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The behavior of the diameter of a liquid–vapor coexistence curve
has been studied in terms of the entropy Sd for various classes of
liquids, namely, atomic, molecular, polar, and nonpolar ones. The
research has been carried out by analogy with the studies of the
parameter concerned in terms of the density. It has been shown
that the behavior of Sd far from the critical point is governed by
the rotational degrees of freedom and the excluded volume effect.
An equation of state for relevant liquids which takes the indicated
effects into account has been proposed.

1. Introduction

The variety of substance properties stems from the speci-
ficity of a particle-to-particle interaction. The latter
practically does not depend on the phase state of the
substance, provided that no substantial reconstruction
of the electron spectrum of the substance takes place
at the phase transition associated with structural vari-
ations of atomic or ionic positions [1, 2]. Let us con-
sider the case of liquid systems, where, unlike crystalline
solids, the symmetry of correlation functions coincides
with that of the interparticle interaction (uniformity and
isotropy). In this case, it is possible to classify liquids
with regard for the kinds of particles that enter into the
Hamiltonian of a system as interacting objects. Such a
classification has been proposed in works [3, 4] and dis-
tinguishes atomic, molecular, ionic, and ion-electronic
liquids. In our opinion, being appended by the known
principle of corresponding states, such a classification is
rather complete. However, it requires some specifica-
tion, because, even in the simplest case of liquefied inert
gases, there can appear effects associated with the for-

mation of bound states and molecular complexes [5]. As
a result, there emerges a class of mixed liquids which
demonstrate deviations from the law of corresponding
states [6]. Note that the same complexes also arise, e.g.,
in the case of ion-electronic liquids (say, NaCl melts),
where the presence of a neutral molecular component
substantially modifies both the quantitative and qual-
itative physical properties of the system [7]. This sit-
uation is associated with the fundamental problem of
description of thermodynamically incomplete systems,
where the Hamiltonian depends, in fact, on the thermo-
dynamic state of the system [8]. Such a situation is typ-
ical of ion-electronic systems, because a reconstruction
of the electron subsystem, which accompanies a change
of the density, gives rise to a modification of the inter-
action potential. Bearing all that in mind, let us try
to analyze those physical quantities, whose behavior is
governed by the type of interacting particles and their
interaction. For instance, in systems with free charge
carriers, the conductivity is sensitive to variations in the
electron-ion interaction, but if the metal–insulator tran-
sition takes place, another convenient physical quantity
should be searched for. As is known from studies of liq-
uid metals, such a sensitive parameter is the asymmetry
degree of the phase-equilibrium curve [2]. As a rule, it
is characterized by the order parameter diameter

ϕ(d)(t) =
1
2
(ϕ(l)(t) + ϕ(g)(t)), (1)

where ϕ(i)(t) (i = l, g) are the order parameter values
in the liquid and gas branches of the coexistence curve,
and t = T/Tc. In the case of liquids, the density n is
usually used as an order parameter.
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Fig. 1. Coexistence curve diameter in terms of the density for
various molecular liquids [11]

In this work, the behavior of the binodal diameter has
been studied in terms of the entropy Sd for basic classes
of liquids and in the temperature interval between the
ternary and critical points. The work structure is as fol-
lows. In the next section, the peculiarities in the behav-
ior of the diameter of a liquid-vapor coexistence curve
in terms of the entropy are considered for atomic and
molecular liquids. Section 3 presents a model that con-
siders the excluded volume effects which are generated
by quasifree rotations of molecules in the liquid phase.
The model is demonstrated to adequately reproduce the
behavior of the diameter of a liquid-vapor coexistence
curve in terms of the entropy in a wide temperature in-
terval. The behavior of such a diameter for ion-electronic
liquids is considered in the next section. Conclusions are
formulated in the final section.

2. Behavior of the Coexistence Curve Diameter
in Terms of the Entropy

Researches of a liquid-vapor coexistence curve asymme-
try have the old story starting from the work by Cailletet
and Mathias [9], in which the law of rectilinear diame-
ter was obtained empirically (see also work [10] and the
references therein):

nd =
ñl + ñg

2
− 1 = Aτ , (2)

where ñi = ni/nc (i = l, g) , nl and ng are the densities
of the liquid and gas phases, respectively, which are re-
duced by the critical density nc. It is clear that this law
is approximate, but it is well obeyed practically in the
whole interval of temperatures between the ternary and
critical points (see Figs. 1 and 2), except for a vicinity
of the critical point.

The order parameter diameter is a characteristic of the
asymmetry of a coexistence curve. It physically arises

Fig. 2. Coexistence curve diameter in terms of the density for
molecular liquids C6H6 and SF6 [11]

owing to a difference between the characters of thermal
motion in the gas and liquid phases. It is clear that an
evident characteristic of the coexistence curve is the den-
sity which determines the specific volume of a molecule.
However, the density is a one-particle correlation func-
tion. From such a viewpoint, the choice of entropy as
an order parameter is more informative, because the en-
tropy is governed by correlation effects of all orders [12].
We define the the coexistence curve diameter in terms
of the entropy in the following way:

Sd =
Sl + Sg

2
− Sc, (3)

where Sc is the entropy at the critical point, and Sl and
Sg are the entropies of the liquid and gas phases, respec-
tively. Then a more diverse behavior is to be expected
for the diameter than for dependence (2). The analysis
of experimental data (see Figs. 3 and 4) confirms this
hypothesis.

Really, the diameter of a liquid-vapor coexistence
curve in terms of the density is a straight line for atomic
and molecular liquids in a wide interval of temperatures.
At the same time, the diameter of a liquid-vapor coexis-
tence curve in terms of the entropy is a straight line for
one group of molecular liquids and not a straight line for
a considerable group of molecular liquids and argon.

The comparison of the Sd-behavior for argon, as a
typical representative of atomic liquids, with those for
other liquids reveals a correlation between the molecu-
lar nonsphericity and a nonmonotonous character of the
temperature dependence of Sd. Note that the contribu-
tion of rotational degrees of freedom to the entropy is
substantial for nonspherical molecules.

The behavior of the binodal diameter in terms of the
entropy at a removal from the critical point can be quali-
tatively explained by a competition of two contributions:
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Fig. 3. Coexistence curve diameter in terms of the entropy for
various molecular liquids [11]

a growing contribution of the gas phase entropy which
approaches the contribution of the ideal gas at low den-
sities,

S(id)(T ) = c(id)
υ ln

T

Tc
− ln

n

nc
, c(id)

υ =
k

2
, (4)

and a contribution of the liquid phase which decreases
with the temperature reduction because of the liquid
density growth. Hence, the nonmonotonous behavior of
Sd is a consequence of the counteraction of an increase
in the ordering of the liquid phase, as the temperature
decreases, against the enhancement of a chaotic charac-
ter of the gas phase. This conclusion is confirmed by the
analysis of the excess entropy S(ex) = S − S(id) and the
corresponding diameter S(ex)

d . The results of calculations
are presented in Fig. 5. As we see, the excess entropy,
which is exclusively defined by correlation contributions,
really acquires the universal character for liquids of var-
ious types.

As was mentioned above, the behavior of the coexis-
tence curve diameter in terms of the entropy reflects vari-
ations in the character of rotational motion of molecules
in the phase liquid, which accompany a density change.
Moreover, due to a crucial role of the heat capacity in
the formation of a slope of the diameter Sd, the slope
is sensitive to the number of degrees of freedom of ro-
tational motion, which take part in the thermal motion
in the liquid phase. On the basis of this fact, a detailed
analysis of the behavior of Sd was carried out in work [6]
for liquefied inert gases. The observation of a weak non-
monotonous dependence for Sd allowed one to confirm
the conclusion about the existence of dimers in the liquid
phase of liquefied inert gases and to evaluate the dimer-
ization degree by examining the contribution of dimers
to the heat capacity. In the limiting cases of essentially
nonspherical multiatomic molecules, such as C6H6 and

Fig. 4. Coexistence curve diameter in terms of the entropy for
C6H6 and SF6 [11]

SF6, the contribution of the liquid phase ordering to
the entropy considerably exceeds a corresponding con-
tribution of the configuration disorder to the gas phase
entropy (Fig. 4). Whence, one may draw a conclusion
that, in the case of such liquids, a considerable contri-
bution to the heat capacity stems from both the liquid
phase ordering, owing to a rotational motion restriction,
and the excitation of internal molecular vibrations.

To explain the behavior of the binodal diameter in
terms of the entropy quantitatively, we use the basic
thermodynamic representation of the entropy (kB = 1),

S = Sc + cv ln
T

Tc
+ f(n)− f(nc) , (5)

where cv is the specific isochoric heat capacity, and f(n)
is the density function which is defined by the equation
of state of the substance. Using Eq. (5), we obtain

Sd =
c
(l)
v + c

(g)
v

2
ln
T

Tc
+
f(nl) + f(ng)

2
− f(nc) . (6)

As we see from Eq. (6), the behavior of the coexistence
curve diameter in terms of the entropy is governed to
a great extent by the dependence of the entropy on the
density which is reproduced by the function f(n). It is
natural to simulate the behavior of the coexistence curve
diameter in terms of the entropy in a corresponding tem-
perature interval on the basis of the Van der Waals equa-
tion or a similar one which makes adequate allowance
for own particle dimensions. Note that the effect of a
liquid phase entropy reduction owing to a deviation of
the repulsive potential symmetry from the spherical one
– i.e., in fact, due to the nonsphericity of a molecular
core – was marked in work [13], where the consideration
of this effect based on the modified Carnahan–Starling
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Fig. 5. Coexistence curve diameter in terms of the excess entropy S
(ex)
d for (a) atomic (Ne, Ar, Kr, Xe) and molecular (polar and

nonpolar) liquids, (b) H2S, H2O, NH3, (c) SO2, N2O, O2, and (d) CO, CO2, COS, according to the data of work [11]

equation for rigid spherocylinders was confined to the
low-pressure range. Since it is the coexistence curve di-
ameter in terms of the entropy that is sensitive to such
an effect of a liquid phase entropy reduction, it is of in-
terest to reproduce the behavior of this quantity. In the
next section, we formulate a model which quantitatively
reproduces the features in the behavior of the binodal di-
ameter in terms of the entropy for atomic and molecular
liquids.

3. Model of Compressible Excluded Volume

The equation of state for simple molecular liquids can
be represented in the form [14, 15]:

p = p+(n, T ) + p−(n, T ) , (7)

where p+ is the the pressure component associated with
a repulsive interaction. In the Van der Waals model,

p+ =
pid

1− b n , (8)

where pid = nT is the pressure of the ideal gas. Another
component in Eq. (7), p−, stems from gravitation, and
it can be chosen in the form

p− = −an2 . (9)

Notice that representation (7) is valid for a wide class
of potentials that allow the additive representation as
the sum of a short-range repulsion potential and a long-
range gravitation potential. As was shown in work [16],
the equation of state (7) can be formally represented as
the Van der Waals equation,

p =
nT

1− b n − an
2 , (10)
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Fig. 6. Binodals for model (16) at various values of the parameter γ

where the parameters a and b look like

a = −2πσ3

3
T

+∞∫
σ

dr r3 y(r, n, T ) f ′(r, n, T ) , (11)

b = b0
y(σ, n, T )

1 + b0 n y(σ, n, T )
. (12)

for spherically symmetric potentials. Here, b0 = 2πσ3

3 =
4v0, v0 is the volume of a rigid core of the diameter
σ, f = e−βv(r) − 1 is the Mayer function, y(r, n, T ) =
eβv(r) g(r, n, T ) is the so-called void function [15], and
g(r, n, T ) is the pair distribution function. Actually, the
form of p+ and, accordingly, the meaning of the param-
eter b are defined by the dependence of a contact value
of the pair function at the rigid core distance:

p+ = pid ( 1 + b0 n y(σ, n, T ) ) . (13)

For instance, in the Carnahan–Starling approximation
which well reproduces the behavior of dense liquids [17],
the following expression should be used for the determi-
nation of the parameter b instead of formula (8):

1 + η + η2 − η3

(1− η)3 = 1 + n b0y(σ, n, T ) , η = n b/4 . (14)

The solution of Eq. (14) determines b as a function of
other parameters, in particular, the pressure. The inclu-
sion of liquids with non-spherical skeletons into consid-
eration makes analytical calculations even more compli-
cated. However, the physical meaning of the parameter
b which determines the effective volume per one parti-
cle allows a simple physical model, which explains the
behavior of the diameter of a liquid-vapor coexistence

Fig. 7. Binodal for helium in the framework of model (16) with γ ≈
0.04 (solid curve), the diameter (dotted curve), and experimental
data (points)

curve, to be formulated. According to the aforesaid, let
us try the following dependence of the parameter of ef-
fective molecular volume b on the density and the tem-
perature:

b =
b0

1 + γ p(id)
, p(id) = ñ T̃ . (15)

The physical meaning of relation (15) is very simple,
and, concerning the volume accessible to a particle, it
is a simple reflection of the fact that the corresponding
volume decreases as the pressure increases:

v = v0(1− γ pid + . . .) .

The fact that we use only an ideal component of the
pressure testifies that the correlations in the particle en-
vironment, which just determines a volume accessible to
the particle, are neglected.

Therefore, the effective parameter b (15) can be used
in the corresponding equation of state. Let us use a
model, in which the part of the pressure that corre-
sponds to the presence of a rigid core is selected in
the Carnahan–Starling approximation. Then, the cor-
responding free energy looks like

F (CS) = Fid + T
b n ( 4− b n )
( 1− b n )2

− an , (16)

where Fid is the free energy of the ideal gas. In this case,
the critical point of the corresponding equation of state
has the coordinates

Tc(γ)
Tc(0)

= 1 + t1 γ + o(γ) ,
nc(γ)
nc(0)

= 1 + n1 γ + o(γ) ,

with t1 ≈ 4.5 and n1 ≈ 8.1. The coexistence curves for
Eq. (16) at various values of the parameter γ are given
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L.A. BULAVIN, V.L. KULINSKII

 !"  #"

 $"  %"

 !"# $% &'!() "*+(+",-(),,./ '01')20(),) ( ')34)2 30567+ 89#:$; 1 8"-<+7=,) 4'!(); +

64"*6'!36,>)7=,+ 5),,+ 8>0?4!;

 !"#$ %&'&(# )&"* %&+,-. !(*/. "0 '1 1(23 4"!-#+ 5&)0 #"6*  *!70(%! 0"(%&5#8 1

9-16(1!:#$"#$ &'-!/(#  !" 1 %&'&(# ;<=>3

?# 7#(*7& @& 6%*)!  *!70(%! 0"(%&5#8 A +7#@0"&B C *)3 D*/3 EF3 G0$ +/1)

&'17&)-0"*$ (*7 @&  *!70(% 0"(%&5#8 CH3IF )# -#J1A(2/. )# +"!J0"". 0"(%&5#8 )

6%*(*J"#$ (&J:# .6! )# 5&)# !A 6%*(*J"#$ (0750%!(1%# 3 K#$/"&L "! &/"&)# CH3MF 7!A7&N

CI3<=F

 0 7* &51/(*-* J-0"* 5&)O.+!"# + +!-0P"#/(B )# ,1/(*"*3 ?*Q& .J* + :2&,& 7*

&(%*71A7&N

CI3<RF

S-16(1!:#$"! /6-! &)! (05-&A7"&/(# +"*6!A 5&+! 9-16(1!:#$"#$ &'-!/(#3 T!6*7 J*"&7

<U

Fig. 8. Calculated binodals for Ar and various molecular liquids in the framework of model (16) with γ ≈ 0.03 (solid curve) and
experimental data (points)

in Fig. 6. As follows from the results of calculations,
the growth of γ gives rise to a decrease of the degree of
binodal asymmetry. This testifies in favor of the param-
eter γ interpretation as a compressibility, which is quite
natural, because the asymmetry of a coexistence curve
is associated with the absence of the Ising particle–hole
symmetry. Note that, from this point of view, quantum
liquids are the most symmetric. Really, as the results
of calculations show, the optimum value of the parame-
ter γ for helium equals 0.04 (Fig. 7), whereas γ ≈ 0.03
for argon and the majority of classical molecular liquids
(Fig. 8).

The entropy in model (16) is defined in a conventional
manner:

S = −∂ F
(CS)

∂ T
. (17)

The results of calculations concerning the corresponding
diameter for molecular liquids are depicted in Fig. 9.

As we see, the model well reproduces both the coexis-
tence curve in terms of the density and the coexistence

curve diameter in terms of the entropy, as well as the
heat capacity along the coexistence curve. Note that it
is owing to the temperature dependence of the parame-
ter b that the behavior of the heat capacity adequately
reproduces experimental results (see Fig. 10). It is clear
that the fluctuation effects should be taken into account
in a vicinity of the critical point. Really, the behavior of
the coexistence curve diameter in terms of the entropy in
the fluctuation region demonstrates features [18] which
are related to large-scale fluctuations. Note that the line
of the coexistence curve diameter in terms of the entropy
is shifted (see Fig. 9). This displacement arises due to
the fact that Sd is reckoned from the entropy value Sc at
the critical point, which corresponds to the critical tem-
perature Tc. Really, on the basis of Eq. (6), we obtain

Sd =
(
C̃(reg)
v + C(fl)

v

)
ln
T

Tc
+ . . . , (18)

C̃v =
c
(v)
v + c

(l)
v

2
,
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experimental data (points). Dashed curves correspond to the theoretical result obtained taking the fluctuation shift into account (see
discussion in Section 3)

where the terms connected with the dependence on the
density are not taken into account. Further calculations
give rise to the formula

Sd = C̃(reg)
v ln

T

T
(mf)
c

+ C̃(reg)
v ln

T
(mf)
c

Tc
+

+C(fl)
v ln

T

Tc
+ . . . . (19)

Note that the fluctuation component of the heat capacity
disappears beyond the fluctuation region. Therefore, the
contribution of the mean field Sd becomes shifted along
the T -axis, and its value obtains an increment

ΔS ≈ C̃(reg)
v ln

T
(mf)
c

Tc
∝ T (mf) − Tc

Tc
.

Such a situation really corresponds to Fig. 9, because the
temperature in the mean-field approximation is higher

than the corresponding value obtained with regard for
fluctuations [19].

4. Conclusions

The behavior of the coexistence curve diameter in terms
of the entropy has been considered for atomic and molec-
ular liquids. The nonmonotonous behavior of the diam-
eter of a binodal in terms of the entropy is demonstrated
to be connected with a competition between two contri-
butions to the entropy, each of them being associated
with either the entropy or the density. On the contrary,
the coexistence curve diameter in terms of the density
has a monotonous behavior for those liquids.

In our opinion, ion-electronic liquids are of interest
[20]. For alkaline metals, such as Cs and Rb, the be-
havior of the coexistence curve diameter in terms of the
density is qualitatively identical to that for molecular
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Fig. 10. Heat capacity along a binodal for model (16) with γ ≈ 0.03 (solid curve) and experimental data (points)

liquids, although the corresponding coexistence curve is
more asymmetric. At the same time, the coexistence
curve diameter in terms of the density for mercury re-
veals a very nonmonotonous behavior [21]. Note that
a number of the model equations of state [21–24] were
used for the description of a liquid–vapor equilibrium
in liquid metals. However, the consideration in those
works was confined to the analysis of a binodal in terms
of the density. In our opinion, the verification of those
models with respect to their adequate reproduction of
the entropy would be expedient, because the entropy is
a more sensitive characteristic, in comparison with the
density, of structural changes that are responsible for a
variation of the electroconductivity character [25]. Such
an analysis will be carried out in the paper to follow.
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ДIАМЕТР БIНОДАЛI АТОМАРНИХ ТА МОЛЕКУЛЯРНИХ
РIДИН В ТЕРМIНАХ ЕНТРОПIЇ

Л.А. Булавiн, В.Л. Кулiнський

Р е з ю м е

За аналогiєю з дiаметром кривої спiвiснування рiдина–пара в
термiнах густини для рiзних класiв рiдин, а саме: атомарних,
молекулярних, полярних та неполярних, дослiджено поведiнку
дiаметра кривої спiвiснування в термiнах ентропiї Sd. Показа-
но, що на суттєвiй вiдстанi вiд критичної точки рiдини пове-
дiнка Sd визначається обертальним рухом частинок та ефектом
виключеного об’єму. Для вiдповiдних рiдин запропоновано мо-
дель рiвняння стану, яка враховує вказанi ефекти.
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