НАНОСИСТЕМИ

ЕНЕРГЕТИЧНИЙ СПЕКТР ЕЛЕКТРОНА З ФОНОННИМИ ПОВТОРЕННЯМИ У ПЛОСКІЙ НАПІВПРОВІДНИКОВІЙ НАНОГЕТЕРОСТРУКТУРІ З КВАНТОВОЮ ЯМОЮ

B.M. KPAMAP, M.B. TKAY

УДК 538.975; 538.915 ©2010 Чернівецький національний університет ім. Юрія Федьковича (Вул. Коцюбинського, 2, Чернівці 58012)

Досліджено перенормування енергетичного спектра електрона у плоскій напівпровідниковій наногетероструктурі з прямокутною квантовою ямою скінченої глибини внаслідок взаємодії з оптичними поляризаційними фононами. У рамках методу функцій Гріна одержано аналітичний вигляд масового оператора, де враховано двофононні процеси електрон-фононної взаємодії при T = 0 К. Обчислено поправку до енергії дна основної зони електрона та положення перших фононних повторень, викликаних його взаємодією з обмеженими, напівпросторовими та інтерфейсними фононами.

1. Вступ

Перспектива створення новітньої електроннооптичної техніки на основі напівпровідникових наногетеросистем (квантових ям (КЯ), точок і дротів) стимулює активні пошуки технологій виготовлення таких систем та дослідження їх властивостей [1-5]. Фізичні властивості наносистем у значній мірі визначаються структурою енергетичного спектра електронів та фононів, а також ефективністю їх взаємодії. Усе це суттєво залежить від просторової вимірності наносистеми та від зовнішніх умов, у яких вона знаходиться. Отже, вивчення закономірностей перенормування енергетичного спектра електронів у наносистемах внаслідок їх взаємодії з фононами залишається актуальною задачею як фундаментальних, так і прикладних досліджень у галузі фізики низьковимірних систем.

Теоретичні дослідження електронних спектрів у плоских напівпровідникових наногетероструктурах з

КЯ (наноплівках, НП) із урахуванням їх взаємодії з фононами виконуються [6–11], як правило, в однофононному наближенні. Однак, з теорії електронфононної взаємодії (ЕФВ) у масивних кристалах відомо, що така взаємодія може приводити до появи зв'язаних станів, які експериментально проявляються у вигляді сателітів основної смуги спектра КРС (фононних повторень). Отже, виникає потреба в теорії ЕФВ у низьковимірних системах, здатної послідовно описувати настільки широкий діапазон енергій, що містив би область фононних повторень. Природно, така теорія повинна враховувати багатофононні процеси.

За умови невеликих концентрацій квазічастинок у наносистемі задача перенормування спектра в широкому діапазоні енергій розв'язується методом функцій Гріна з використанням діаграмної техніки Фейнмана–Пайнса [13, 14]. Однак проблема полягає в тому, що урахування багатофононних процесів ЕФВ потребує знаходження повного масового оператора (MO) електронів, який має вигляд нескінченного ряду діаграм з усіма можливими типами і кількістю фононних ліній. У моделі бездисперсійних фононів сума такого ряду може бути знайдена шляхом парціального підсумовування нескінченних рядів діаграм з фіксованою максимальною кількістю віртуальних фононів в усіх порядках за степенем константи зв'язку [15]. Це приводить до інтегрально-функціонального зображення МО електрона, практичне використання якого у конкретних задачах є надзвичайно складним завданням.

ISSN 2071-0194. Укр. фіз. журн. 2010. Т. 55, №6

Метою цієї роботи є адаптування отриманого у [15] інтегрально-функціонального зображення МО загального вигляду для розрахунку перенормованого ЕФВ електронного спектра у НП із урахуванням двофононних процесів. Розв'язок цієї задачі дав можливість вперше здійснити розрахунок енергії дна основної зони електрона, перенормованої ЕФВ з усіма типами поляризаційних оптичних фононів, та встановити положення зв'язаних електрон-фононних станів у НП.

2. Гамільтоніан електрон-фононної системи у плоскій наноплівці. Перенормування електронного спектра при T = 0 K

Розглянемо плоску НП – напівпровідник товщиною *а* (середовище "0"), вміщений у зовнішнє напівпровідникове середовище ("1") з більшою шириною забороненої зони. Для опису станів електронної системи використаємо наближення ефективної маси, а фононної – модель діелектричного континууму. Подальші розрахунки виконані у припущенні про невиродженість та ізотропність енергетичного спектра електрона з використанням моделі прямокутної КЯ скінченої глибини.

Отже, у системі координат, початок якої знаходиться посередині плівки, а площина XOY паралельна до її поверхні, ефективна маса m і обмежуючий потенціал V електрона, а також діелектрична проникність ε середовища, в якому він знаходиться, вважаються відомими функціями z-ї компоненти радіусвектора квазічастинки:

$$m(z) = \begin{cases} m_0, \\ m_1, \end{cases} \varepsilon(z) = \begin{cases} \varepsilon^{(0)}, \\ \varepsilon^{(1)}, \end{cases} V(z) = \begin{cases} 0, & |z| \le \frac{a}{2}; \\ V, & |z| > \frac{a}{2}. \end{cases}$$

Гамільтоніани вільних електронів і фононів для такої моделі отримані у роботах [6–8]; відомий також гамільтоніан ЕФВ у зображенні чисел заповнення за всіма змінними системи [11].

З метою уникнення надто громіздких математичних викладок, обмежимося розглядом НП такої товщини, при якій у КЯ існує лише одна електронна зона з енергією

$$E(\mathbf{k}) = E + \frac{\hbar^2 k^2}{2m},$$

де $\mathbf{k} = (k_x, k_y)$ – двовимірний квазіімпульс електрона. Тоді гамільтоніан електрон-фононної системи у зображенні чисел заповнення за всіма змінними має вигляд

$$\hat{H} = \hat{H}_e + \hat{H}_{\rm ph} + \hat{H}_{\rm e-ph},\tag{1}$$

ISSN 2071-0194. Укр. фіз. журн. 2010. Т. 55, №6

де

$$\hat{H}_e = \sum_{\mathbf{k}} E(\mathbf{k}) \hat{a}^+_{\mathbf{k}} \hat{a}_{\mathbf{k}} \tag{2}$$

електронний гамільтоніан;

$$\hat{H}_{\rm ph} = \hat{H}_{L_0} + \hat{H}_{L_1} + \hat{H}_I = \sum_{\lambda, \mathbf{q}} \Omega_0 (\hat{b}^+_{\lambda, \mathbf{q}} \hat{b}_{\lambda, \mathbf{q}} + 1/2) +$$

$$+\sum_{q_{\perp},\mathbf{q}}\Omega_{1}(\hat{b}_{q_{\perp},\mathbf{q}}^{+}\hat{b}_{q_{\perp},\mathbf{q}}+1/2)+\sum_{\sigma,p,\mathbf{q}}\Omega_{\sigma,p}(\hat{b}_{\sigma,p,\mathbf{q}}^{+}\hat{b}_{\sigma,p,\mathbf{q}}+1/2)$$
(3)

– гамільтоніан системи поляризаційних фононів у наногетеросистемі: обмежених у КЯ (L_0), стани яких відрізняються значеннями поперечної компоненти квазіімпульсу $q_{\lambda} = \lambda \pi/a$, де $\lambda = 1, 2, ..., N =$ $int(a/a_0), a_0$ – стала ґратки середовища "0"; напівобмежених (L_1) у бар'єрному середовищі та інтерфейсних ($I_{\sigma p}$) – симетричних ($\sigma = s$) і антисиметричних ($\sigma = a$), високо- (p = +) і низькоенергетичних (p = -) [6–8];

$$\hat{H}_{e-ph} = \hat{H}_{e-L_0} + \hat{H}_{e-L_1} + \hat{H}_{e-I\sigma p} =$$

$$= \sum_{\mathbf{k},\mathbf{q},\mu} F_{\mu}(\mathbf{q}) \hat{a}^{+}_{\mathbf{k}+\mathbf{q}} \hat{a}_{\mathbf{k}} \hat{B}_{\mu \mathbf{q}}$$
(4)

– гамільтоніан взаємодії електрона з усіма гілками оптичних поляризаційних фононів у КЯ ($\mu = L_0, L_1, I_{\sigma\pm}$). Тут $\mathbf{q} = (q_x, q_y)$ – поздовжній квазіімпульс фонона у НП; решта позначення — типові; їх та явний вигляд функцій зв'язку $F_{\mu}(\mathbf{q})$ наведено у роботі [11].

Згідно з теорією функцій Гріна [13, 14] перенормований ЕФВ спектр електрона при T = 0 К визначається фур'є-образом функції Гріна:

$$G(\omega, \mathbf{k}) = \frac{1}{\hbar\omega - E(\mathbf{k}) - M(\omega, \mathbf{k})},\tag{5}$$

де $M(\omega, \mathbf{k})$ – повний МО [14, 15].

Ураховуючи слабкість електрон-фононного зв'язку, збережемо у повному МО [15] лише ту його частину, що описує двофононні процеси розсіювання електрона з основної зони при взаємодії зі всіма гілками фононів у НП [11]: обмеженими, напівпросторовими та симетричними інтерфейсними (високо- і низькоенергетичними) –

$$M(\omega, \mathbf{k}) =$$

727

$$=\sum_{\mu,\mathbf{q}}\frac{|F_{\mu}(\mathbf{q})|^{2}}{\hbar\omega-E-\frac{\hbar^{2}}{2m_{0}}(\mathbf{k}+\mathbf{q})^{2}-\Omega_{\mu}-M_{2}(\omega,\mathbf{k}+\mathbf{q})}, \quad (6)$$

де

 $M_2(\omega, \mathbf{k} + \mathbf{q}) \equiv$

$$\equiv \sum_{\mu_1, \mathbf{q}_1} \frac{2|F_{\mu_1}(\mathbf{q}_1)|^2}{\hbar\omega - E - \frac{\hbar^2}{2m_0}(\mathbf{k} + \mathbf{q} + \mathbf{q}_1)^2 - \Omega_{\mu} - \Omega_{\mu_1}}; \quad (7)$$

 $\Omega_{\mu} = \begin{cases} \Omega_l, & \text{при} \quad \mu = L_l; \\ \Omega_{\pm}, & \text{при} \quad \mu = I_{s\pm}; \end{cases}$

 $(l=0,\ 1;$ а Ω_{\pm} – усереднені енергії симетричних інтерфейсних фононів).

Переходячи у (7) від підсумовування за вектором \mathbf{q}_1 до інтегрування за змінними (q_1, φ) полярної системи координат при $\mathbf{k} = 0$, отримуємо

$$M_{2}(\omega,q) = \frac{S}{2\pi^{2}} \sum_{\mu_{1}} \int_{0}^{q_{\max}} q_{1} |F_{\mu_{1}}(q_{1})|^{2} dq_{1} \times \\ \times \int_{0}^{2\pi} \frac{d\varphi}{\hbar\omega - E - \frac{\hbar^{2}}{2m_{0}} (\mathbf{q} + \mathbf{q}_{1})^{2} - \Omega_{\mu} - \Omega_{\mu_{1}}}.$$
(8)

Інтеграл за змінною φ береться точно. Результатом інтегрування є функція

$$J_{\mu,\mu_{1}}(\omega,q,q_{1}) = -2\pi \left\{ \left[\hbar\omega - E - \frac{\hbar^{2}}{2m_{0}}(q^{2} + q_{1}^{2}) - \Omega_{\mu} - \Omega_{\mu_{1}} \right]^{2} - \left[\frac{\hbar^{2}qq_{1}}{m_{0}} \right]^{2} \right\}^{-1/2}, \qquad (9)$$

що дозволяє, використавши явний вигляд функцій ЕФЗ, записати

$$\begin{split} M_{2}(\omega,q) &= \frac{2e^{2}}{a} C \sum_{\mu} \Biggl\{ \frac{\pi \Omega_{L_{0}}}{\varepsilon^{(0)}} \times \\ &\times \sum_{\lambda=1}^{N} (\lambda X_{\lambda})^{2} \int_{0}^{\pi/a_{0}} \frac{J_{L_{0},\mu}(\omega,q,q_{1})q_{1}dq_{1}}{q_{1}^{2} + (\lambda \pi/a)^{2}} + \\ &+ a \sum_{p=\pm} \Omega_{p} \int_{0}^{\pi/a_{0}} \frac{J_{sp,\mu}(\omega,q,q_{1})f_{s}^{2}(q_{1})dq_{1}}{\epsilon_{s}^{(0)}(q_{1})\zeta_{sp}^{(0)}(q_{1}) + \epsilon_{s}^{(1)}(q_{1})\zeta_{sp}^{(1)}(q_{1})} + \end{split}$$

$$+\frac{2a_1^3\Omega_{L_1}}{\pi^2 a\varepsilon^{(1)}}\cos^4\frac{k_0 a}{2}\int_0^{\pi/a_1} J_{L_1,\mu}(\omega,q,q_1)I(q_1)q_1dq_1\bigg\}, \quad (10)$$

$$C = \frac{4}{\left[1 + \frac{\sin(k_0 a)}{k_0 a} + 2\frac{\sin^2(k_0 a/2)}{k_1 a}\right]^2}; \frac{1}{\varepsilon^{(l)}} = \frac{1}{\varepsilon^{(l)}_{\infty}} - \frac{1}{\varepsilon^{(l)}_0};$$

$$\epsilon_s^{(l)}(q) = \epsilon_{\infty}^{(l)} [1 - (-1)^l \exp(-qa)];$$

де

$$\zeta_{sp}^{(l)}(q) = \frac{\varepsilon^{(l)}\Omega_{sp}^2(q)}{\varepsilon_0^{(l)}\Omega_{T_l}^2} \left[\frac{\Omega_{L_l}^2 - \Omega_{T_l}^2}{\Omega_{T_l}^2 - \Omega_{sp}^2(q)}\right]^2;$$

$$I(q) = \int_{0}^{\pi/a_1} \frac{a_1 q_{\perp}^2 dq_{\perp}}{(q^2 + q_{\perp}^2)[(2k_1 a_1)^2 + (q_{\perp} a_1)^2]^2};$$
 (11)

$$k_0 = \sqrt{2m_0 E}/\hbar, k_1 = \sqrt{2m_1(V-E)}/\hbar,$$

а X_{λ} і $f_s(q)$ – наведені у [11] функції, залежні від товщини НП *а* та поперечної складової квазіімпульсу k_l електрона у середовищі l (l=0, 1), що входять до відповідної функції зв'язку. Зокрема, для використаної тут моделі

$$\begin{aligned} X_{\lambda} &= \frac{1 - (-1)^{\lambda}}{2} \left[\frac{1}{(\lambda \pi)^2} + \frac{\cos(k_0 a)}{(\lambda \pi)^2 - (2k_0 a)^2} \right], \\ f_s(q) &= \frac{\sqrt{1 + \exp(-qa)}}{a} \left\{ \frac{2\cos^2(k_0 a/2)}{2k_1 + q} + \right. \\ \left. + \operatorname{th}\left(\frac{qa}{2}\right) \left[\frac{q\cos(k_0 a)}{4k_0^2 + q^2} + \frac{1}{q} \right] + \frac{2k_0\sin(k_0 a)}{4k_0^2 + q^2} \right\}. \end{aligned}$$

Візьмемо також до уваги, що основний внесок до МО дають стани з малими значеннями квазіімпульсу [11], а функція (9) має частинні похідні довільного порядку. Розкладаючи її в ряд та зберігаючи у ньому доданки не вище другого степеня, виконаємо інтегрування у (10) за змінною q_1 . Отримаємо

$$M_2(\omega, q) = M_2^{(0)}(\omega) + M_2^{(2)}(\omega)q^2, \qquad (12)$$

де

2

j

$$M_2^{(i)}(\omega) = -\frac{4e^2m_0a}{\hbar^2}C\sum_{\mu} \left\{\frac{\Omega_0}{\varepsilon^{(0)}}\sum_{\lambda=1}^N (\lambda X_\lambda)^2 Y_{\lambda\mu}^{(i)}(\omega) + \right.$$

ISSN 2071-0194. Укр. фіз. журн. 2010. Т. 55, №6

728

$$+\frac{2a}{\pi^2}\sum_{p=\pm}\Omega_p Z_{p\mu}^i(\omega) + \frac{2\Omega_1}{\pi\varepsilon^{(1)}}\cos^4(\frac{k_0a}{2})I(0)W_{\mu}^{(i)}(\omega)\bigg\};$$
(13)

$$Y_{\lambda\mu}^{(0)}(\omega) = \frac{N^2 \eta_{L_0\mu}(\omega)}{\lambda^2 \eta_{L_0\mu}(\omega) + 1} \ln \frac{1 - N^2 \eta_{L_0\mu}(\omega)}{1 + (N/\lambda)^2};$$

$$Y_{\lambda\mu}^{(2)}(\omega) = \frac{a^2}{\pi^2} \left\{ \frac{2\eta_{L_0\mu}(\omega)}{[\lambda^2\eta_{L_0\mu}(\omega) + 1]^3} \ln \frac{1 - N^2\eta_{L_0\mu}(\omega)}{1 + (N/\lambda)^2} + \right.$$

$$+\frac{N^2\eta_{L_0\mu}^2(\omega)}{[\lambda^2\eta_{L_0\mu}(\omega)+1]^2}\left[\frac{2N^2\eta_{L_0\mu}(\omega)}{N^2\eta_{L_0\mu}(\omega)-1}-\right]$$

 $-\ln\frac{1-N^2\eta_{L_0\mu}(\omega)}{1+(N/\lambda)^2}\Bigg]-$

$$-\frac{N^4 \eta_{L_0\mu}^3(\omega)}{[\lambda^2 \eta_{L_0\mu}(\omega) + 1][N^2 \eta_{L_0\mu}(\omega) - 1]^2} \bigg\};$$

$$Z_{p\mu}^{(0)}(\omega) = \int_{0}^{\pi/a_0} \frac{\eta_{p\mu}(\omega)}{(qa/\pi)^2 \eta_{p\mu}(\omega) - 1} \times$$

$$\times \frac{f_s^2(q)dq}{\epsilon_s^{(0)}(q)\zeta_{sp}^{(0)}(q) + \epsilon_s^{(1)}(q)\zeta_{sp}^{(1)}(q)};$$

$$Z_{p\mu}^{(2)}(\omega) = \frac{a_0^2}{\pi^2} \int_0^{\pi/a_0} \left[\frac{1}{[(qa/\pi)^2 \eta_{p\mu}(\omega) - 1]^2} + \right]$$

$$+\frac{2}{[(qa/\pi)^2\eta_{p\mu}(\omega)-1]^3}\Bigg]\eta_{p\mu}^2(\omega)\times$$

$$\times \frac{f_s^2(q)dq}{\epsilon_s^{(0)}(q)\zeta_{sp}^{(0)}(q) + \epsilon_s^{(1)}(q)\zeta_{sp}^{(1)}(q)};$$

$$W_{\mu}^{(0)}(\omega) = (\frac{a_1}{a})^3 \ln[1 - (\frac{a}{a_1})^2 \eta_{L_1\mu}(\omega)];$$

$$W^{(2)}_{\mu}(\omega) = \frac{aa_1}{\pi^2} \left[\frac{a_1^2 \eta_{L_1\mu}(\omega)}{a^2 \eta_{L_1\mu}(\omega) - a_1^2} \right]^2;$$

ISSN 2071-0194. Укр. фіз. журн. 2010. Т. 55, №6

$$\eta_{\mu\mu_1}(\omega) = \frac{\pi^2 \hbar^2}{2m_0 a^2 (\hbar \omega - E - \Omega_{\mu} - \Omega_{\mu 1})}$$

і покладено

i

$$I(q_1) \approx I(0) = \frac{1}{8\pi (k_1 a)^2} \left[\frac{1}{(2k_1 a_1/\pi)^2 + 1} + \frac{\pi}{2k_1 a_1} \operatorname{arctg} \frac{\pi}{2k_1 a_1} \right].$$

У цих позначеннях повний МО набуває вигляду

$$M(\omega) = -\frac{\pi e^2}{a} C \Biggl\{ \frac{\pi}{\varepsilon^{(0)}} \sum_{\lambda=1}^{N} (\lambda X_{\lambda})^2 \Phi_{\lambda}(\omega) + \frac{a a_0^2}{2\pi^3} \times \\ \times \sum_{p=\pm} \frac{\Omega_p \eta_{sp}(\omega)}{\hbar^2 / (2m_0) + M_2^{(2)}(\omega)} \int_{0}^{\pi/a_0} \frac{1}{(q a_0 / \pi)^2 \eta_{sp}(\omega) - 1} \times \\ \times \frac{f_s^2(q) dq}{\epsilon_s^{(0)}(q) \zeta_{sp}^{(0)}(q) + \epsilon_s^{(1)}(q) \zeta_{sp}^{(1)}(q)} + \\ + \frac{2a_1^3 \Omega_1}{\pi^2 a \varepsilon^{(1)}} \cos^4(\frac{k_0 a}{2}) I(0) \frac{\ln[1 - \eta_{L_1}(\omega)]}{\hbar^2 / (2m_0) + M_2^{(2)}(\omega)} \Biggr\},$$
(14)

де

$$\begin{split} \Phi_{\lambda}(\omega) &= \frac{\Omega_{0}\eta_{L_{0}}(\omega)a_{0}^{2}}{\pi^{2}[\hbar^{2}/(2m_{0}) + M_{2}^{(2)}(\omega)]} \frac{\ln\frac{1-\eta_{L_{0}}(\omega)}{1+(N/\lambda)^{2}}}{(\lambda/N)^{2}\eta_{L_{0}}(\omega)+1};\\ \eta_{\mu}(\omega) &= \frac{\pi^{2}}{a_{\mu}^{2}}\frac{\hbar^{2}/(2m_{0}) + M_{2}^{(2)}(\omega)}{\hbar\omega - E - \Omega_{\mu} - M_{2}^{(0)}(\omega)};\\ a_{\mu} &= \begin{cases} a_{0}, & \text{при } \mu = L_{0}, I_{s\pm};\\ a_{1}, & \text{при } \mu = L_{1}. \end{cases} \end{split}$$

1

()

Перенормоване $E\Phi B$ положення дна основної зони електрона у НП визначається густиною станів

$$g(\omega) = \frac{\mathrm{Im}M(\omega)}{[\hbar\omega - E - \mathrm{Re}M(\omega)]^2 + [\mathrm{Im}M(\omega)]^2},$$
(15)

а в області $\hbar\omega \leq E$ – також з рівняння

$$\hbar\omega - E = M(\omega). \tag{16}$$

Понад дном зони, компоненти двофононного МО $M_2(\omega, q)$ можуть набувати комплексних значень, а інтервали дійсних значень кожної з них – різні. Відповідно повний МО $M(\omega)$ також стає комплексним. Виокремлення його дійсної і уявної частин дозволяє знайти густину зв'язаних електрон-фононних станів $g(\omega)$.

729

Рис. 1. Спектральні залежності дійсної та уявної частин масового оператора у одно- (розривні лінії) і двофононному (суцільні лінії) наближеннях (*a*) та густини зв'язаних станів у одно-(тонкі лінії) та двофононному (товсті лінії) наближеннях (*b*, *c*)

3. Результати і обговорення

Конкретні розрахунки виконані на прикладі НП β -HgS, оточеної масивним середовищем β -CdS, з використанням наведених у [11] параметрів системи.

На рис. 1,*а* наведено спектральні залежності дійсної та уявної частин МО, розраховані у одно- (розривні лінії) та двофононному (суцільні лінії) наближеннях для НП товщиною 2,34 нм (N = 4). Видно, що зміщення дна основної зони ($\Delta^{(2)} = -0,371\Omega_0$), визначене у двофононному наближенні, перевищує аналогічне значення ($\Delta^{(1)} = -0,321\Omega_0$), одержане у рамках однофононного наближення. Відрізняються також положення піків уявних частин МО та їх висоти.

На рис. 1,*b*,*c* показано залежності густин зв'язаних станів, розрахованих в обох наближеннях, від енергії. Дельтаподібний пік та локальні максимуми кривої $g(\omega)$ визначають, відповідно, положення дна зони та фононних повторень першого порядку.

У рамках однофононного наближення повторення, пов'язані з кожною із фононних гілок, визначаються значенням енергії відповідного фонона Ω_{μ} , а дно зони зміщується у довгохвильову область на величину $\Delta^{(1)}$. Як наслідок, кожне фононне повторення виявляється віддаленим від дна зони на відстань $|\Delta^{(1)}| + \Omega_{\mu}$, що перевищує енергію відповідного фонона.

Двофононне наближення, уточнюючи положення дна зони, визначає перенормовані взаємодією з фононами енергії зв'язаних електрон-фононних станів. Як показують розрахунки, зміщення кожного піка густини станів, що відповідає певному фононному повторенню, перевищує приріст зміщення дна зони $\Delta^{(1)} - \Delta^{(2)}$. Тому відстань кожного фононного повторення від дна зони зменшується, наближаючись до значення Ω_{μ} . Цю обставину проілюстровано на рис. 1, b, де розривною лінією показано пік фононного повторення Is+, визначений у двофононному наближенні з урахуванням взаємодії виключно з високоенергетичною гілкою симетричних інтерфейсних фононів. Зміщення піків, пов'язаних з іншими гілками, подібні, але значно менші за величиною.

Урахування у двофононному МО взаємодії електрона з усіма гілками фононів у НП приводить до того, що густина станів (товста суцільна лінія на рис. 1,b) відрізняється від простої суперпозиції її парціальних компонент, одну з яких (I_{s+}) показано роз-

ISSN 2071-0194. Укр. фіз. журн. 2010. Т. 55, №6

ривною кривою. Видно, що взаємний вплив різних гілок фононного спектра у НП проявляється у нелінійному зміщенні максимумів та збільшенні ширини кожного з піків функції $g(\omega)$. Останнє є проявом факту зменшення часу життя відповідного зв'язаного стану за рахунок взаємодії з усіма гілками фононів у НП.

На рис. 1, с наведено результати аналогічних розрахунків, виконаних для НП з більшою товщиною (3,51 нм, N = 6). Видно, що положення дна основної зони електрона і фононних повторень залежать від товщини НП – при її збільшенні густина станів, пов'язаних з обмеженими фононами, зростає, а з напівпросторовими – зменшується. Відносна висота відповідних максимумів та їх положення, а отже і вигляд спектрів КРС у НП будуть суттєво залежати від її товщини. Це дає принципову можливість контролю геометричних розмірів наногетеросистеми методами КРСспектроскопії.

У таблиці наведено також результати розрахунків зміщення дна основної зони електрона у КЯ, виконаних в одно- та двофононному наближеннях з урахуванням ЕФВ виключно з обмеженими фононами для ряду НП, що відрізняються значеннями константи електрон-фононного зв'язку:

$$\alpha_F = \frac{e^2}{\hbar} \left(\frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_0} \right) \sqrt{\frac{m}{2\Omega}}.$$

Як видно, у НП зі слабким електрон-фононним зв'язком відмінність між результатами одно- та двофононного наближень невелика (не перевищує 15%) і тим менша, чим менша стала α_F . Це дозволяє стверджувати, що використання однофононного наближення для розрахунку енергії електрона у КЯ, перенормованої його взаємодією з фононами у наносистемах зі слабким електрон-фононним зв'язком, є цілком виправданим.

4. Висновки

1. Запропоновано теорію, що вперше дала можливість послідовного розгляду ролі двофононних процесів у

ΗΠ	α_F	$\Delta^{(1)}/\Omega$	$\Delta^{(2)}/\Omega$	різниця, %
InP/InAs/InP	0,048	-0,0270	-0,0274	1,5
AlAs/GaAs/AlAs	0,079	-0,0482	-0,0496	2,6
$\rm ZnS/CdS/ZnS$	$0,\!139$	-0,0882	-0,0923	4,6
$\beta\text{-CdS}/\beta\text{-HgS}/\beta\text{-CdS}$	$0,\!497$	-0,2796	-0,3199	14,4

ISSN 2071-0194. Укр. фіз. журн. 2010. Т. 55, №6

формуванні енергетичного спектра електрона з урахуванням його взаємодії з усіма типами оптичних поляризаційних фононів у НП.

2. Показано, що у НП зі слабким електронфононним зв'язком відмінність між результатами розрахунків енергії електрона в одно- та двофононному наближеннях невелика. Визначення ж положень перших фононних повторень КРС-спектрів у НП можливе у наближенні, що враховує не менше, ніж двофононні процеси.

3. Розвинута у двофононному наближенні теорія ЕФВ може бути поширена, шляхом врахування багатофононних процесів, на ширший інтервал енергій з метою визначення положення наступних фононних повторень при T = 0 К. Застосування діаграмної техніки Пайнса за умови малих концентрацій електронів також дасть можливість адаптувати цю теорію на випадок довільних температур, що передбачається виконати у наступних роботах.

- 1. P. Harrison, Quantum Wells, Wires, and Dots: Theoretical and Computational Physics (Wiley, Chichester, 1999).
- V.V. Mitin, V.A. Kochelap, and M.A. Stroscio, *Quantum Heterostructures. Microelectronics and Optoelectronics* (Cambridge Univ. Press, Cambridge, 1999).
- 3. D.D. Nolte, J. Appl. Phys. 85, 6259 (1999).
- D. Dorfs, H. Henschel, J. Kolny, and A. Eychmuller, J. Phys. Chem. B 108, 1578 (2004).
- P. Mohan, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 88, 133105 (2006).
- 6. L. Wendler, Phys. stat. sol. (b) **129**, 513 (1985).
- 7. K. Huang and B.F. Zhu, Phys. Rev. B 38, 13377 (1988).
- 8. N. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989).
- В.І. Бойчук, В.А. Борусевич, Журн. фіз. досл. 10, 39 (2006).
- V.I. Boichuk, V.A. Borusevych, and I.S. Shevchuk, J. Optoelectron. Adv. Mater. 10, 1357 (2008).
- 11. М.В. Ткач, В.М. Крамар, УФЖ 53, 812 (2008).
- 12. М.В. Ткач, В.М. Крамар, УФЖ **53**, 1111 (2008).
- А.А. Абрикосов, Л.П. Горьков, И.Е. Дзялошинский, Методы квантовой теории поля в статистической физике (Физматгиз, Москва, 1962).
- М.В. Ткач, Квазічастинки у наногетеросистемах. Квантові точки і дроти (Вид-во ЧНУ ім. Юрія Федьковича, Чернівці, 2003).
- 15. М.В. Ткач, Журн. фіз. досл. **6**, 124 (2002).

Одержано 03.08.09

ЭНЕРГЕТИЧЕСКИЙ СПЕКТР ЭЛЕКТРОНА С ФОНОННЫМИ ПОВТОРЕНИЯМИ В ПЛОСКОЙ ПОЛУПРОВОДНИКОВОЙ НАНОГЕТЕРОСТРУКТУРЕ С КВАНТОВОЙ ЯМОЙ

В.М. Крамар, Н.В. Ткач

Резюме

Исследовано перенормирование энергетического спектра электрона в плоской полупроводниковой наногетероструктуре с прямоугольной квантовой ямой конечной глубины вследствие взаимодействия с оптическими поляризационными фононами. В рамках метода функций Грина получено аналитическое выражение для массового оператора, учитывающего двухфононные процессы электрон-фононного взаимодействия при T = 0 К. Вычислена поправка к энергии дна основной зоны электрона и положение первых фононных повторений, вызванных его взаимодействием с ограниченными, полуограниченными и интерфейсными фононами.

ENERGY SPECTRUM OF AN ELECTRON WITH PHONON REPLICAS IN A FLAT SEMICONDUCTOR NANOHETEROSTRUCTURE WITH QUANTUM WELL

V.M. Kramar, M.V Tkach

Yuriy Fedkovych Chernivtsi National University (2, Kotsyubyns'kyi Str., Chernivtsi 58012)

Summary

We investigated the renormalization of the energy spectrum of an electron in a flat semiconductor nanoheterostructure with a rectangular quantum well of finite depth due to its interaction with optical polarization phonons. The analytical form of the mass operator with regard for two-phonon processes of the electronphonon interaction at T = 0 K is obtained in the framework of the Green function method. The corrections to the main-band bottom energy of an electron and positions of the first phonon replicas induced by its interaction with confined, half-space, and interface phonons are calculated.