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We investigated the renormalization of the energy spectrum of an
electron in a flat semiconductor nanoheterostructure with a rect-
angular quantum well of finite depth due to its interaction with
optical polarization phonons. The analytical form of the mass op-
erator with regard for two-phonon processes of the electron-phonon
interaction at T = 0 K is obtained in the framework of the Green
function method. The corrections to the main-band bottom energy
of an electron and positions of the first phonon replicas induced
by its interaction with confined, half-space, and interface phonons
are calculated.

1. Introduction

The perspective to create modern electron-optical de-
vices based on semiconductor nanoheterosystems (quan-
tum wells (QW), dots, and wires) stimulates active
searches for technologies of producing such systems and
studies of their properties [1–5]. To a large degree,
physical properties of nanosystems are determined by
the structure of the energy spectrum of electrons and
phonons, as well as by the efficiency of their interaction.
They essentially depend on the spatial dimension of a
nanosystem and external conditions. Thus, the study
of regularities of the renormalization of the energy spec-
trum of electrons in nanosystems due to their interac-
tion with phonons remains an urgent problem of both
fundamental and applied investigations in the physics of
low-dimensional systems.

Theoretical investigations of electron spectra in
flat semiconductor nanoheterostructures with QWs
(nanofilms, NF) with regard for their interaction with
phonons are usually performed in the one-phonon ap-

proximation [6–11]. However, as is known from the the-
ory of electron-phonon interaction (EPI) in bulky crys-
tals, such an interaction can result in the appearance
of bound states that manifest themselves as satellites of
the fundamental band of the Raman spectrum (phonon
replicas). Thus, there arises a need for the EPI theory
in low-dimensional systems that would be able to consis-
tently describe a wide energy range including the region
of phonon replicas. Naturally, this theory must take into
account multiphonon processes.

In the case of low concentrations of quasiparticles in
a nanosystem, the problem of renormalization of the
spectrum in a wide energy range is solved by the Green
function method with the use of the Feynman–Pines di-
agram technique [13,14]. However, the problem consists
in the fact that, in order to take multiphonon EPI pro-
cesses into account, one must find the total mass op-
erator (MO) of electrons that has a form of an infinite
series of diagrams with all possible types and numbers of
phonon lines. In the model of dispersion-free phonons,
the sum of such a series can be obtained by means of the
partial summation of the infinite series of diagrams with
a fixed maximal number of virtual phonons in all orders
relative to the coupling constant [15]. This procedure
results in the integral-functional representation of the
electron MO, whose practical use in specific problems
represents an extremely complicated task.

This work aims at the adaptation of the integral-
functional representation of the MO obtained in the gen-
eral form in [15] to the calculation of the electron spec-
trum in NFs renormalized by EPI with regard for two-
phonon processes. The solution of this problem allowed
one to calculate, for the first time, the energy of the elec-
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tron main-band bottom renormalized by EPI with all
types of polarization optical phonons and gave a possi-
bility to establish the position of bound electron-phonon
states in NFs.

2. Hamiltonian of the Electron-Phonon System
in a Flat Nanofilm. Renormalization of the
Electron Spectrum at T = 0 K

Let us consider a flat nanofilm – a semiconductor with
width a (medium “0”) placed into an external semicon-
ductor medium (“1”) with a wider band-gap energy. The
states of the electron system will be described in the
effective-mass approximation, while those of the phonon
one within the model of dielectric continuum. The fur-
ther calculations are performed under the assumption
about the nondegeneracy and the isotropy of the elec-
tron energy spectrum using the model of finite-depth
rectangular QW.

Thus, in the coordinate system with the origin in the
middle of the film and the XOY plane parallel to its sur-
face, the effective mass m and the restricting potential
V of an electron and the permittivity ε of the medium,
where it is located, are supposed to be some known func-
tions of the z-th component of the quasiparticle’s radius-
vector:

m(z) =
{
m0,
m1,

ε(z) =
{
ε(0),
ε(1),

V (z) =
{

0, |z| ≤ a
2 ;

V, |z| > a
2 .

The Hamiltonians of free electrons and phonons for
such a model are obtained in [6–8]; the EPI Hamilto-
nian in the representation of occupation numbers over
all variables of the system is also known [11].

In order to avoid too cumbersome mathematical cal-
culations, we restrict ourselves to the consideration of
the nanofilm with such a width, at which there exists
the only electron band in the QW with the energy

E(k) = E +
~2k2

2m
,

where k = (kx, ky) is the two-dimensional quasimomen-
tum of an electron. In this case, the Hamiltonian of the
electron-phonon system in the representation of occupa-
tion numbers over all variables has the form

Ĥ = Ĥe + Ĥph + Ĥe−ph, (1)

where

Ĥe =
∑
k

E(k)â+
k âk (2)

is the electron Hamiltonian;

Ĥph = ĤL0 + ĤL1 + ĤI =
∑
λ,q

Ω0(b̂+λ,qb̂λ,q + 1/2)+

+
∑
q⊥,q

Ω1(b̂+q⊥,qb̂q⊥,q +1/2)+
∑
σ,p,q

Ωσ,p(b̂+σ,p,qb̂σ,p,q +1/2)

(3)

is the Hamiltonian of the system of polarization phonons
in a nanoheterosystem: confined in the QW (L0), whose
states differ in values of the transverse component of the
quasimomentum qλ = λπ/a, where λ = 1, 2, ..., N =
int(a/a0), a0 is the lattice constant of medium “0”; half-
confined (L1) in the barrier medium, and interface ones
(Iσp) — symmetric (σ = s) and antisymmetric (σ = a),
high- (p = +) and low-energy (p = –) [6–8];

Ĥe−ph = Ĥe−L0 + Ĥe−L1 + Ĥe−Iσp =

=
∑
k,q,µ

Fµ(q)â+
k+qâkB̂µq (4)

is the Hamiltonian of the electron interaction with all
branches of optical polarization phonons in the QW
(µ = L0, L1, Iσ±). Here, q = (qx, qy) stands for the
longitudinal quasimomentum of a phonon in a nanofilm;
the rest of the notations are typical and are given in [11]
together with the explicit form of the coupling functions
Fµ(q).

According to the Green function theory [13,14], the
electron spectrum at T = 0 K renormalized due to EPI is
determined by the Fourier transform of the Green func-
tion

G(ω,k) =
1

~ω − E(k)−M(ω,k)
, (5)

where M(ω,k) is the total MO [14, 15].
Taking into account the weakness of the electron-

phonon coupling, we keep only the part of the total MO
[15] describing two-phonon processes of electron scatter-
ing from the main band under the interaction with all
phonon branches in a nanofilm [11]: confined, half-space,
and symmetric interface (high- and low-energy) ones

M(ω,k) =

=
∑
µ,q

|Fµ(q)|2

~ω − E − ~2

2m0
(k + q)2 − Ωµ −M2(ω,k + q)

, (6)
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where

M2(ω,k + q) ≡

≡
∑
µ1,q1

2|Fµ1(q1)|2

~ω − E − ~2

2m0
(k + q + q1)2 − Ωµ − Ωµ1

; (7)

Ωµ =
{

Ωl, при µ = Ll;
Ω±, при µ = Is±;

(l = 0, 1; and Ω± are the averaged energies of symmetric
interface phonons).

Passing in (7) from the summation over the vector q1

to the integration over the variables (q1, ϕ) of the polar
coordinate system at k = 0, one obtains

M2(ω, q) =
S

2π2

∑
µ1

qmax∫
0

q1|Fµ1(q1)|2dq1×

×
2π∫
0

dϕ

~ω − E − ~2

2m0
(q + q1)2 − Ωµ − Ωµ1

. (8)

The integral over the variable ϕ can be taken accu-
rately, which results in the function

Jµ,µ1(ω, q, q1) = −2π

{[
~ω − E − ~2

2m0
(q2 + q21)−

−Ωµ − Ωµ1

]2

−
[

~2qq1
m0

]2}−1/2

, (9)

Using the explicit form of the EPI functions, one can put
down

M2(ω, q) =
2e2

a
C
∑
µ

{
πΩL0

ε(0)
×

×
N∑
λ=1

(λXλ)2
π/a0∫
0

JL0,µ(ω, q, q1)q1dq1
q21 + (λπ/a)2

+

+a
∑
p=±

Ωp

π/a0∫
0

Jsp,µ(ω, q, q1)f2
s (q1)dq1

ε
(0)
s (q1)ζ

(0)
sp (q1) + ε

(1)
s (q1)ζ

(1)
sp (q1)

+

+
2a3

1ΩL1

π2aε(1)
cos4

k0a

2

π/a1∫
0

JL1,µ(ω, q, q1)I(q1)q1dq1

}
, (10)

where

C =
4[

1 + sin(k0a)
k0a

+ 2 sin2(k0a/2)
k1a

]2 ;
1
ε(l)

=
1

ε
(l)
∞
− 1

ε
(l)
0

;

ε(l)s (q) = ε(l)∞ [1− (−1)l exp(−qa)];

ζ(l)
sp (q) =

ε(l)Ω2
sp(q)

ε
(l)
0 Ω2

Tl

[
Ω2
Ll
− Ω2

Tl

Ω2
Tl
− Ω2

sp(q)

]2

;

I(q) =

π/a1∫
0

a1q
2
⊥dq⊥

(q2 + q2⊥)[(2k1a1)2 + (q⊥a1)2]2
; (11)

k0 =
√

2m0E/~, k1 =
√

2m1(V − E)/~,

while Xλ and fs(q) are the functions given in [11] that
depend on the NF thickness a and the transverse com-
ponent of the electron quasimomentum kl in medium l
(l = 0, 1) present in the corresponding coupling function.
In particular, within the used model,

Xλ =
1− (−1)λ

2

[
1

(λπ)2
+

cos(k0a)
(λπ)2 − (2k0a)2

]
,

fs(q) =

√
1 + exp(−qa)

a

{
2 cos2(k0a/2)

2k1 + q
+

+th
(qa

2

)[q cos(k0a)
4k2

0 + q2
+

1
q

]
+

2k0 sin(k0a)
4k2

0 + q2

}
.

One should also take into account that the main con-
tribution into the MO is made by states with small val-
ues of the quasimomentum [11], whereas function (9) has
partial derivatives of arbitrary order. Expanding it into
a series and keeping the terms of the second and lower
order, we integrate (10) over q1 and obtain

M2(ω, q) = M
(0)
2 (ω) +M

(2)
2 (ω)q2, (12)

where

M
(i)
2 (ω) = −4e2m0a

~2
C
∑
µ

{
Ω0

ε(0)

N∑
λ=1

(λXλ)2Y
(i)
λµ (ω)+
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+
2a
π2

∑
p=±

ΩpZipµ(ω) +
2Ω1

πε(1)
cos4(

k0a

2
)I(0)W (i)

µ (ω)

}
;

(13)

Y
(0)
λµ (ω) =

N2ηL0µ(ω)
λ2ηL0µ(ω) + 1

ln
1−N2ηL0µ(ω)

1 + (N/λ)2
;

Y
(2)
λµ (ω) =

a2

π2

{
2ηL0µ(ω)

[λ2ηL0µ(ω) + 1]3
ln

1−N2ηL0µ(ω)
1 + (N/λ)2

+

+
N2η2

L0µ
(ω)

[λ2ηL0µ(ω) + 1]2

[
2N2ηL0µ(ω)
N2ηL0µ(ω)− 1

−

− ln
1−N2ηL0µ(ω)

1 + (N/λ)2

]
−

−
N4η3

L0µ
(ω)

[λ2ηL0µ(ω) + 1][N2ηL0µ(ω)− 1]2

}
;

Z(0)
pµ (ω) =

π/a0∫
0

ηpµ(ω)
(qa/π)2ηpµ(ω)− 1

×

× f2
s (q)dq

ε
(0)
s (q)ζ(0)

sp (q) + ε
(1)
s (q)ζ(1)

sp (q)
;

Z(2)
pµ (ω) =

a2
0

π2

π/a0∫
0

[
1

[(qa/π)2ηpµ(ω)− 1]2
+

+
2

[(qa/π)2ηpµ(ω)− 1]3

]
η2
pµ(ω)×

× f2
s (q)dq

ε
(0)
s (q)ζ(0)

sp (q) + ε
(1)
s (q)ζ(1)

sp (q)
;

W (0)
µ (ω) = (

a1

a
)3 ln[1− (

a

a1
)2ηL1µ(ω)];

W (2)
µ (ω) =

aa1

π2

[
a2
1ηL1µ(ω)

a2ηL1µ(ω)− a2
1

]2
;

ηµµ1(ω) =
π2~2

2m0a2(~ω − E − Ωµ − Ωµ1)
,

and it is set

I(q1) ≈ I(0) =
1

8π(k1a)2

[
1

(2k1a1/π)2 + 1
+

+
π

2k1a1
arctg

π

2k1a1

]
.

With the use of these notations, the total MO takes
the form

M(ω) = −πe
2

a
C

{
π

ε(0)

N∑
λ=1

(λXλ)2Φλ(ω) +
aa2

0

2π3
×

×
∑
p=±

Ωpηsp(ω)

~2/(2m0) +M
(2)
2 (ω)

π/a0∫
0

1
(qa0/π)2ηsp(ω)− 1

×

× f2
s (q)dq

ε
(0)
s (q)ζ(0)

sp (q) + ε
(1)
s (q)ζ(1)

sp (q)
+

+
2a3

1Ω1

π2aε(1)
cos4(

k0a

2
)I(0)

ln[1− ηL1(ω)]

~2/(2m0) +M
(2)
2 (ω)

}
, (14)

where

Φλ(ω) =
Ω0ηL0(ω)a2

0

π2[~2/(2m0) +M
(2)
2 (ω)]

ln 1−ηL0 (ω)

1+(N/λ)2

(λ/N)2ηL0(ω) + 1
;

ηµ(ω) =
π2

a2
µ

~2/(2m0) +M
(2)
2 (ω)

~ω − E − Ωµ −M (0)
2 (ω)

;

aµ =
{
a0, при µ = L0, Is±;
a1, при µ = L1.

The position of the electron main-band bottom renor-
malized by EPI in a nanofilm is determined by the state
density

g(ω) =
ImM(ω)

[~ω − E − ReM(ω)]2 + [ImM(ω)]2
. (15)

In the region ~ω ≤ E, it can be found from the equation

~ω − E = M(ω). (16)

Above the band bottom, the components of the two-
phonon MO M2(ω, q) can take on complex values, while
the ranges of real values for each of them are different.
The total MO M(ω) becomes, respectively, complex as
well. Separating its real and imaginary parts, one can
find the density of bound electron-phonon states g(ω).
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3. Results and Discussion

Our calculations were performed for a β-HgS nanofilm
surrounded by bulky medium β-CdS with the use of the
parameters of the system given in [11].

Figure 1,а shows the spectral dependences of the
real and imaginary parts of the MO calculated in the
one-phonon (dashed lines) and two-phonon (solid lines)
approximations for a nanofilm 2.34 nm in thickness
(N = 4). One can see that the shift of the main-
band bottom (Δ(2) = −0.371Ω0) determined in the two-
phonon approximation exceeds the corresponding value
(Δ(1) = −0.321Ω0) obtained with the use of the one-
phonon one. The imaginary parts of the MO differ in
positions and heights of the peaks as well.

The energy dependences of the bound state density
calculated in the both approximations are presented in
Fig. 1,b,c. The delta-like peak and local maxima of the
curve g(ω) determine the positions of the band bottom
and first-order phonon replicas, respectively.

In the framework of the one-phonon approximation,
replicas related to each of the phonon branches are de-
termined by the energy of a corresponding phonon Ωµ,
whereas the band bottom shifts to the long-wavelength
region by the distance Δ(1). As a result, each phonon
replica appears at the distance |Δ(1)|+Ωµ from the band
bottom, which exceeds the energy of the corresponding
phonon.

Refining the position of the band bottom, the two-
phonon approximation determines the energies of bound
electron-phonon states renormalized by the interaction
with phonons. According to the performed calculations,
the shift of each peak of the state density correspond-
ing to a certain phonon replica exceeds the shift incre-
ment of the band bottom Δ(1) −Δ(2). That is why the
distance of each phonon replica from the band bottom
decreases, by approaching the value of Ωµ. This fact is
illustrated by Fig. 1,b, where the dashed line shows the
peak of the phonon replica Is+ determined in the two-
phonon approximation with regard for the interaction
exclusively with the high-energy branch of symmetric
interface phonons. The shifts of the peaks correspond-
ing to other branches are similar though much smaller
in magnitude.

The use of the two-phonon MO with regard for the
interaction of an electron with all phonon branches in a
nanofilm results in the fact that the state density (thick
solid line in Fig. 1,b differs from the simple superposition
of its partial components, one of which (Is+) is shown by
the dashed line. One can see that the mutual influence of
different branches of the phonon spectrum in a nanofilm

Fig. 1. Spectral dependences of the real and imaginary parts of
the mass operator in the one- (dashed lines) and two-phonon (solid
lines) approximations (a) and bound state densities in the one-
(thin lines) and two-phonon (thick lines) approximations (b, c)
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manifests itself in a nonlinear shift of the maxima and
the widening of each peak of the function g(ω). The
latter fact testifies to a decrease of the lifetime of the
corresponding bound state due to the interaction with
all phonon branches in a nanofilm.

Figure 1,c presents the results of similar calculations
performed for a nanofilm of larger width (3.51 nm,
N = 6). One can see that the positions of the elec-
tron main-band bottom and phonon replicas depend on
the thickness of the nanofilm: its increase results in the
growth of the state density related to confined phonons
and a decrease of that related to half-space ones. The
relative height of the corresponding maxima and their
positions (and, therefore, the form of Raman spectra in
a nanofilm) will considerably depend on its thickness.
This fact gives one a possibility to control the geometry
of nanoheterosystems by means of Raman spectroscopy
methods.

Table summarizes the results of calculation of the
shifts of the main-band bottom of an electron in QW
performed in the one- and two-phonon approximations
with regard for EPI with exclusively confined phonons
for a number of nanofilms with different electron-phonon
coupling constants

αF =
e2

~

(
1
ε∞
− 1
ε0

)√
m

2Ω
.

One can see that, for a nanofilm with the weak
electron-phonon coupling, the difference between the re-
sults obtained in the one- and two-phonon approxima-
tions is small (not exceeding 15%) and decreases with
decrease in αF . This fact gives grounds to state that the
use of the one-phonon approximation for the calculation
of the energy of an electron in QW renormalized due
to its interaction with phonons in nanosystems with the
weak electron-phonon coupling is quite reasonable.

4. Conclusions

1. We have proposed a theory that allows one to consis-
tently describe, for the first time, the role of two-phonon
processes in the formation of the energy spectrum of an
electron with regard for its interaction with all types of
optical polarization phonons in a nanofilm.

Nanofilm αF Δ(1)/Ω Δ(2)/Ω Difference, %
InP/InAs/InP 0.048 –0.0270 –0.0274 1.5

AlAs/GaAs/AlAs 0.079 –0.0482 –0.0496 2.6
ZnS/CdS/ZnS 0.139 –0.0882 –0.0923 4.6

β-CdS/β-HgS/β-CdS 0.497 –0.2796 –0.3199 14.4

2. It is shown that, in a nanofilm with the weak
electron-phonon coupling, the difference between the re-
sults of calculation of the electron energy in the one-
and two-phonon approximations is small. But the posi-
tions of the first phonon replicas of Raman spectra in a
nanofilm can be obtained only using an approximation
taking at least two-phonon processes into account.

3. In order to obtain the positions of the next phonon
replicas at T = 0 K, the EPI theory developed in the
two-phonon approximation can be generalized to a wider
energy interval by means of considering the multiphonon
processes. The use of the Pines diagram technique at
small electron concentrations will also give a possibility
to adopt this theory to the case of arbitrary temper-
atures, which is supposed to be done in our following
works.
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ЕНЕРГЕТИЧНИЙ СПЕКТР ЕЛЕКТРОНА З ФОНОННИМИ
ПОВТОРЕННЯМИ У ПЛОСКIЙ НАПIВПРОВIДНИКОВIЙ
НАНОГЕТЕРОСТРУКТУРI З КВАНТОВОЮ ЯМОЮ

В.М. Крамар, М.В. Ткач

Р е з ю м е

Дослiджено перенормування енергетичного спектра електрона
у плоскiй напiвпровiдниковiй наногетероструктурi з прямоку-

тною квантовою ямою скiнченної глибини внаслiдок взаємодiї з
оптичними поляризацiйними фононами. У рамках методу фун-
кцiй Грiна одержано аналiтичний вигляд масового оператора,
де враховано двофононнi процеси електрон-фононної взаємодiї
при T = 0 K. Обчислено поправку до енергiї дна основної зони
електрона та положення перших фононних повторень, викли-
каних його взаємодiєю з обмеженими, напiвпросторовими та
iнтерфейсними фононами.
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