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We present the results explaining the general tendency in pecu-
liarities of the process of heat distribution in semiconductor struc-
tures with modified properties of the surface layer under a pulse
It is shown that the presence of a structural
inhomogeneity (modified layer) and the influence of a nonlinear
dependence of the thermal diffusivity coefficient result in both a
substantial transformation of the area of localization (its decrease)
of thermal energy and an increase of the surface temperature.

laser irradiation.

1. Introduction

Photoacoustic (PA) diagnostics has lately been a rapidly
developing field of investigation of material properties.
This method is grounded on the photothermal trans-
formation (PTT) under no stationary heating of the
medium by electromagnetic radiation (e.g., by laser ra-
diation).

The recent growth of the interest in the PA diagnostics
is mainly related to the development of new PA meth-
ods and a successful application in materials science and
particularly in micro- and optoelectronics [1]. It should
be mentioned that the number of realized applications
of the PA effect is relatively large, while the physical
nature of the phenomenon is not well understood be-
cause of its complexity. It is mainly due to the fact
that the overall description of the effect involves a prop-
agation of fields of at least three types (light, thermal,
and elastic ones), the energy exchange between them,
and even the consideration of the electron-hole subsys-
tem in semiconductor materials. It is clear that there
are significant unanswered questions in the description
of the effect even for homogeneous continuous media.
While developing a model of the PA effect for inhomo-
geneous media (e.g., layered structures), this problem
becomes even more complicated. There are a lot of sim-
ilar unresolved problems ranging from the description of
a light absorption mechanism in inhomogeneous media
to the influence of interfaces on the propagation of ther-
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mal waves induced by nonstationary light absorption,
and so on.

Today, the problem of calculating the time evolution of
a spatial distribution of temperature fields in a material
is very actual for various areas of materials science (for
example, for the determination of thermal parameters;
the calculation of a PA signal, which allows one to find
elastic constants of a material; the laser processing, etc.).

In [2], the analytical solution of the heat equation was
analyzed, by taking the outflow of heat from the surface
into account. The results testify that the temperature
curve maximum moves in the depth of a sample. In
that work, only structural homogeneous materials were
analyzed; the results obtained are not suitable for cal-
culating the thermal fields in inhomogeneous structures.
This problem was partially solved in [3], where the ther-
mal structure of a specimen was modeled with separate
layers, so that the coefficient of thermal diffusivity was
constant within the limits of each layer. In other words,
a homogeneous heat equation can be written for each
layer. By applying the Laplace transformation and intro-
ducing the resistivity matrix that describes the boundary
thermal resistance between adjacent layers, the transfer
matrices were deduced. Thus, the description of the dif-
fusion of heat in inhomogeneous structures was given,
by introducing the effective thermal conductivity (gen-
eralized to the entire structure). But the nonlinear pro-
cesses of heat diffusion cannot be considered within such
a method.

The purpose of the given work is to analyze the for-
mation of temperature profiles, as a result of the ac-
tion of short laser impulses (~ 1078 s) on semiconductor
silicon-based structures (Si is one of the basic materials
of modern microelectronics), in which the near-surface
layer properties have been essentially modified according
to technological requirements. These changes (e.g., see
[2], where the influence of the implantation of monocrys-
talline silicon on the coefficient of thermal diffusivity of
a material with modified structure was investigated) can
be as large as several orders of magnitude for the quan-
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tities that define thermal properties of materials. Since
the action of high-energy laser radiation on media repre-
sents a great interest, we will also analyze the nonlinear
dependence of the coefficient of thermal diffusivity on
the temperature.

2. Mathematical Model

Let us consider the following nonlinear equation of ther-
modiffusion dependent on time:

%f - % (D(T7 z)%f) + f(2)g(t), (1)

where D is the coefficient of thermal diffusivity which
depends in the general case on a spatial coordinate (in
inhomogeneous samples) and on the temperature; f(z)
is the function which characterizes a spatial distribution
of heat sources in the sample. In a case which is con-
sidered with regard for the Bouguer-Lambert law (the
heat source is a laser radiation absorbed by a material),
we have

I(1 — R)aexp(—az)
cp '

fz) =

The function g(t) describes the temporal distribution of
the incident light intensity. In the case of a single im-
pulse, g(t) = H(t)—H (t—7), where H (t) is the Heaviside
function.

In all calculations, we will take I = 10 MW /em?, 7 =
20 ns, R = 0.37, o = 5x10* em™1, ¢ = 0.8 J/(g'K),
p = 2.3 g/cm?® as constant and will trace a change of the
coefficient of thermal diffusivity only.

The following boundary conditions are more often re-
alized in practice:

— (0T /0z)|,=0 = 0 — absence of heat outflow from the
sample’s surface in an external environment;

—T|2=2,., = 0— contact of the sample’s bottom surface
with the thermostat (zmax = 300 pum — thickness of a
sample);

The initial conditions are as follows:

— T|t=p — the uniform distribution of the temperature
in the sample before the irradiation (we will accept that
the initial temperature is zero without any loss of gen-
erality: we will consider only a rising over the initial
temperature).

According to our purpose, we will consider the cases
of irradiation of a homogeneous sample and a sample
with modified properties of a subsurface layer (two-
layer structure) by short laser impulses. For definite-
ness, we will consider monocrystalline silicon (p-type,
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Dy = 0.94 cm?/s, N, ~ 10'? em™~3) and two-layer struc-
ture “implanted layer + crystal substrate Si” — Si i+
(Np ~10% em™3, D+ = 0.25 cm? /s). We set the mod-
ified layer thickness d,+ = 0.6 pum and assume that,
in the case of strong light absorption (a=! = 0.2 um),
practically all radiation is absorbed in the first layer. In
the first and second cases, we will estimate also a role of

the temperature dependence of the coefficient of thermal
diffusivity (D(T)).

3. Thermal Diffusivity does not Depend on
Temperature

3.1. Homogeneous sample (D = const)

Let us analyze the temperature distribution at the irra-
diation of a structurally homogeneous sample. We will
consider that the coefficient of thermal diffusivity does
not depend on the temperature (D = const). In this
case, a solution of Eq. (1) can be obtained analytically
in the form

io: fn(t) cos(anz),

n=0
[SS)

> fulr) 220nDY co5(ay,2), t > T,
n=0

1<,
Tl(zat) =

exp(—an,DT)

fn(t) = An(l - exp(—aiDt)),

2 I(1-R)a(—1)"exp(—azmax) + a/ay

A =
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anp = | =
n 5 ™

In Fig. 1, we present the calculated temperature pro-
files at the irradiation of a Si sample by a laser impulse
with the duration 7 = 20 ns at various moments of the
temporal cycle “‘heating — the heating end — cooling”.
Such temporal intervals are chosen to show the general
tendency of process of distribution of heat to show that
such a tendency holds during the whole cycle with heat-
ing and cooling.

Zmax

3.2. Structurally inhomogeneous sample
(D = D(z))

We now analyze the temperature distribution at the ir-
radiation of an ion-implanted monocrystalline Si sam-
ple (two-layer structure Sij,,,+, the thickness d,+ = 0.6
pm). We will model the given structure by a system
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Fig. 1. Temperature distributions for a homogeneous sample at
various moments of the temporal cycle

which consists of two layers. It is possible to write the
coefficient of thermal diffusivity as

Dq :Dp+, z < dp+,

D(Z) - { D2 = Do, z Z dp+, (2)

where D and D, are the coefficients of thermal diffu-
sivity of the top and bottom (crystal substrate Si) lay-
ers, respectively. In Fig. 2, we present the relevant
temperature profiles calculated by the finite-element
method. As seen from Fig. 2,a, it is possible to describe
the temperature profiles in the sample by the function
Ty(z,t) = F(z,t,D1,D3,dy+). The given function at a
point z = d,+ has the simple discontinuity of the first
derivative. It is a result of the “sharp border” model 2
and physically arises from the continuity of a heat flux
through the boundary between the first and second lay-
ers (D1(0T/0z)|,=p++0 = D2(0T/0%2)|,=p+_0). Under
the condition Dy = D, the shape of the given curve
passes in that of a curve which corresponds to a ho-
mogeneous sample (Section 3.1). The presence of such
a break has unforeseen consequences in the case where
one needs to conduct the subsequent calculations (e.g.,
the use of the Laplace transformation in calculations of
a PA signal leads to the appearance of “boundary fre-
quencies”). This break can be removed, if we replace the
“sharp border” model by the “transient layer” model, in
which the coefficient of thermal diffusivity changes not
by jump, but, for example, according to a linear law
D(z) = a+ bz (see Fig. 2,b, insertion). Here, a and b
are constants which can be found from the condition of
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Fig. 2. Temperature distributions for a two-layer structure Sip+p+
at various moments of the temporal cycle; the insert shows a model
dependence D(z) (a).
structure Sip+p+ in the “transient layer” model at various moments
of the temporal cycle; the insert insert shows a model dependence
D(2) (b)

Temperature distributions for a two-layer

continuity of the function D(z):

D‘z:p‘*’-{-O = Dp+7
D‘z=p++l—0 = Dy,

where [ is the transient layer thickness. In Fig. 2.b,
we give the temperature distributions for the “transient
layer” model. Evidently, the break is removed in this
case.

On the whole, by comparing the results of Sections
3.1 and 3.2, it is clear that the presence of a modified
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Fig. 3. Temperature distributions in homogeneous Si for D(T)
(physical nonlinearity); the insert shows the model dependence
D(T(z,t)) at various moments of the temporal cycle

layer (structural heterogeneity) leads to a reduction of
the area of thermal energy localization.

4. Thermal Diffusivity Depends on
Temperature

4.1. Homogeneous sample (D = D(T))

In this case, the situation becomes essentially more com-
plicated, as the coefficient of thermal diffusivity becomes
temperature-dependent. To find the temperature pro-
files, we use a modified finite-element method as in [7].

With regard for the fact that the thermal conductivity
in hyperpure silicon has the phonon character and using
experimental data [5], we get the explicit dependence of
the coefficient of thermal diffusivity on the temperature:
D(T) = Do/(1+ aT).

In Fig. 3, we give the results of calculations of the tem-
perature profiles in a homogeneous sample in the case
where the coefficient of thermal diffusivity depends on
the temperature.

Comparing results of Sections 3.1 and 4.1, it is clear
that the presence of the physical nonlinearity (depen-
dence D on T) also leads to a reduction of the localiza-
tion area of thermal energy.

4.2. Structurally inhomogeneous sample
(D((T, 2))

Let us consider a two-layer structure Si,,,+ (the thick-
ness d,+ = 0.6 um). We consider that the top (mod-
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Fig. 4. Temperature distributions for a two-layer structure Sip+p+;
the insert shows the dependence D(z,T(z,t)) at various moments
of the temporal cycle

ified) layer has a constant coefficient of thermal diffu-
sivity, because the scattering of phonons by crystal de-
fects (in the presence of impurities in the concentra-
tion indicated in Section 2) prevails over the phonon-
phonon scattering. For the bottom layer (substrate Si),
we take the coefficient of thermal diffusivity in the form
D(T) = Do/(1+ aT).

The scheme for calculations of temperature profiles
does not differ essentially at this point from that used
in Section 4.1. We note that, in this case (as in Section
3.2), the temperature profile curve has a discontinuity of
the first derivative, resulting from a difference in values
of the coefficients of thermal diffusivity of the first and
second layers. But it is smoothed out as a result of
the descending dependence of the coefficient of thermal
diffusivity on the temperature. In some cases (e.g., at
t < 7 and t > 1), this break can become substantial.
That is why, for its diminution, we will use the “transient
layer” model with a linear law D(T, z) = a(T) + b(T)z,
as it was made in Section 3.2. Here, a(T") and b(T) are
functions of the temperature, which can be found from
the conditions of continuity of the function D(z):

D‘z:p++0 = Dera
D‘z:p‘*'JrlfO = D(T).

In Fig. 4, we present the temperature distributions
within the “transient layer” model.

Comparing the results given in Section 4, we will pay
attention to the presence of layers in a sample (struc-
tural heterogeneity D = D(z)) in the case where the
coefficient of thermal diffusivity depends on a temper-
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ature (physical non-linearity D = D(T')) and does not
lead to substantial differences in the curves of tempera-
ture distributions as distinct from the results in Section
3, where the dependence D = D(z) leads to a reduction
of the localization area of thermal energy.

We note that, in all cases, the amount of the absorbed
energy of a laser impulse is the same. Therefore, by
the law of energy conservation, a reduction of the area
of heat localization in the process of energy conversion
“light-heat” and the further diffusion of heat in a material
lead to an increase of the temperature in the surface layer
of the sample.

5. Conclusions

Here, we have considered the process of formation of
temperature profiles in spatially inhomogeneous silicon-
based structures at their irradiation by a short (7 = 20
ns) laser impulse. A modified finite-element method was
applied to the analysis of solutions of the nonlinear equa-
tion of thermodiffusion. This has given an opportunity
to find an approximate solution for systems that have a
layered structure with arbitrary ratios between the ther-
mal parameters of layers and values of their thicknesses.

We have demonstrated the difference of the processes
of formation of temperature distributions in cases where
the coefficients of thermal diffusivity depend or do not
depend on the temperature in homogeneous and inho-
mogeneous doped Si-based structures.

1. Progress in Photothermal and Photoacoustic Science and
Technology: Vol. 4, Semiconductors and Electronic Mate-
rials, edited by A. Mandelis and P. Hess (SPIE Optical
Engineering Press, Bellingham, 2000).

ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3

2. G.N. Logvinov, Yu.V. Drogobutskyy, Luis Nino de Rivera,
and Yu.G. Gurevich, Fiz. Tverd. Tela 49, 779 (2007).

3. M. Dramicanin, Z. Ristovski, V. Djokovic, and S. Galovic,
Appl. Phys. Lett. 73, 321 (1998).

4. U. Zammit, M. Marinelli, F. Scudieri, and S. Martellucci,
Appl. Phys. Lett. 50, 830 (1987).

5. Thermal Conduction of Solids, edited by A.S. Okhotin
(Energoatomizdat, Moscow, 1984) (in Russian).

6. R.S. Muller and T.I. Kamins, Device Electronics for Inte-
grated Clircuits (Wiley, New York, 2002).

7. M. Isaev, A. Kuzmich, and R. Burbelo, Visn. Kyiv. Nats.
Univ., Ser. Fiz., No. 8-9, 58 (2008).
Received 08.07.2009

OOPMYBAHHA TEMIIEPATYPHIX IIOJIIB
B JIETOBAHIX CTPYKTYPAX HA OCHOBI Si
ITPU1 JIABEPHOMY OITPOMIHEHHI:

IMITYJIbCHUN PEXKIIM

P.M. Byp6eno, M.B. Icaes, A.I. Kyzvmun
Peszowme

Y poboTi npencTaBIeHO PE3yJbTaTH AHAJI3Y, siKi HOSICHIOIOTH 3a-
rajJpHy TEHJIEHIII0O B OCOOJIMBOCTSX IPOLECY IOUIMPEHHS Tela B
HAaIBIPOBIAHUKOBUX CTPYKTypax Ha OCHOBI Si 3 momudikoBaHu-
MU BJIACTUBOCTSIMHU IIPHIIOBEPXHEBOI'O IIapy IIPH OIPOMIHEHHI X
KOPOTKHM Jia3epHuM immynbcoM. [Tokazano, 1m0 HasiBHICTB CTpy-
KTypHOI HeomHOpiAHOCTI (MOAndIKOBAHOrO MmAapy) Ta BpaxyBaHHs
BIUIMBY HEJIHIAHOI 3aj1e2KHOCTI KoedillieHTa TeMIiepaTyporpoBii-
HH:I), JIOKaJi3aIil TernioBol eHepril Ta 361IbIIeHHs] TeMIIEPaTyPU B
IIPUIIOBEPXHEBOMY IIapi MaTepiaJy.
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