only a single
circular component, induces radial (along the radius ρ)
vibrations of material particles in a ring ferromagnetic
specimen. During a deformation of the core, an addi-
tional magnetic field supplementing the field of an ex-
ternal source arises. The appearance of the additional
magnetic field in the coil core can be explained on the
basis of the Villari effect, due to which changes in the
specimen magnetization and in the magnetic field induc-
tion occur at a change in mechanical stresses in the core.
The initial phase of oscillations of this field depends on
the ratio of the frequency of the external source and the
resonance frequency of the mechanical oscillatory sys-
tem. In this case, the energy of a source of the external
magnetic field is transferred almost completely into the
deformable core bulk. A change in the energy capacity
of the specimen causes a change in the inductance of
coil. Indeed, the inductance of a coil can be determined
in terms of the magnetic energy of the field localized in
the coil core bulk [9], namely:

Lk =
1

(I∗)2

∫
V

B∗ ·H∗dV, (1)

where I∗, B∗, and H∗ are the amplitudes of the electric
current, magnetic induction, and strength of the mag-
netic field, respectively, which vary harmonically in time,
and V and dV are the volume and an element of the core

Fig. 1. Structure of a coil with inductance Lk

volume. Amplitude values of components of the vector
of displacements of material particles at any point of
the core coil at any time moment are determined by the
ratios of three forces: elastic force, inertial force, and
magnetoelastic force. These forces are proportional to
the product of the strengths of constant and variable
magnetic fields, i.e., they are proportional to a degree of
orientation of magnetic domains and to the magnitude
of the influence of the variable magnetic field on them.
At some frequency fp called the frequency of a magne-
tomechanical resonance, the elastic forces and inertial
forces mutually compensate each other. In this case,
large radial displacements of material particles arise in
the specimen bulk. This is accompanied by an addi-
tional orientation of domains. As a result, the magnetic
induction in the specimen bulk attains the saturation.

Thus, the magnetic energy of the coil and the core,
i.e., the energy of the inductance Lk, will attain the
maximum value at the frequency fp. If the frequency
of a variable magnetic field exceeds somewhat the reso-
nance frequency fp, and if the displacement of material
particles of a ferromagnetic is else quite large, then the
magnetic induction of the field caused by elastic displace-
ments of material particles becomes counterphase with
respect to the induction of the magnetic field of a current
I∗. Therefore, the net magnetic induction Lk in the coil
core bulk decreases. We call this frequency conditionally
the frequency of a magnetomechanical antiresonance, fa,
which is somewhat higher than the frequency fp.

It is worth noting that an increase in the coefficient
of self-induction Lk at the frequency fp and its decrease
at the frequency fa are damped by energy losses in the
core material and at the points of mechanical contact
of the core and a casing, on which the winding is posi-
tioned. For this reason, changes of the inductance at the
frequencies fp and fa will have a bounded amplitude.
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As the frequency ω increases further, the displacements
of material particles decrease sharply, and the contribu-
tion of deformations to the dynamic magnetization of
the core becomes insignificant. Numerical values of the
resonance and antiresonance frequencies are determined
by sizes and physico-mechanical parameters of the core
material. This yields the possibility to solve the inverse
problem: by values of the experimentally registered fre-
quencies fp and fa, it will be possible to calculate the
material constants of a ferromagnetic material. To for-
mulate an algorithm of the recalculation of numerical
values of the resonance and antiresonance frequencies
into numerical values of the material constants of a fer-
romagnetic, it is necessary to calculate the coefficient of
self-induction Lk of a coil with vibrating ferromagnetic
core. From the general definition (1) of the inductance
Lk in the case of a uniform arrangement of windings on
a ring core, we obtain the following formula for calcula-
tions:

Lk =
2π

(I∗)2

R2∫
R1

h/2∫
−h/2

ρB∗
ϑ ·H∗

ϑdρdz, (2)

where ρ is a value of the radial coordinate in the cylindri-
cal coordinate system. In a separate case where I0 � I∗,
which is equivalent to the condition

∣∣H0
∣∣� |H∗|, where

H0 and H∗ are the strength vectors of the constant and
variable magnetic fields, the equations of state of a fer-
romagnetic yield the relations

σ∗ij = cHijklε
∗
kl −mpqijH

0
pH

∗
q , (3)

B∗
s = mrsnmH

0
r ε
∗
nm + µεslH

∗
l , (4)

where σ∗ij is the amplitude value of a component of the
tensor of net mechanical stresses harmonically varying in
the course of time, and cHijkl is a component of the tensor
of elasticity moduli of a demagnetized ferromagnetic, ε∗kl
is the amplitude value of a component of the tensor of
deformations of the ferromagnetic core, mpqij is a com-
ponent of the tensor of magnetostrictive constants, B∗

s

is a component of the vector of the net magnetic induc-
tion, and µεsl is a component of the tensor of magnetic
permittivities which is measured in the mode of a steady
deformation.

In the frame of the solved problem, components of the
strength vectors of the constant and variable magnetic
fields are determined by the law of total flow of these
fields, and elastic deformations are determined by the
Newton second law:

σ∗ij,j + ρ0ω
2u∗i = 0∀xk ∈ V, (5)

where ρ0 is the density of a ferromagnetic, and u∗i is the
amplitude of the i-th component of the vector of dis-
placements of material particles of a ferromagnetic. The
comma between indices means the operation of differen-
tiation of the expression written before the comma with
respect to the coordinate, whose index stands after the
comma. Since the vectors of the strength of magnetic
fields and the magnetization in this problem have only a
single circular component, the uniqueness of the solution
of the system of differential equations (5) is ensured by
the boundary conditions

njσ
∗
ij = 0∀xk ∈ S, (6)

where nj is a component of the outer normal to the sur-
face S bounding the volume V of the ferromagnetic core.
Since all physical fields in the ring core are characterized
by the axial symmetry, the boundary-value problem (5),
(6) in the cylindrical coordinate system takes the form
[10]

σ∗ρρ,ρ + σ∗ρz,z +
(
σ∗ρρ − σ∗ϑϑ

)
/ρ+ ρ0ω

2u∗ρ = 0∀ (ρ, z) ∈ V,
(7)

σ∗zρ,ρ + σ∗zz,z + σ∗zρ/ρ+ ρ0ω
2u∗z = 0∀ (ρ, z) ∈ V, (8)

σ∗ρρ
∣∣
ρ=R1,R2

= 0, σ∗ρz
∣∣
ρ=R1,R2

= 0, (9)

σ∗zρ
∣∣
z=±h/2 = 0, σ∗zz|z=±h/2 = 0. (10)

The net mechanical stresses are determined from the
equation of state (3) as follows:

σ∗ρρ = cH11ε
∗
ρρ + cH12ε

∗
ϑϑ + cH13ε

∗
zz −m0

211H
∗
ϑ,

σ∗ϑϑ = cH21ε
∗
ρρ + cH22ε

∗
ϑϑ + cH23ε

∗
zz −m0

222H
∗
ϑ,

σ∗zz = cH31ε
∗
ρρ+cH32ε

∗
ϑϑ+cH33ε

∗
zz−m0

233H
∗
ϑ, σ∗ρz = cH55ε

∗
ρz,

(11)

where m0
kij = mpkijH

0
p are the piezomagnetic constants.

The vector of displacements of material particles from
the equilibrium position has a single nonzero radial com-
ponent uρ. In this case, the components of the tensor of
strains ερρ ≡ ερ = uρ,ρ, and εϑϑ ≡ εϑ = uρ/ρ. We note
that a polycrystalline FM in the demagnetized state is
isotropic by elastic and magnetostrictive properties, i.e.,
the material constants cHijkl and mpqij are components of
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isotropic tensors of the fourth rank and are determined
in terms of two constants,

cHijkl = λδijδkl +G(δikδjl + δilδjk),

mpqij = m2δpqδij +
m1 −m2

2
(δpiδqj + δpjδqi), (12)

where λ and G are the Lamé constants or the moduli
of elasticity (G is the shear modulus), δij is the Kro-
necker delta, and m1 and m2 are constants which are
determined experimentally. The definition of material
constants (12) implies that cH11 = cH22 = cH33 = λ + 2G,
cH12 = cH13 = cH21 = cH23 = λ, cH55 = G, and m21 = m23 =
m2 and m22 = m1. Equation (4) takes the form

B∗
ϑ = m0

211ερρ +m0
222εϑϑ +m0

233εzz + µε2H
∗
ϑ, (13)

where m0
211 = m0

233 = m2H
0
ϑ m

0
222 = m1H

0
ϑ.

Let us assume that the coil core is a thin ring, i.e.,
(R2 −R1) /R0 � 1, and h/R0 � 1. In this case, σ∗ρρ =
σ∗zz = 0, and the vector of displacements of material
particles of the coil core is practically completely deter-
mined by the component u∗ρ which does not change its
value in the limits of the plane of a cross-section of the
core, i.e., it does not depend on the coordinates ρ and
z. In this case, σ∗ρz = 0 by definition, and Eq. (8) be-
comes the identity. The boundary conditions (9) and
(10) are satisfied automatically. The condition for the
normal stresses σ∗ρρ and σ∗zz to be equal to zero allows
us to determine the deformations ε∗ρρ and ε∗zz in terms
of the relative elongation of the middle line of the ring,
i.e., in terms of the deformation ε∗ϑϑ as follows:

ε∗ρρ = ε∗zz = −νε∗ϑϑ +
νm0

211

λ
H∗
ϑ, (14)

where ν is the Poisson’s ratio of a demagnetized
(isotropic) material of the core, and ε∗ϑϑ = u∗ρ/R0 is a
relative change of the length of a circle with radius R0.
With regard for relation (14), the equation of state (12)
and (13) for the core material can be presented in the
form

σ∗ϑϑ = Y
u∗ρ
R0
−mϑH

∗
ϑ, B∗

ϑ = mϑ

u∗ρ
R0

+ µσ2H
∗
ϑ, (15)

where Y is the Young modulus of the demagnetized fer-
romagnetic, mϑ = m0

222 − 2νm0
211 is the piezomagnetic

constant in the mode of uniaxial deformation (compres-
sion – tension) of a thin ring, and µσ2 is the magnetic
permittivity in the mode of steadiness (the equality to
zero) of the stresses σ∗ρρ and σ∗zz. The substitution of the

above-defined stresses σ∗ρρ, σ∗zz, and σ∗ϑϑ to Eq. (5) trans-
forms it into an equation for the required displacement
u∗ρ : −Y u∗ρ

R2
0

+ mϑ
R0
H∗
ϑ + ρ0ω

2u∗ρ = 0. This implies that

u∗ρ = R
m2
ϑH

∗
ϑ

Y [1−(γR0)s2]
, B∗

ϑ =
{
µσ2 + m2

ϑ

Y [1−(γRs0)
2]

}
H∗
ϑ,

where γ = ω/
√
Y/ρ0 is the wave number of radial vi-

brations of a thin isotropic ring.
From definition (1) of the coefficient of self-induction

Lk, we obtained the formula for calculations of the in-
ductance of a coil, whose core performs mechanical vi-
brations,

Lk =

µσ2 +
m2
ϑ

Y
[
1− (γRs0)

2
]
 N2h (R2 −R1)µσ2

π (R1 +R2)
=

= L0[1 + k0(ω)], (16)

where

L0 =
N2h (R2 −R1)µσ2

π (R1 +R2)
,

Let us assume that no magnetostrictive effects are
present in the core bulk, i.e., m0

21 = m0
22 = 0 and

mϑ = 0. Then formula (16) is transformed into the well-
known relation for the calculation of the inductance L0

of the coil on a ring core with the small (relative to the
mid-line radius) size of a cross-section.

With regard for magnetostrictive effects, a frequency
dependence of the coefficient of self-induction Lk is re-
vealed. At the frequency fp which corresponds to the
dimensionless wave number γρR0 = 1, the coil induc-
tance Lk increases in the resonance manner, whereas, at
the frequency fa > fp, which corresponds to the dimen-
sionless wave number γa, R0 =

√
1 + ϑ2/Y µ, Lk → 0.

In the real situation where the oscillatory system, i.e.,
the core in a casing, losses energy, changes of the coil
inductance are bounded at the resonance frequency fp
and the antiresonance one fa.

We note that the condition γρR0 = 1 yields the well-
known formula for the resonance frequency

of free vibrations of a ring ω0 = 1/R0

√
Y/ρ0.

3. Results of Experimental Studies and Their
Discussion

For the experimental studies, we fabricated a coil with
inductance Lk on the basis of a ring core made of nickel-
zinc ferrite of grade F-107 [8]. The coil contained N =
100 windings of a wire 0.2 mm in diameter, uniformly
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Fig. 2. Experimental data on the coil inductance Lk versus the
frequency of a varying magnetic field

positioned on a casing. The core had the following sizes:
R2 = 12.5 × 10−3 m; R1 = 10.5 × 10−3 m; h = 1.5 ×
10−3 m.

From the dc source, the coil with inductance Lk under
study was fed by a direct current I0 which created a
constant circular bias magnetic field with the strength
H0
ϑ ≈ 0.4 kA/m. in the coil bulk. The amplitude of the

alternating current I∗ was selected under the condition
for the amplitude of the varying coil inductance Lk to
be maximum at the resonance. The measurement of
the coil inductance Lk was carried out by means of the
determination of its reactive resistance by the standard
method.

In Fig. 2, we present the plot of experimental data
on the inductance Lk versus the frequency of a vary-
ing magnetic field. There, two resonance frequencies fp
and fa are clearly seen. We note that, as was expected,
an increase in the coefficient of self-induction Lk at the
frequency fp and its decrease at the frequency fa have
bounded values due to the energy losses in a core mate-
rial and at points of the mechanical contact of the core
and a casing, on which the winding is placed.

The high quality of the oscillatory system (Q > 100)
ensures the satisfactory coincidence of the resonance fre-
quencies measured by the reactive resistance of the coil
and the real values of magnetomechanical resonances of
the coil core.

By the experimentally determined frequency fp of the
magnetomechanical resonance corresponding to the wave
number γρ such that γρR0 = 1, we determine the Young

modulus Y = 4π2f2
pR

2
0ρ0. The magnetic permittivity

µσ
2 is determined from the results of measurements of

the inductance Lk at frequencies f � fp. In this case,
Lk = L0. At the frequency of the magnetomechanical
antiresonance fa, the following condition is satisfied:

m2
ϑ

µσ2Y

1
[1− 4π2f2

a ρ0R2
0/Y ]

= −1. (17)

From relation (17), we determine the constant mϑ, by
using the earlier known values of Y and µσ2 .

Thus, by three measured quantities, namely fp, fa,
and L0, we get three material constants Y , µσ2 , and mϑ.
According to the experiment, their values are: Y =121
GPa; mϑ=316 Т; µσ2 = 28µ0, where µ0 = 4π × 10−7

H/m. For comparison, the constant mϑ is found in [8]
to be 350 Т at the magnetic field H0

ϑ = 0.8 kA/m.

4. Conclusions

By the example of the inductance coil with a ring core
made of a magnetostrictive material, we constructed and
studied a mathematical model of the inductance coil
with a vibrating ferromagnetic core. We have proved
that the inductance of a coil varies in a resonance man-
ner at certain frequencies. We present the results of ex-
perimental studies of the dependence of the inductance
on the frequency for a coil, whose ferromagnetic (mag-
netostrictive) core can undergo mechanical vibrations.
The obtained experimental results confirm the results of
theoretical calculations by the proposed mathematical
model. Thus, by measured values of the inductance at
low frequencies and two measured frequencies of reso-
nances of the inductance, it is possible to determine the
magnetic permittivity of a nondeformed magnetostric-
tive ferromagnetic and the modulus of elasticity and the
piezomagnetic constant of a material, of which the core
of an inductance coil is fabricated. The proposed method
of measurement of material constants in the frame of
a physical experiment supplements the available proce-
dures of registration of the magnetostriction.
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ВИЗНАЧЕННЯ МАГНIТОСТРИКЦIЙНИХ КОНСТАНТ
ПОЛIКРИСТАЛIЧНОГО ФЕРОМАГНЕТИКА
ЗА РЕЗОНАНСНИМИ ЧАСТОТАМИ
РАДIАЛЬНИХ КОЛИВАНЬ КIЛЬЦЯ

I.В. Лiнчевський, О.М. Петрiщєв, В.О. Трохимець

Р е з ю м е

У роботi побудовано математичну модель радiальних коливань
кiльця з полiкристалiчного феромагнiтного (магнiтострикцiй-
ного) матерiалу. Показано, що на певних частотах виникає ре-
зонансне поглинання енергiї вiд джерела магнiтного поля, яке
супроводжується резонансними збiльшенням i зменшенням iн-
дуктивностi тороїдальної котушки, осердям якої є кiльце з до-
слiджуваного матерiалу. Запропоновано алгоритм визначення
матерiальних констант полiкристалiчного феромагнетика за
вимiряними значеннями частот магнiтомеханiчних резонансiв.
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