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The classical escape in 2D Hamiltonian systems with a mixed state
has been studied numerically and analytically. The wide class
of potentials with a mixed state is presented by polynomial po-
tentials. In potentials, where the mixed state could be realized,
i.e. the configuration space contains regions of both regular and
chaotic motions, the escape problem has a number of new features.
In particular, some local minima become a trap with the number
of particles depending on the energy and other values that char-
acterize the ensemble of particles. Choosing a form of the initial
ensemble, one chooses the set of parameters that determine the
number of trapped particles.

1. Introduction

Chaotic dynamics is the most common way of the evolu-
tion of nonlinear systems [1]. Examples of dynamic chaos
were discovered almost in every branch of physics, and
their number continuously increases. Recently, the well-
defined trend has emerged in the research of dynamic
chaos: the transition from a trivial demonstration of
chaos to the study of its manifestations in specific phys-
ical systems. In the present paper, we discuss the influ-
ence of chaos on the escape of trajectories from localized
regions of the phase or configuration space. Such escapes
are an important topic in dynamics and describes the de-
cay of metastable states in many areas of physics such
as, for instance, chemical and nuclear reactions, atomic
ionization, etc.

The problem has a rich history and a number of re-
alizations in different systems. Almost a century ago,
Sabine [2] had considered the diminution of sound in
concert halls, and Legrand and Sornette [3] had shown
later on that the problem is equivalent to the escape
one. The corresponding decay rate is

∫
α(s)ds, and α(s)

is the absorption coefficient at a coordinate s of the bil-
liard boundary, α(s) = 1 on the opening of Δ in width,
and α(s) = 0 elsewhere.

Another application of the escape problem links to the
nondestructive monitoring of a system [4]. If some sys-
tem is connected to the surrounding only via a small
opening in its boundary, it became possible to under-

stand the dynamics of the system by exploring the es-
caping particles. So the natural question arises: how
does the escape law depend on the motion? For strongly
chaotic systems, the exponential decay is expected [5–
7]. Bauer and Bertsch [5] considered the escape of parti-
cles through a small opening in the billiard’s boundary.
When exploring a regular billiard, i.e. the rectangular
one without a scattering center, the power law emerges in
a long time. The qualitative consideration of the mech-
anism of generation of power tails is given in [8].

For a rectangular billiard with circular scattering cen-
ter in it, the decay of the initial ensemble of N(0) par-
ticles is of exponential character. By a simple consider-
ation, we have that the corresponding decay rate

N(t) = N(0) exp(−αt), α =
pΔ
πAc

. (1)

Here, p is the particle’s momentum, Δ is the opening
width, and Ac is the billiard area. We show further
that the exponential decay is a common feature of purely
chaotic systems.

2. Mixed State

The passage from billiards to potential systems increases
the number of possible situations. A one-well potential
is the simplest case for considering the escape. In [9],
Kandrup et al. have researched the escape from three
different Hamiltonian systems of the form H = H0+εH ′

and made important conclusions. In particular, the ex-
ploration of the escape probability leads to the conclu-
sion that the initial ensemble is divided into three parts.
The first part consists of the trajectories that are not
confined by any cantori, while the second exhibits the
confinement for a quite long time. The third part (if
significant) consists of regular trajectories. Thus, the es-
cape probability saturates at some level P0 independent
of details of the initial ensemble due to the escape of
unconfined trajectories and decays toward zero at later
times due to the escape of initially confined chaotic tra-
jectories. Importantly, P0 scales as P0 ∝ (ε − ε1)α with
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a value of perturbation, where ε1 is the critical value,
when the escape becomes energetically possible.

Zhao and Du [10] have explored the escape from the
Henon–Heiles potential:

UHH(x, y) =
x2 + y2

2
+ xy2 − x3

3
. (2)

At the energies E > 1/6, a trajectory could leave the
potential well through one of the three openings placed
symmetrically. The numerical simulation performed by
Zhao and Du has shown that the escape follows the ex-
ponential law. At over-saddle energies, the phase space
with the Henon–Heiles Hamiltonian is almost homoge-
neous, and the motion is chaotic. Using this, the escape
rate could be derived, and it fits numerical results with
high accuracy. This situation is similar to the escape
from chaotic billiards.

Another study of the escape from the Henon–Heiles
potential was performed in [11], by focusing on the de-
termination of the escape basins.

In contrast to billiards and the Henon–Heiles poten-
tial, some potentials have a highly inhomogeneous phase
space that consists of macroscopically significant com-
ponents corresponding to both regular and chaotic mo-
tions. A wide class of systems with an inhomogeneous
phase space is represented by multiwell potentials. We
will focus our research on the escape from such poten-
tials. The preliminary results are presented in [12, 13].
The regularity–chaos transition in multiwell potentials
has a distinctive feature which consists in the difference
of critical energies in different local minima. This leads
to the different (either regular or chaotic) regimes of mo-
tion in different local minima at the same energy, i.e. the
ratio of chaotic trajectories in some local minimum sig-
nificantly differs from the ratio in other minima. Such a
kind of the dynamics is called the mixed state [14]. It is
worth to mention that critical energies lie below the sad-
dle energy, i.e. the energy, above which the local minima
are no more separated.

We will demonstrate the mixed state in two represen-
tative examples of 2D multiwell potentials: the lower
umbilical catastrophe D5,

UD5 = 2ay2 − x2 + xy2 +
1
4
x4 (3)

for a = 1.1 and the quadrupole nuclear oscillatory po-
tential (QO),

UQO(x, y,W ) =
x2 + y2

2W
+ xy2 − 1

3
x3 + (x2 + y2)2 (4)

for W = 18. The D5 potential has two local minima and
three saddles, and it is the simplest potential, where a
mixed state is observed. Figure 1 shows the Poincaré
sections for different energies in the considered poten-
tials. It demonstrates the dynamical evolution in dif-
ferent local minima. At low energies, the motion has
a well-marked quasiperiodic character in both minima.
As the energy grows, the gradual regularity–chaos tran-
sition is observed. However, the changes in features of
the trajectories localized in different minima are sharply
distinct. In the left minimum, a significant fraction of
trajectories becomes chaotic already at about a half of
the saddle energy. Near the saddle energy, almost all
initial conditions result in chaotic trajectories. In the
right minimum at the same energy, the motion remains
regular, and this situation is preserved up to the saddle
energy (we call this minimum the regular one for sim-
plicity).

Moreover, at energies above the saddle one, the phase
space is still divided into chaotic and regular compo-
nents, but they are not separated in the configuration
space.

Earlier, we have shown that the mixed state opens
new possibilities for the investigations of quantum man-
ifestations of classical stochasticity [15]. The aim of the
present work is to study the classical escape from sep-
arated local minima realizing a mixed state. We show
that the escape from such local minima has all above-
mentioned properties of the decay of chaotic systems and
also a diversity of basically new features representing an
interesting topic for the conceptual understanding of the
chaotic dynamics and for applications as well. We are
interested in both the first passage effects and the dy-
namical equilibrium setup for a finite motion (for exam-
ple, in the QO potential). It is important to emphasize
that though we study the process of escape from a spe-
cific local minimum, the over-barrier case of the mixed
state has a specific memory: the general phase space
structure at supersaddle energies is determined by the
characteristics of motion in all other local minima.

3. Decay of the Uniformly Distributed
Ensemble

At the energies above the saddle, i.e. E > ES , differ-
ent components are not separated in the configuration
space. Figure 2 represents the Poincaré section for the
D5 potential at a supersaddle energy. The “chaotic sea”
stretches on whole accessible area, while a regular island
in the right well is localized. This means that, being
initially localized in the right well, chaotic trajectories
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Fig. 1. Level lines and Poincaré sections for D5 (upper row) and QO potentials at different energies under the saddle

Fig. 2. Poincaré section for the D5 potential at E = 1.0

could leave the well, and regular ones remain trapped,
i.e. the decay of the mixed state occurs. Therefore,
we will explore the escape of particles from the right

well of D5 and from peripheral wells of the QO poten-
tial.

The numerical simulation of the escape from these po-
tentials includes three steps. At the first stage, we se-
lect an initial distribution of particles inside the well.
Then the direct numerical integration of the equations
of motion for all particles is performed, and we extract
N(t)/N(0) which is the relative number of particles in
the well. Using this function, we can calculate the escape
rate and a part of trapped trajectories.

One remark should be made about the first step of the
numerical simulation. The initial distribution, in gen-
eral, determines the ratio between regular and chaotic
trajectories, and, hence, it should be physically moti-
vated. One chance is to distribute particles uniformly
in the whole classically allowed configuration space, and
another one is to put all particles at the same point.
The second case emulates the injection of particles to
the well. In both cases, the momentum is calculated, by
using the energy conservation (in the second case, it will
be the same for all particles), and its direction is uni-
formly distributed in [0, 2π]. These initial distributions
present quite simple extreme cases of real distributions.
The uniform and “point” distributions will be illustrated
with UD5 and UQO, respectively. The phase space den-
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Fig. 3. Decay law N(t)/N(0) for the D5 potential at different
energies. Ei = 0.1 + 0.2k, k = 0 . . . 4

sity for the uniform initial distribution is

ρ(E) =
1

2πS(E)
, (5)

where S(E) is the area of the classically allowed space:

S(E) =
∫

x>xS

dxdyΘ(E − U(x, y)). (6)

The numerical simulation reveals some substantial fea-
tures of the escape for this initial distribution. Figure
3 demonstrates the normalized number of particles in
the well as a function of time. The decay law has three
important features:
– saturation at t→∞:

N(t→∞) = ρ∞N0. (7)

Because of the uniform initial distribution, the quantity
ρ∞ is the relative phase volume occupied by trapped
trajectories.
– initial linear decrease – from 0 to some τ(E):

N(t)/N0 = 1− α(l)t, (8)

– exponential decrease at t > τ(E):

N(t)/N0 = ρ∞ + C exp(−α(e)t). (9)

Figure 4 presents the Poincaré section for trapped tra-
jectories. Obviously, the regular island in the right well

Fig. 4. Poincaré section for trapped trajectories. These trajecto-
ries form a regular island, i.e. they are regular

is formed by trapped, i.e. regular, trajectories. The
function ρ∞(E) is demonstrated in Fig. 5. This is a
decreasing function, as expected from physical consider-
ations, the number of regular trajectories decreases as
the energy increases.

It is interesting to mention that there exists the corre-
lation between ρ∞(E) and the relative area of the regu-
lar island in the Poincaré section ρPS. While the relative
part of trapped trajectories is linked to the volume of the
four-dimensional phase space occupied by regular trajec-
tories, the Poincaré section is two-dimensional. Thus,
there is no argument to expect the precise coincidence
of ρ and ρ∞(E).

To calculate the relative area of a regular island in
the Poincaré section we first determine the border of the
island through the numerical integration of the equation
of motion and calculate the area inside it. Then this
area was divided by the total area determined by the
conditions x > 0, p2 > 0. In spite of the topological
nonequivalence, ρPS and ρ∞(E) are very close to each
other. This means that one could determine and control
the part of trapped trajectories using only the Poincaré
section.

The linear part of the decay law is more pronounced in
comparison with a pure ensemble [10]. In the time inter-
val between 0 and τ(E), the decay has form (8). Thus,
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Fig. 5. Relative area ρPS of the regular island in the Poincaré
section is shown by squares, and ρ∞(E) is shown by circles

there are two quantities describing the linear decay: its
duration τ(E) and the corresponding escape rate α(l).

After the linear part, at t > τ(E), the decay law has
exponential form (9). It is important that (8) is not a
linear approximation of (9), and the linear decay has in-
dependent nature. This means that ρ∞ +C 6= 1. More-
over, the decay law of form (8) precisely works up to time
t ∼ τ(E). In this interval, it differs substantially from the
corresponding exponential law ρ∞+(1−ρ∞) exp(−α(l)t).

Let us now calculate τ(E). From the analysis of of
the results of numerical calculations, we obtain that this
time corresponds to the time of the one-dimensional,
along y = 0, motion from the saddle to the opposite
side of the well and back. Thus, τ(E) has the form

τD5(E) = 2

√
2(1+

√
E)∫

0

dx

|v|
=
√

2
E1/4

K


√

1 + 1√
E

2

 ,

(10)

τQO(E) = 12
(
ES
E

)1/4

K


√√√√1 +

√
ES

E

2

 =

= 6
√

2τD5

(
ES
E

)
, (11)

where K(k) is a full elliptic integral of the first type, and
Es = 1/124 is the saddle energy in the QO potential at
W = 18.

Such a nature of τ(E) and the analysis of linearly es-
caping trajectories allow us to conclude that the linear
decay corresponds to the escape of trajectories that move
along y = 0 and cross the well not more than two times.
Correspondingly, the trajectories which initially move
toward the saddle along y = 0 escape firstly, and then
the escape occurs for trajectories moving to the opposite
part of the well.

The quantity α(l) could be calculated via the averaging
of the flow through the saddle:

α(l)(E) = ρ(E)
∫

x=xS

dy

π/2∫
−π/2

dθ |v| cos θ. (12)

This procedure is the same as in [10]. Using density (5)
and integrating (12), we obtain the linear escape rate

α
(l)
D5

(E) =
E

2
√
aSD5(E)

, (13)

α
(l)
QO(E) =

4
√
ε

12πSQO(E)
{
(16
√
ε+ 1)×

×K


√

1− 1
16
√
ε

2

− 2E


√

1− 1
16
√
ε

2

 . (14)

The exponential decrease of N(t)/N(0), as it could be
understood from the analysis of escaped trajectories,
corresponds to the leaving of sticking orbits, i.e. those
chaotic trajectories which moved in a vicinity of the reg-
ular island in the Poincaré section.

The energy is a parameter which determines a part of
trapped trajectories for the uniform ensemble. Changing
the ensemble energy, one could trap the given number of
particles.

To illustrate the splitting of the initial ensemble into
the regular and chaotic components, we plot the ensem-
ble in the (x, y) plane at a time t � τ(E). It is con-
venient to plot the asymptotic evolution of the initial
ensemble in the QO potential because of the bounded
character of motion in it. At t = 0, the particles are
equally distributed between peripheral minima. Figure
6 represents this initial ensemble.
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Fig. 6. Initial ensemble for the extraction of the asymptotic dis-
tribution

The ensemble splits during the evolution in time: reg-
ular trajectories remain trapped in peripheral minima,
while chaotic trajectories cover almost completely the
accessible configuration space. Integrating the equa-
tions of motion for all trajectories in the initial ensem-
ble for a enough long time (in fact – for time much
greater than the typical escape time), we obtain the
particles positions corresponding to the asymptotic dis-
tribution. We have calculated the asymptotic distri-
bution for the energy E = 1.5ES (ES = 1/124 is
the saddle energy in the QO potential), while the in-
tegration was performed for t = 150 (for this energy,
τ(E) = 28.395). Figure 7 shows the asymptotic distri-
bution of trapped particles. At an enough large time,
these particles tend to accumulate closer to the center of
the well.

The corresponding distribution of free particles is rep-
resented in Fig. 8. As was mentioned above, free par-
ticles cover the entire central minimum and, according
to their character, the area near the line y = 0 in pe-
ripheral minima. Let the free particles be removed in
some way. When they have left the peripheral minima
(this is, of course, correct for the right well of D5 and
any well of same topology), we obtain a pure regular en-
semble inside the well, i.e. the initial mixed ensemble
splits.

Fig. 7. Asymptotic distribution of trapped particles

Fig. 8. Asymptotic distribution of free particles

4. Point Ensemble

For simplicity, we will consider the point distribution
with y = 0. Thus, the governing parameter is the x0–x–
coordinate of the point of injection. The corresponding
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Fig. 9. Normalized particle number in the well for a point ensemble
at different energies and x0 = 0.16

density has the form

ρ (x, y, p, ϕ) =

=
δ {x− x0} δ {y} δ

{
p−

√
2(E − U(x0, 0))

}
2π
√

2(E − U(x0, 0))
. (15)

The numerical procedure is identical to that for a uni-
form ensemble, but we can made a general conclusion
about the character of decay for distribution (15) even
without numerical integration.

For this, we consider the representation of an initial
distribution on the Poincaré section (y = 0):

ρPS(x, px) =
δ(x− x0)Θ

{
px −

√
2(E − U(x0, 0))

}
2
√

2(E − U(x0, 0))
×

×Θ
{√

2(E − U(x0, 0)) + px

}
, (16)

where Θ {a} is a step function. Let us denote

p(max)
x =

√
2(E − U(x0, 0)). (17)

Thus, in the Poincaré section, the initial ensemble oc-
cupies the interval x = x0, px ∈

[
−p(max)

x , p
(max)
x

]
. The

edges of this interval correspond to the momentum di-
rections ϕ = π, 0. In the over-barrier case, this interval

crosses the regular island at the points (x0, p
(reg)
x ) and

(x0,−p(reg)
x ). Obviously, the particles with px in the

interval
[
−p(reg)

x , p
(reg)
x

]
could not leave the well. The

quantity

ϕmax(E, x0) = 2 arccos

(
p
(reg)
x

p
(max)
x

)
(18)

defines the cone of directions, along which the particles
can leave the well. In other words, the particles with py
which is greater than some maximum value are trapped.
Thus, the first conclusion about the decay of a point
ensemble implies the existence of the escape cone, and
this feature reveals the role of transversal momenta in
the escape.

The second feature consists in the fact that the decay
begins at the time τ1 which corresponds to the time of
motion of a particle with momentum px = −p from the
point x0 to the saddle:

τ1 =

x0∫
xS

dx

px
=

x0∫
xS

dx√
2(E − U(x, 0))

. (19)

Moreover, the escape is a two-stage process due to the
existence of the escape cone. At the second stage, the
particles moving toward the well boundary in the escape
cone leave the well.

The numerical procedure implies the determination of
ϕmax(x0, E), τ1(x0, E), and N(t = ∞), i.e. the number
of particles in the well. Due to the uniform distribution
of the directions of momenta, we have the relation

ρ∞(x0, E) ≡ N(∞)
N(0)

= 1− ϕmax(x0, E)
π

. (20)

We will illustrate the above consideration for the QO
potential. The energy is normalized to the saddle en-
ergy, ES = 1/1442: E = εES . The initial ensemble is
localized in a peripheral minimum with xmin = 1/6, and
the corresponding saddle xS = 1/12. Figure 9 repre-
sents the normalized number of particles in the well as
a function of the time for different values of the energy
and x0 = 0.16.

Numerically obtained τ1 can be compared to the ana-
lytical value

τ1 =

x0∫
1/12

dx

px
=

x0∫
1/12

dx√
2(εES − UQO(x, 0))

. (21)

The numerical and analytical values of the first escape
time are presented in Fig. 10.
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Fig. 10. First escape time τ1; τexp – obtained numerically, τ(E) –
calculated analytically

The most interesting question is the correspondence
between the escape cone angle, the number of trapped
particles, and a linear part of the regular island in the
Poincaré section. Figure 11 represents the quantities

ρPS = 1− p
(reg)
x (x, ε)

p
(max)
x (x, ε)

(22)

and

ρϕ = 1− cos(ϕmax(x, ε)/2). (23)

The first quantity is a linear part of the regular island
in the section, and second one is the corresponding ex-
pression through the escape cone angle.

This angle could be determined by a numerical simu-
lation. Thus, the Poincaré section can be used to deter-
mine the angle of the escape cone. On the other hand,
this angle is related to the part of trapped trajectories.
To demonstrate this connection, we compare

ρ(N)
ϕ = 1− ϕmax(x, ε)

π
(24)

with ρ∞. The corresponding data are presented in Fig.
12. This analysis allows us to conclude that the point en-
semble differs substantially from the uniform one, when
considering the escape.

In a uniform ensemble, the Poincaré section gives only
an estimate (nevertheless, very accurate) of the num-
ber of trapped particles. In the point ensemble, one

Fig. 11. ρPS and ρϕ for different energies and injection points

Fig. 12. ρ∞ and ρ(N)
ϕ for different energies and injection points

can calculate not only a part of trapped particles, but
also the escape cone angle, using only the Poincaré sec-
tion. The point ensemble allows a dual control of the
part of trapped particles, using the energy and the in-
jection point. We even should not compute the entire
Poincaré section, but only the boundary of the regular
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island, p(reg)
x (x0, ε), and then we can use the relation

ρ∞ = 1−
2 arccos

(
p(reg)x

p
(max)
x

)
π

. (25)

The procedure of calculation of the part of trapped par-
ticles, thus, includes three steps. First of all, we need
to calculate the boundary of the regular island in the
Poincaré section. After that, the p(reg)

x and p(max)
x should

be determined. Now the value ρ∞ can be calculated.

5. Conclusions and Future Research

We have studied the escape from localized areas of the
configuration space under the existence of a mixed state.
When the mixed state is present in the system, it is
possible to “trap” a given number of particles in the well.
We have considered two possible initial distributions.

For the uniform distribution, the escape law splits into
three sections. The first and second sections correspond
to the linear and exponential decays, respectively, and
the third section is characterized by a plateau which cor-
responds to trapped particles. The number of trapped
particles depends only on the energy.

In the case of a point ensemble, the escape is a two-
stage process, and the number of trapped particles de-
pends not only on the energy, but on the coordinate of
the injection point too. Only trajectories with direc-
tions of initial momenta in some cone can escape. The
escape cone angle is related to the linear part of the
regular island in the Poincaré section and the number of
trapped trajectories. Moreover, only the edge of the reg-
ular island is required to compute the number of trapped
particles.

The natural question arises about whether the consid-
ered features of the escape problem in potentials with a
mixed state preserve under the influence of weak noise
and friction. The integration of the Langevin equation
is the obvious method to answer this question. How-
ever, the numerical integration of stochastic differential
equations with chaotic potential leads to some compli-
cations: the low-order methods give too large errors due
to a strong dependence on initial conditions, whereas
the more advanced algorithms are computationally ex-
pensive. Nevertheless, this is an important topic for re-
searches. Moreover, the analytical estimations of the
escape rate can be performed not only by using the well-
known Kramers approach, but by considering the con-
nection between the Fokker–Planck equation and quan-
tum mechanics. Algorithms for a numerical solution

of the Schrödinger equation are more robust, the cor-
responding quantum problem, being solved, provides a
solution of the Fokker–Planck equation. The recent re-
sults in N = 4 supersymmetric quantum mechanics
(N = 4 SUSYQM) [16] boost the procedure even fur-
ther: one can not only construct the quantum Hamilto-
nian for the considered stochastic system, but also addi-
tional Hamiltonians which are related to new stochastic
processes. Although analytically intensive, the proce-
dure of construction of new Hamiltonians and, thus, new
stochastic systems is straightforward and very promis-
ing, by presenting the important information about es-
cape, e.g., its rate.
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OVER-BARRIER DECAY OF A MIXED STATE

НАДБАР’ЄРНИЙ РОЗПАД ЗМIШАНОГО СТАНУ
У ДВОВИМIРНИХ БАГАТОЯМНИХ ПОТЕНЦIАЛАХ

Ю.Л. Болотiн, В.О. Черкаський, Г.I. Iвашкевич, А.I. Кiрдiн

Р е з ю м е

Проведено аналiтичнi та чисельнi дослiдження класичного ви-
льоту у двовимiрних гамiльтонових системах зi змiшаним ста-

ном. У потенцiалах, в яких iснує змiшаний стан, тобто фазовий
простiр мiстить одночасно областi регулярного та хаотичного
руху, задача вильоту має низку нових властивостей. Зокрема,
деякi локальнi мiнiмуми перетворюються на пастки, число ча-
стинок у яких залежить вiд енергiї та iнших величин, що ха-
рактеризують ансамбль частинок. Початкова форма ансамблю
задає набiр параметрiв, що визначають число захоплених ча-
стинок.
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