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We consider the interaction of charged grains with a medium that
is capable to a nonlocal polarization. The potential distribution
problem has been solved with regard for the polarization effects
that arise in the spatial charge field of a smoky plasma in the
presence of charged condensed grains. It is shown that there could
be the local minima that testify to the existence of a stable equi-
librium of equally charged condensed grains due to such an en-
vironment at particular values of the polarizability and plasma
parameters.

Under certain conditions, the spatial arranged struc-
tures of condensed charged grains, e.g., a plasma crystal,
are formed in heterogeneous systems like a dusty [1] or
smoky [2] plasma. The cause for such a structurization
is the interaction between condensed charged grains in
the presence of a plasma, but the origins of the interac-
tion in dusty and smoky plasmas essentially differ [2–5],
although it has the electrostatic nature in both cases.

The interaction of condensed charged grains with a
plasma has been considered from different positions
[1–7]. In the majority of papers, the problem of es-
timation of the interaction potential energy for two
charged grains in a plasma was reduced to solving the
Poisson–Boltzmann equation for the electrostatic self-
consistent potential. The solution of an appropriate
boundary-value problem in a linear approximation re-
vealed the Debye electrostatic screening concept. The
further research of more exact solutions of this equa-
tion in the case of great values of the potential has
shown that it is impossible to neglect the interaction
between electrons and ions. It is necessary to refer
to methods of statistical physics for a more precise ef-
fective potential description of charged grains in such

media. While studying the interaction between mov-
ing charged grains with a plasma, it is necessary to
use the linear response theory [8–11]. In this case,
the essential role is played by the relaxation of the di-
electric permeability of the medium after a perturba-
tion.

Another way to consider the interaction between
charged grains and the medium is to involve the bulk
plasma potential [5] which is defined locally and makes
sense of an initial level of the Debye potential. Then
the interaction between charged condensed grains is re-
alized by means of their influence on properties of the
medium, namely on the bulk plasma potential. As a
result, the interaction potential of charged grains in a
plasma is represented in the form of a sum of the Debye
and bulk plasma potential which can have a minimum
under certain conditions.

The above-mentioned papers have analyzed the struc-
ture of a spatial charge and the potential distribution.
Nevertheless, the polarization effects in a spatial charge
volume which influence the potential distribution char-
acter were not considered in an explicit form. Therefore,
the present paper is devoted to the statement and the
solution of the problem on potential distribution in a
plasma, by directly taking the polarization effects into
account.

Let us consider a low-temperature plasma where the
condensed charged grain is located. The grain tempera-
ture is equal to the plasma temperature T , and the av-
erage concentration of electrons is equal to the average
concentration of ions n. For definiteness, we will assume
that the grain size can be neglected. There appears some
charge Q on the grain surface, and the induced spatial
charge is formed in a vicinity of the grain as a result of
the interphase interaction. It is natural that its distri-
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bution is defined by the value of a grain surface charge.
If the grain is charged positively, it attracts charges of
the opposite sign. Therefore, a negatively charged layer
arises near the grain surface.

Thus, the interaction between the grain and the
plasma causes a nonzero volume charge that can be
interpreted as the plasma polarization. It is obvious
that, in terms of the linear Debye theory, the Debye
radius should be taken as the polarization characteristic
scale.

On the microscale, the displacement of electrical
charges in the plasma under the influence of the effective
field E is equivalent to the appearance of a displacement
charge density ρind that depends on the effective field E
or the corresponding potential ϕ. Using the Gauss theo-
rem in the differential form, we obtain the self-consistent
equation for the effective field in the medium:

divE =
1
ε0

(ρ̃ind(E) + ρ) . (1)

For the effective potential, we have an equation of the
Poisson form

4ϕ = − 1
ε0

(ρind(ϕ) + ρ) , (2)

where ε0 is the dielectric constant, and ρ is the free
charge distribution function.

Instead of expressing the induced charge density in the
plasma by terms of the Boltzmann distribution, we will
present it through a polarization vector P which linearly
depends on the electric field strength:

ρ̃ind = −divP. (3)

As the polarization vector magnitude is influenced not
only by the external field of a free charge, but also by
the field of the displacement charge density which was
formed due to polarization, the polarization vector at
any point should be expressed through the electrostatic
field of all points of the medium. Then the resulted
polarization vector can be expressed in the convolution
form as

P(E) = ε0χ

∫
r ′

E(r ′)M(r ′ − r) dr ′, (4)

where the integration is performed in the total r ′ space,
M(r ′−r) is the averaging kernel which is responsible for
the contribution of the electrostatic field of all induced
volume charges to the polarization vector. Thus, the po-
larization vector becomes nonlocal in the given model.

If the kernel quickly decreases to zero with increase in
the distance between points, then the polarization pos-
sess the local character, and M(r ′ − r) → δ(r ′ − r).
The explicit type of the kernel requires the additional re-
search, but it can be modeled with regard for the above-
described properties.

According to the present model, we can express the
averaging kernel in such a form:

M(r ′ − r) =
exp

[
− (r ′−r)2

R2

]
π3/2R3

. (5)

Here, R is the averaging length which depends on param-
eters of the medium. Substituting expressions (3)–(5) in
(1), we obtain the equation for the effective field strength
in the medium:

div
(
E(r) + χ

∫
r ′

E(r ′)M(r ′ − r) dr ′
)

=
ρ(r)
ε0

. (6)

Expressing the field strength through its potential in
this equation, we obtain

4ϕ(r) + χdivr

∫
r ′

∇ϕ(r ′)M(r ′ − r) dr ′ = −ρ(r)
ε0

, (7)

where the vector index below the divergence operator
denotes the operation applied on the corresponding set of
variables. Let us bring the divergence operator under the
integral sign (integration is carried out over the other set
of variables) and use the identity div(Af(r)) = A∇f(r),
where A is any vector, and f(r) is any function. Then we
get the equation for the effective electrostatic potential
which should be searched in a class of functions which
quickly fall down to zero at the infinite distance from
sources. Thus, it is necessary to solve the boundary-
value problem

4ϕ(r) + χ

∫
r ′

∇ϕ(r ′) · ∇rM(r ′ − r) dr ′ = −ρ(r)
ε0

, (8)

ϕ(r)
∣∣
r→∞ = 0. (9)

The boundary condition (9) allows us to use the
Fourier integral transformation in order to solve the
problem. It is obvious that such a transformation
takes place in the Fourier space: ρ(r) → ρ̂(k),
4ϕ(r) → −k2ϕ̂(k),

∫
r ′
∇ϕ(r ′)∇rM(r ′ − r) dr ′ →

→ −(2π)3/2k2ϕ̂(k)M̂(k).
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Thus, with the specified boundary condition (9), the
equation for the effective potential in the Fourier space
can be presented as

−k2ϕ̂(k)− (2π)3/2χk2ϕ̂(k)M̂(k) = − ρ̂(k)
ε0

. (10)

Its solution looks as

ϕ̂(k) =
ρ̂(k)

ε0k2
(
1 + (2π)3/2χM̂(k)

) . (11)

To get a more exact expression, we will find the Fourier
transform of the averaging kernel:

M̂(k) =
1

(2π)3/2
1

(π)3/2R3

∫
r ′

exp
[
− r

2

R2
− ik r

]
dr ′ =

=
1

(2π)3/2
1

(π)3/2R3
I(kx)I(ky)I(kz),

I(p) =

∞∫
−∞

exp
[
− q

2

R2
− iqp

]
dq =

√
πR exp

[
−p

2R2

4

]
.

It can be reduced to

M̂(k) =
1

(2π)3/2
exp

[
−k

2R2

4

]
. (12)

The Fourier transform of the effective potential is as fol-
lows:

ϕ̂(k) =
ρ̂(k)

ε0k2
(
1 + χ exp

[
−k2R2

4

]) . (13)

We now perform the inverse Fourier transformation of
expression (13):

ϕ(r) =
1

(2π)3/2ε0

∫
k

ρ̂(k) exp[ik r]
k2
(
1 + χ exp

[
−k2R2

4

]) dk =

=
1

(2π)3ε0

∫
r ′

ρ(r ′)
∫
k

exp[ik(r− r ′)]
k2
(
1 + χ exp

[
−k2R2

4

]) dr ′dk .
It is possible to represent this expression through the
convolution with an appropriate Green’s function:

ϕ(r) =
∫
r ′

ρ(r ′)G(r− r ′) dr ′, (14)

G(r− r ′) =
1

(2π)3ε0

∫
k

exp[ik (r− r ′)]
k2
(
1 + χ exp

[
−k2R2

4

]) dk. (15)

As the Fourier transform of the obtained Green’s func-
tion depends just on the radius-vector k, the Fourier
original should also depend on |r − r ′|. Therefore, we
choose a system of coordinates so that r− r ′ be parallel
to the direction of kz. Then we can integrate (15) in the
spherical system of coordinates:

G(r− r ′) =
1

(2π)3ε0
×

×
∞∫
0

π∫
0

2π∫
0

exp[ik|r− r ′| cos(θ)]
k2
(
1 + χ exp

[
−k2R2

4

])k2 dk dθ dϕ,

G(r− r ′) =
1

4πε0|r− r ′|
K(|r− r ′|), (16)

K(|r−r ′|)=
2
π

∞∫
0

sin(k|r−r ′|)
k

dk

1+χ exp
[
−k2R2

4

] . (17)

Expressions (16) and (17) define the Green’s function
of the boundary-value problem (8), (9). For convenience,
we make substitution k|r−r ′| = t in (17). Using (14), we
can write the potential of a point-like grain with charge
Q located at the origin of coordinates as

ϕ(r) =
Q

4πε0r
K
( r
R

)
, (18)

K(p) =
2
π

∞∫
0

sin(t)
t

dt

1 + χ exp
[
− t2

4p2

] , (19)

where the variable p = r
R .

Like the Debye theory, we use the shielding radius
D̃ as a distance where the effective grain potential in
the medium is smaller than the corresponding Coulomb
potential by e times. By virtue of equalities (18) and
(19), we obtain the equation, from which the shielding
radius can be determined:

K

(
D̃

R

)
= e. (20)

Let us find the asymptotics of the obtained potential
for various parameters of the system.
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Fig. 1. Form of the function f(t) for great values of the polariz-
ability

Polarizability of the medium tends to zero: χ� 1.
Thus, one can decompose the denominator in expression
(19) up to the first order in the infinitesimal value

Kχ→0(p) =
2
π

∞∫
0

sin(t)
t

(
1− χ exp

[
− t2

4p2

])
dt. (21)

Assuming that

∞∫
0

sin(t)
t

dt =
π

2
,

∞∫
0

sin(t)
t

exp
[
− t2

4p2

]
dt =

π

2
erf(p),

(22)

we obtain the effective field potential in the form

ϕχ→0(r) =
Q

4πε0r

(
1− χ erf

( r
R

))
. (23)

The observation point lies much more further than the
averaging length: r � R.
In this case, p−1 → 0 in formula (19). In order to obtain
such an asymptotics, we need to make some transforma-
tions:

K(p)=
2
π

∞∫
0

sin(t)
t

1 + χ exp
[
− t2

4p2

]
−χ exp

[
− t2

4p2

]
1+χ exp

[
− t2

4p2

] dt=

= 1− 2
π

∞∫
0

sin(t)
t

dt

1 + χ−1 exp
[
t2

4p2

] . (24)

After the decomposition of the exponent index up to a
first infinitesimal term, we obtain an approximate form
of (19):

KR→0(p) = 1− 2
π

4p2χ

∞∫
0

sin(t)
t

dt

4p2(1 + χ) + t2
. (25)

Taking into account that
∞∫
0

sin(t)
t

dt

a2 + t2
=
π

2
(
1− e−a

)
and 1 + χ = ε, where ε is the dielectric permeability, we
finally obtain

KR→0(p) =
1
ε

+
χ

ε
e−2p

√
ε, (26)

ϕR→0(r) =
Q

4πε0r

(
1
ε

+
χ

ε
exp

[
−2r
√
ε

R

])
. (27)

We see that, in this case, the resulting potential is
represented by a sum of the Coulomb and Debye-like
potentials, where the Debye radius is D = 2

√
ε

R .
Polarizability of the medium tends to infinity: χ� 1.

It is considered that, for such media as plasmas, the
polarizability and the dielectric permeability are suffi-
ciently great. It is obvious because the electric charges
are free and capable to neutralize an external electric
field easily.

In Fig. 1, we shown the function from (19):

f(t) =
1

1 + χ exp
[
− t2

4p2

] . (28)

It is convenient to approximate f(t) by a step-function
when χ� 1:

f(t) =
{

0, t < t∗;
1, t > t∗, (29)

where t∗ is the inflection point of f(t) which can be de-
termined from the equation

ex
∗

= χ
2x∗ + 1
2x∗ − 1

, x∗ =
t∗

2

4p2
. (30)

For χ � 1, we get x∗ = ln(χ), t∗ = 2p
√

lnχ, and
χ = ε. In view of these relations, we can write an asymp-
totic expression for (18) and (19):

K(p)χ→∞ =
2
π

∞∫
t∗

sin(t)
t

dt = 1− Si(2p
√

ln ε), (31)
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Fig. 2. Dependence Φ(p) for χ = 1, 5, 10, 100

Si(x) =
2
π

x∫
0

sin(t)
t

dt;

ϕ(r)χ→∞ =
Q

4πε0r

(
1− Si

(
2
r

R

√
ln ε
))

. (32)

The solution obtained is represented by a zero-based
oscillating function with degraded extrema by modulus.
Therefore, we can get shielding radius, by using expres-
sion (20):

D̃ =
R

2
√

ln ε
. (33)

It is convenient to represent the exact solution (18)
and (19) in the dimensionless form. Changing of the
variable ϕ(p) = Φ(p) Q

4πε0R
, we will get the expres-

sion

Φ(p) =
2
π

1
p

∞∫
0

sin(t)
t

1

1 + χ exp
[
− t2

4p2

] dt. (34)

Figure 2 presents the effective potential of the di-
mensionless charge of grains for various values of the
polarizability χ. A plot is shifted down by increas-
ing the polarizability. Consequently, the extrema ap-
pear.

Figure 3 shows the dependence of Φ(p) extrema on
the dimensionless distance for various values of the po-
larizability χ. It is seen that, at χ ≈ 4, the first pair
of extrema appears and then diverges. At χ ≈ 12, the

Fig. 3. First four extrema of the potential Φ(p) versus the polar-
izability. Solid lines are minima, and dashed lines are maxima

second pair arises. With increase in the polarizability,
new pairs of extrema appear, but their values tend to
zero rapidly.

Thus, the consideration of the plasma medium polar-
ization near charged grains allows us to make the follow-
ing conclusions:
1) For finite polarizability values at far distances, the
potential is represented by a sum of the Coulomb and
Debye potentials. If the polarizability magnitude is con-
siderable, the exponential damping makes its significant
contribution, and it can be interpreted as the Debye
shieling.
2) As the polarizability of the medium near charged
grains increases, the set of minima and maxima appears,
which testifies to the presence of a complicated interac-
tion of equally charged grains with the possible estab-
lishment of a stable equilibrium.
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ЕЛЕКТРОСТАТИЧНИЙ ПОТЕНЦIАЛ У СЕРЕДОВИЩI
З НЕЛОКАЛЬНОЮ ПОЛЯРИЗАЦIЄЮ

Є.В. Коськiн, Г.С. Драган

Р е з ю м е

У рoботi розглянуто взаємодiю зарядженої частинки з не-
обмеженим плазмовим середовищем, здатним до нелокаль-
ної поляризацiї. Розв’язано вiдповiдну самоузгоджену зада-
чу про розподiл потенцiалу з урахуванням поляризацiйних
ефектiв, якi з’являються в шарi просторового заряду димо-
вої плазми за наявностi заряджених конденсованих части-
нок. Показано, що при певних значеннях поляризацiї та па-
раметрiв плазми з’являються локальнi мiнiмуми, що свiд-
чать про наявнiсть iснування в такому середовищi локаль-
ної стiйкої рiвноваги однаково заряджених конденсованих
частинок.
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