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The system of equations which couples elements of the Yukawa
and active neutrino mass matrices in the νMSM theory (an exten-
sion of the Standard Model by three right-handed neutrinos which
are singlets of the weak isospin) has been analyzed and solved. On
the basis of the solution obtained, more accurate constraints on
the model parameters have been determined. The obtained results
were also used to study the CP-violating phase in the case where
the elements of the active neutrino mass matrix are real-valued.
The generation of a baryon asymmetry has been demonstrated to
occur in this case as well.

1. Introduction

The Standard Model (SM) for the electroweak and
strong interactions [1] is undoubtedly a successful the-
ory that correctly describes processes, where elementary
particles with the energies up to about 100 GeV (and,
for some processes, up to several TeV) are engaged. The
SM has successfully passed an examination by plenty of
precision experiments, and it agrees well with the data of
cosmological observations. However, there are a number
of reasons that give the basis to assert that the SM is not
a complete theory. In cosmology, the SM cannot explain
such phenomena as the dark energy and the dark matter,
as well as the inflationary physics of the Universe evo-
lution. In elementary particle physics, the SM does not
explain neutrino oscillations and the baryon asymmetry
in the observable sector of elementary particle physics
[2].

The SM, which is a renormalized theory and is based
on the gauge group SU(3) × SU(2) × SU(1), includes
three generations of fermions, with left-handed compo-
nents of fermions forming weak-isospin doublets with re-
spect to the SU(2) group, whereas right-handed com-

ponents of all fermions, but the neutrino, being weak-
isospin singlets. The absence of right-handed neutrino
fields in the SM is associated with the fact that, at the
moment when the SM was being created, the neutrino
was considered to be a zero-mass particle.

However, the phenomenon of neutrino oscillations
(transitions between neutrinos with different flavors) ex-
perimentally discovered recently [3] testifies that the
neutrino mass is nonzero. Therefore, one of the sim-
plest and most promising variants of SM modification
is the extension of its fermionic sector by adding sev-
eral SU(2)-singlet right-handed neutrinos to the theory,
which would not interact directly with SM particles 1.
In this case, the introduction of only two right-handed
neutrinos gives rise to the appearance of eleven new pa-
rameters in the modified theory, which can be used to
explain the available experimental data on active neu-
trino oscillations. On the basis of the so-called see-saw
mechanism of neutrino mass generation [4], this model
predicts the existence of two massive active neutrinos
and one zero-mass neutrino, which does not contradict
the available data. However, the extension of SM due
to the introduction of only two right-handed neutrinos
does not resolve other SM problems. In particular, it
does not explain the phenomena of baryon asymmetry
and dark matter.

Recently, in works [5, 6], a modification to the Stan-
dard Model Lagrangian has been proposed by intro-
ducing of three additional SU(2)-singlet right-handed
(sterile) neutrinos (with zero electric, weak, and strong
charges). It looks natural, taking into account that the
number of fermion generations is also equal to three.
The masses of right-handed neutrinos are considered to

1 That is why those neutrinos have been called sterile, and left-
handed SM neutrinos are referred to as active.
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be less than the characteristic scale of weak interaction
(. MZ ≈ 100 GeV, where MZ is the Z-boson mass).
Such a confinement does not introduce new energy scales
in comparison with the SM ones and resolves the prob-
lem of gauge hierarchy2, so that the theory remains cor-
rect up to the Planck energy scales.

The proposed model was called the Neutrino Mini-
mal Standard Model (νMSM). Owing the fact that the
νMSM contains 18 new parameters in comparison with
the SM3, it can explain, in principle, not only neutrino
oscillations, but also other observable facts which do not
find explanation in the framework of SM.

Until now, explicit expressions for the description of
neutrino oscillations, baryon asymmetry generation, and
dark matter have been obtained [7]. The majority of
those expressions are approximate and serve for estima-
tion purposes. In this work, we have studied the equa-
tions of the νMSM which couple the elements of the
Yukawa and active neutrino mass matrices in order to
determine the restrictions on the model parameters more
exactly. The solutions obtained for the indicated equa-
tions have been used to study the CP-violating phase in
the case where the elements of the active neutrino mass
matrix are real-valued.

The paper is organized as follows. In Section 2, the ba-
sic relations and some results obtained in the framework
of νMSM, which will be needed below, are presented. In
Section 3, the analysis of νMSM equations is carried out,
and the solution for the ratios between the elements of
the second and third columns of the Yukawa matrix is
obtained and analyzed in the general case. The results of
Section 3 are used in Section 4 to analyze the expression
obtained for the CP-violating phase in the framework of
our model.

2. Basic Relations of the νMSM Theory

In works [5, 6], in addition to kinetic terms, the SM La-
grangian includes the following terms:

Lad = −FαI L̄αΦ̃NI −
MIJ

2
N̄ c
INJ + h.c. =

=−FαI
(
ν̄αL, l̄αL

)(h(χ)+v√
2

0

)
νIR−

MIJ

2
N̄ c
INJ + h.c.=

2 The problem of quantum stability of the Higgs boson mass to
radiation corrections given by contributions of heavier particles
is meant here.

3 Namely, these are three Majorana neutrino masses, three Dirac
neutrino masses, six mixing angles, and six CP-violating phases.

= −FαI
h(χ) + v√

2
ν̄αLνIR − ν̄cIR

MIJ

2
νJR + h.c., (1)

where the subscript α = e, µ, τ corresponds to the flavors
of active neutrinos; the subscripts I and J change from 1
to 3; Lα is the lepton doublet; NI are the field functions
of right-handed sterile neutrinos; the superscript cmeans
the charge conjugation of the field function; FαI is a new
matrix of the Yukawa constants; MIJ is the Majorana

mass matrix of right-handed neutrinos; Φ =

(
0

h(χ)+v√
2

)
is the Higgs field in the unitary gauge; Φ̃ = iσ2Φ∗; σ2

is the second Pauli matrix; h(x) is the Higgs field; and
the parameter ν is defined by the minimum of the Higgs
field potential (ν = 247 GeV).

In the SM, the fermion mass generation is provided by
the interaction between fermionic and scalar Higgs fields.
The SM has such a structure that, after a spontaneous
symmetry violation, the neutrino remains a zero-mass
particle. The Dirac mass term (∼ ν̄LνR) does not emerge
due to the absence of right-handed singlet neutrino in the
theory, whereas the appearance of the Majorana mass
(∼ ν̄cLνL) is forbidden by the SU(2)L invariance. An
assumption on the existence of right-handed neutrino
leads to the appearance of both Dirac and Majorana
mass terms in the Lagrangian,

LDM = MDν̄L νR +MMνcR νR + h.c., (2)

which can be written down in the general case as follows
(see, e.g., works [8, 9]):

LDM = −
(

(NL)c
MDM

2
NL + h.c.

)
, (3)

where

NL =
(
νL
νcR

)
; N c

L =
(
νcL
νR

)
; MDM =

(
ML MD

T

MD MR

)
.

Comparing the form of mass terms in Lagrangian (1)
with expression (3), we come to a conclusion that, in
this case,

ML = 0, MD = F+ ν√
2
, MR = M∗, (4)

where M and F are the square matrices of the third
order which appear in formula (1).

In works [5, 6], it was demonstrated that the νMSM
parameters, the number of which is by 18 more in com-
parison with those in the SM, can be so fitted that neu-
trino oscillations and the baryon asymmetry would be
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explained, and the nature of the dark matter would be
established simultaneously. For this purpose, there must
exist two right-handed neutrinos with large, almost iden-
tical, masses (of about or more than 100 MeV) and one
right-handed neutrino with a relatively small mass (of
about 1 keV). The lightest right-handed neutrino com-
prises the basis of the dark matter. The two other, mass-
degenerate heavy neutrinos make it possible to explain
active neutrino oscillations and the baryon asymmetry
of the Universe.

In the zeroth-order approximation, the extended La-
grangian LνMSM is invariant with respect to U(1)e ×
U(1)µ×U(1)τ transformations, which provides the indi-
vidual preservation for e, µ, and τ lepton numbers (just
this case is observed in experiments). In addition, in this
approximation, two heavy sterile neutrinos are supposed
to interact with active ones, whereas the third and the
lightest one does not4. Those requirements are satisfied
by the following forms of matrices M in expression (1):
M

(0)
L = 0,

M
(0)
R =

0 0 0
0 0 M
0 M 0

; M
(0)+
D =

ν√
2

0 h12 0
0 h22 0
0 h23 0

. (5)

In the zeroth-order approximation, there exist two mas-
sive right-handed neutrinos with identical masses M , the
third right-handed neutrino is massless, and the masses
of all active neutrinos are equal to zero, which does not
agree with the experimental data on neutrino oscilla-
tions.

In work [10], to put the theory in agreement with ex-
perimental data, small corrections to the matrices MR

and MD (see Eqs. (5)) were introduced. These correc-
tions violate the U(1)e×U(1)µ×U(1)τ -symmetry, bring
about the appearance of a small mass for the third right-
handed neutrino, and eliminate the mass degeneration
for two other right-handed neutrinos. In turn, this gives
rise to the appearance of supersmall masses for the left-
handed (active) neutrinos and nonzero angles of their
mixing. The indicated corrections can be presented in
the following form:

M
(1)
L = 0; M

(1)
R =

m11e
−iα m12 m13

m12 m22e
−iβ 0

m13 0 m33e
−iγ

 ;

4 In this model, the lightest sterile neutrino plays the role of a
dark matter particle. For this reason, it cannot interact with
other particles.

M
(1)+
D =

ν√
2

h11 0 h13

h21 0 h23

h31 0 h33

 , (6)

where the matrix elements are considered complex-
valued in general, and the relations |mij | � |M | and
|hi1| � |hi3| � |hi2| are adopted.

As is known [8], the mass part of Lagrangian (3) can be
diagonalized by changing over from the basis of functions
NL to the basis of functions nL using the unitary matrix
V , namely, NL = V nL. Then

N̄L = n̄LV
+; NL

c = (V +)TncL; NL
c = (nL)cV T ,

(7)

where the 6× 6-matrix V can be conveniently presented
as a product of two matrices, V = WU . The matrix W
is introduced for the block diagonalization of the matrix
MDM [11],

WTMDMW = Mblock =
(
Mlight 0

0 Mheavy

)
. (8)

The explicit form of the matrix W can be found only
approximately, with an accuracy to M−1

R MD-terms,

W =

=

(
1− 1

2M
+
D (MRM

+
R )−1MD M+

D (M+
R )−1

−M−1
R MD 1− 1

2M
−1
R MDM

+
D (M+

R )−1

)
.

(9)

Since the see-saw mechanism is used, the M−1
R MD ele-

ments are small,

M−1
R MD ≡ ε� 1. (10)

Then

W =
(

1− 1
2ε

+ε ε+

−ε 1− 1
2εε

+

)
. (11)

The matrix W is unitary (WW+ = E) to an accuracy of
ε4-terms. In this approximation, the result of the block
diagonalization is as follows:

WTMDMW =
(
−MT

DM
−1
R MD 0

0 MR

)
=

=
(
Mlight 0

0 Mheavy

)
. (12)
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We note that the matrix Mlight, whose characteristic val-
ues determine the active neutrino masses, is completely
determined in terms of elements of the matrices MD and
MR.

The matrix U looks like

U =
(
U1 0
0 U2

)
, (13)

where the 3 × 3-matrices U(1,2) are so selected that the
obtained block matrix can be diagonalized:

m = diag(m1,m2, . . .m6) = V TMV =

= UTWTMWU = UTMblockU, (14)

that is,

m =
(
UT1 0
0 UT2

)(
Mlight 0

0 Mheavy

)(
U1 0
0 U2

)
=

=
(
UT1 MlightU1 0

0 UT2 MheavyU2

)
. (15)

There is the standard parametrization for the matrices
U(1,2) [12]:

U(1,2) =

eiα1/2 0 0
0 eiα2/2 0
0 0 1

×

×

 c12c13 c13s12 s13e
−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13
s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13

,
(16)

where cij = cos θij ; sij = sin θij ; θ12, θ13, and θ23 are
three mixing angles; δ is the Dirac phase; and α1 and α2

are the Majorana phases. The angles θij can be selected
within the interval 0 ≤ θij ≤ π/2. The phases δ, α1, and
α1 vary from 0 to 2π. The matrices U(1) and U(2) are
characterized by individual independent values of their
angles and phases.

Hence, the procedure of mass determination for active
and sterile neutrinos is reduced to the diagonalization
of matrix (4). This diagonalization can be carried out
for the matrices Mlight and Mheavy separately. Since the
matrices Mlight and Mheavy are non-Hermitian, the char-
acteristic values of the Hermitian matrices M+

lightMlight

and M+
heavyMheavy are sought by solving the correspond-

ing equation. The determined characteristic values cor-
respond to the squared characteristic values of the ma-
trices Mlight and Mheavy.

We omit cumbersome mathematical calculations and
present the final result obtained in the approximation
where the elements in the first column of the Yukawa
matrix are neglected. The mass of the lightest active
neutrino is

m1 =
[h+h]11 v2

2m11
= 0, (17)

and the nondiagonalized mass matrix of active neutrinos
looks like

[Mlight]αβ =
ν2

2M
(h̃β3hα2 + h̃α3hβ2), (18)

where h̃β3 = hβ3 − m33
2M hβ2. The characteristic values of

the matrix are

m2,3 =
v2

2M
(F2F̃3 ± |h+h̃|23), (19)

where F 2
2 = [h+h]22, F̃ 2

3 = [h̃+h̃]33, and F2F̃3 = M(m2+
m3)/v2.

3. Study of the Yukawa Matrix Parameters for
Sterile Neutrinos

The elements of the matrix Mlight in expression (18) are
known, though with considerable errors, from experi-
ments on neutrino oscillations (see, e.g., works [3, 12]).
The system of equations (18), which couples elements
of the second and third columns of the Yukawa matrix
with elements of the active neutrino matrix, has an infi-
nite number of solutions. Really, the substitutions of hi2
by zhi2 and h̃i3 by h̃i2/z, where z is an arbitrary complex
number, does not change the form of expression (18).

Let us analyze the system of equations (18), having
rewritten it as follows:

Mij= η[h̃j3hi2 + h̃i3hj2], де i, j = 1, 2, 3, η =
v2

2M
,

(20)

where Mij are the elements of the active neutrino matrix
Mlight known from experiment. To find the solutions of
Eqs. (20), let us write down the expressions for diagonal,
M11 = 2ηh̃13h12,

M22 = 2ηh̃23h22,

M33 = 2ηh̃33h32,

(21)
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and non-diagonal,
M12 = η[h̃23h12 + h̃13h22],
M13 = η[h̃33h12 + h̃13h32],
M23 = η[h̃33h22 + h̃23h32],

(22)

elements of the active neutrino matrix. From expressions
(21), we obtain

h̃13 =
M11

2ηh12
; h̃23 =

M22

2ηh22
; h̃33 =

M33

2ηh32
(23)

and substitute those values into Eqs. (22):

M12 =
1
2

(
M22

h12

h22
+M11

h22

h12

)
,

M13 =
1
2

(
M33

h12

h32
+M11

h32

h12

)
,

M23 =
1
2

(
M33

h22

h32
+M22

h32

h22

)
.

(24)

The solution of Eqs. (24) is

A12 =
M12

M22

(
1±

√
1− M11M22

M12
2

)
,

A13 =
M13

M33

(
1±

√
1− M11M33

M13
2

)
,

A23 =
M23

M33

(
1±

√
1− M22M33

M23
2

)
,

(25)

where

A12 ≡
h12

h22
, A13 ≡

h12

h32
, A23 ≡

h22

h32
. (26)

Hence, formally, there are eight different solutions, with
only four of them being independent. For instance, if we
fix the sign before the square roots in expressions for A12

and A13, the quantity A23 is determined unambiguously
due to the relation

A23 = A13/A12, (27)

Experimental restrictions on active neutrino parameters

Central value 99% confidence interval
|Δm2

12| = (8.0± 0.3)× 10−5 eV2 (7.2− 8.9)× 10−5 eV2

|Δm2
23| = (2.5± 0.2)× 10−3 eV2 (2.1− 3.1)× 10−3 eV2

tan2 θ12 = 0.45± 0.05 30◦ < θ12 < 38◦

sin2 2θ23 = 1.02± 0.04 36◦ < θ23 < 54◦

sin2 2θ13 = 0± 0.05 θ13 < 10◦

in which the elements Mij are expressed in terms of the
known parameters of the mixing matrix and the masses
of active neutrinos (15) (see, e.g., work [8]):

Mij = m1U
∗
(1)i1U

∗
(1)j1 +m2U

∗
(1)i2U

∗
(1)j2 +m3U

∗
(1)i3U

∗
(1)j3,

(28)

where U(1) is the the third-order square matrix of neu-
trino mixing (see formula (16)), and its elements are
partially known from experimental data (see Table).
It is worth noting that the experimental data on neu-
trino oscillations determine the differences between the
squares of neutrino masses, Δm2

12 = m2
1 − m2

2 and
Δm2

23 = m2
2−m2

3, rather than the masses of active neu-
trinos themselves, so that it is impossible to unambigu-
ously determine the masses of the neutrinos in a direct
way. Really, if each of the neutrino masses is increased by
the same constant, the Δm2

12- and Δm2
23-values do not

change. Supposing, that one neutrino is much lighter
than the others, the masses of other neutrinos can be
determined. In this case, there are two, formally equal,
cases, which are referred to as normal and inverse neu-
trino mass hierarchies.

In the case of normal hierarchy, the masses of active
neutrinos are assumed to grow with the increase of their
number. The mass of the lightest neutrino is m1, and
that of the heaviest one is m3, with m1 < m2 < m3.
Assuming that m1 = 0, we obtain m2 =

√
|Δm2

12| ≈
0.009 eV and m3 =

√
|Δm2

23| ≈ 0.05 eV.
In the case of inverse hierarchy, the masses of active

neutrinos are assumed to decrease with the growth of
their number. The mass of the heaviest neutrino is m1,
and that of the lightest one is m3, with m1 > m2 >
m3. Assuming roughly that m3 = 0, we obtain m2 =√
|Δm2

23| ≈ 0.05 eV. Since |Δm2
12| � |Δm2

23|, one may
take that m1 ≈ m2.

Since the system of equations (20) is written down in
the approximation m1 = 0, the phase α1 is excluded
from all expressions (see Eqs. (28) and (16)), and the
active neutrino parameters are the following ones: two
masses m2 and m3; three mixing angles θ12, θ13, and
θ23; one Dirac, δ, and one Majorana, α2, CP-violating
phases. Since M � m33 (see formulas (5) and (6)), we
consider below that

h̃i3 = hi3, F3 = F̃3. (29)

Solution (25) determines only relations between ele-
ments of the second and third columns in the Yukawa
matrix. In particular, making use of expressions (23)
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Fig. 1. Ratios between the absolute values (a) and phases (b) of
the elements of the second column in the Yukawa matrix. The
case of normal hierarchy

and (26), one can demonstrate that

{h12;h22;h32} = h12

{
1;
h22

h12
;
h32

h12

}
=

= h12

{
1;A12

−1;A13
−1
}
, (30)

{h13;h23;h33} = h13

{
1;
h23

h13
;
h33

h13

}
=

= h13

{
1;A12

M22

M11
;A13

M33

M11

}
, (31)

or, in the dimensionless form,

{h12;h22;h32}
F2

=
ei·arg(h12)

{
1;A12

−1;A13
−1
}√

1 + |A12|−2 + |A13|−2
, (32)

{h13;h23;h33}
F3

=
ei·arg(h13)

{
1;A12

M22
M11

;A13
M33
M11

}
√

1 +
∣∣∣A12

M22
M11

∣∣∣2 +
∣∣∣A13

M33
M11

∣∣∣2 , (33)

where the phases of the elements h12 and h13 are con-
nected by Eq. (21):

arg(h12) + arg(h13) = arg(M11), (34)

and the parameters A12, A13, M11, M22, and M33 are
determined unambiguously in terms of the parameters
m2, m3, θ12, θ13, θ23, α2, and δ. The parameters h12

and h13 can be regarded as arbitrary quantities.
It should be noted that the system of Eqs. (20) is

symmetric with respect to the swapping of corresponding
elements in the second and third columns of the Yukawa
matrix. If there exists a solution for A12 and A13 at fixed

signs before the roots in formula (25) – so that the sign
in the expression for A23 is also unambiguously fixed –
we obtain relations between the elements of the Yukawa
matrix in forms (30) and (31). In this case, it can be
shown that the simultaneous changes of signs before the
roots in the expressions for A12, A13, and A23 invoke the
swapping of relations between the elements of the second
and third columns in the Yukawa matrix.

At every fixed value of the parameters m2, m3, θ12,
θ13, θ23, α2, and δ, there exist only two variants of
the sign choice in expressions (25) for A12, A13, and
A23 which do not contradict condition (27). They dif-
fer from each other by simultaneous sign changes before
the square roots in expressions (25) for A12, A13, and
A23. Actually, such a change corresponds to the swap-
ping of the second and third columns, which gives rise to
the corresponding variation of active and sterile neutrino
mixing angles. This statement is always correct, but for
some cases of parameter values, when at least one of the
radicands in expression (25) equals zero.

It is convenient to use numerical methods for the fur-
ther analysis of system (20). For this purpose, we de-
termine the values of |h22/h12|, |h32/h12|, |h23/h13|, and
|h33/h13| at every fixed point that falls into the exper-
imentally allowable ranges for the parameters m2, m3,
θ12, θ13, θ23, α2, and δ (see Table) and present the results
of calculations graphically.

In the framework of the νMSM theory (17), in the
case of normal active neutrino mass hierarchy, assuming
m1 = 0, and according to the data presented in Table, we
obtain that 0.0085 eV ≤ m2 ≤ 0.0094 eV, 0.046 eV ≤
m3 ≤ 0.056 eV, 30◦ ≤ θ12 ≤ 38◦, 36◦ ≤ θ23 ≤ 54◦,
0◦ ≤ θ13 ≤ 10◦, and both phases δ and α2 change from
−π to π. For the indicated values of neutrino parameters
and assuming that m2 = 0.009 eV and m3 = 0.05 eV,
we calculated the arrays of pairs (|h22/h12|,|h32/h12|)
and (|h23/h13|,|h33/h13|) for 10000 random points in the
space of parameters θ12, θ13, θ23, α2, and δ. The results
of calculations are depicted in Fig. 1.

In the case of inverse hierarchy, according to Eq. (17),
we have m1 → 0 eV, and, according to Table, we must
have m3 → 0 eV. To make an agreement with the
νMSM, the mass states m3 and m1 are to be swapped.
It can be done by an additional unitary rotation with
the help of the matrix

Ũ =

 0 0 1
0 1 0
1 0 0

, U(1) → U(1)Ũ , (35)
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where U(1) is the matrix of neutrino mixing in the mass
and flavor bases (see Eq. (16)). Then, we may put m3 =
0, choose the central values m1 = m2 = 0.05 eV for the
parameters m1 and m2, and leave the mixing angles and
phases the same as they were at the normal hierarchy.
Those neutrino parameters were used to calculate the
corresponding values for ten thousand random points in
the space of parameters θ12, θ13, θ23, α2, and δ. The
results of calculations are plotted in Fig. 2.

The analysis of the results obtained demonstrates
that, in the case of normal hierarchy (Fig. 1,a), the ratios
|h32/h12| and |h22/h12| between the elements in the sec-
ond column fall into the intervals 0.65 . |h32/h12| . 24.2
and 1.4 . |h22/h12| . 29.6. For a random point in the
space of parameters θ12, θ13, θ23, α2, and δ, the values
of the ratios |h32/h12| and |h22/h12| more probably lie
in the interval, roughly, from 1 to 10, whereas the ratios
between the Yukawa constants that exceed 10 are hardly
probable.

Note that the value of the ratio between the phases
of the Yukawa matrix elements Arg [h32/h12] and
Arg [h22/h12] does not extend over the whole allowed
range (−π, π), but is confined to a closed compact re-
gion depicted in Fig. 1,b.

In the case of inverse hierarchy (Fig. 2,b), the element
ratios |h32/h12| and |h22/h12| fall within the intervals
0 ≤ |h32/h12| . 3.2 and 1.1 . |h22/h12| . 4.3. The
extremely large values of those ratios are also hardly
probable at that. The fact that the ratio |h32/h12| can
be equal to zero is explained by the circumstance that
|h32/h12| = A−1

12 ∼ M12, whereas M12 can be equal
to zero in the allowed variation ranges for angles and
phases, provided that m2 = m3. Therefore, in contrast
to the case of normal hierarchy, the elements |hi2| can
be of different orders of magnitude.

Analogously to the case of normal hierarchy, the ra-
tios between the phases of the Yukawa matrix elements
Arg [h32/h12] and Arg [h22/h12] are scattered only over
a closed compact region, which is depicted in Fig. 2,b.

In both cases of normal and inverse hierarchies, the
graphically presented values for the relation between the
absolute values of the ratios between the elements in
the third column of the Yukawa matrix (|h33/h13| versus
|h23/h13|) are similar to those for the relation presented
in Figs. 1,a and 2,a; and the corresponding relations
between the phases (Arg [h33/h13] versus Arg [h23/h13])
in the range (0, 2π) are similar to those exhibited in
Figs. 1,b and 2,b. If the number of points used for calcu-
lations grows, the indicated graphic dependences become
identical.

Fig. 2. The same as in Fig. 1, but for the case of inverse hierarchy

4. Analysis of CP-violating Phase in the νMSM
Theory

As was shown by A.D. Sakharov [13], for the baryon
asymmetry to be generated at a certain stage of the Uni-
verse evolution, the following three conditions have to be
satisfied simultaneously:

1) baryonic charge violation,

2) C- and CP-violation,

3) violation of thermodynamic equilibrium.

As is known from the field theory, the starting La-
grangian transforms under CP-transformation into an-
other Lagrangian with complex-conjugate coupling con-
stants. Provided that some of those constants include
unremovable phases, the CP-invariance of the theory
becomes broken. In the SM, neutrinos are zero-mass
particles; therefore, a unique source of CP-violation
in weak interactions is the single complex element in
the Cabibbo–Kobayashi–Maskawa matrix, the latter de-
scribing the mixing of quarks belonging to different gen-
erations. In the νMSM theory, owing to the existence of
neutrinos with nonzero masses, different neutrino gener-
ations mix with one another, so that one more probable
source of CP-violation emerges.

The solutions obtained in the previous section for the
ratios between the elements of the second and third
columns in Yukawa matrix (25) can be used to ana-
lyze the expression for the CP-violating phase derived
in the framework of the νMSM [14]. As was already
indicated, in the νMSM, there is an opportunity to gen-
erate a baryon asymmetry owing to CP-violating oscil-
lations of light active neutrinos into sterile ones. In this
case, the total leptonic number in the system changes,
which results in the appearance of a lepton asymmetry,
generating, in turn, a baryon asymmetry at sphaleronic
transitions [15].
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To analyze the CP-violating phase, let us use the fol-
lowing expression obtained in work [14]:

δCP =
1
F 6

[
Im(h+h)23

∑
α

(|hα2|4 − |hα3|4)−

− (F 2
2 − F 2

3 )
∑
α

(|hα2|2 + |hα3|2)Im[h∗α2hα3]

]
. (36)

Let us consider every component of this expression:

F 6 =
(
|h12|2 + |h22|2 + |h32|2

)3
=

= |h12|6
(

1 +
∣∣∣∣ 1
A12

∣∣∣∣2 +
∣∣∣∣ 1
A13

∣∣∣∣2
)3

, (37)

Im[h+h]23 = Im [h∗12h13 + h∗22h23 + h∗32h33] =

= Im
[
h∗12
h12

h12h13 +
h∗22
h22

h22h23 +
h∗32
h32

h32h33

]
=

=
(
ν2

M

)−1

Im
[
h∗12
h12
·M11 +

h∗22
h22

M22 +
h∗32
h32

M33

]
=

=
(
ν2

M

)−1

Im
[
h∗12
h12

(
M11 +

A12

A∗12
M22 +

A13

A∗13
M33

)]
,

(38)

∑
α

(
|hα2|4 − |hα3|4

)
= |h12|4

(
1 +

∣∣∣∣ 1
A12

∣∣∣∣4 +
∣∣∣∣ 1
A13

∣∣∣∣4−

−
∣∣∣∣h13

h12

∣∣∣∣4
{

1 +
∣∣∣∣A12

M22

M11

∣∣∣∣4 +
∣∣∣∣A13

M33

M11

∣∣∣∣4
})

, (39)

F 2
2 − F 2

3 = |h12|2
[
1 +

∣∣∣∣ 1
A12

∣∣∣∣2 +
∣∣∣∣ 1
A13

∣∣∣∣2 − ∣∣∣∣h13

h12

∣∣∣∣2×

×

{
1 +

∣∣∣∣A12
M22

M11

∣∣∣∣2 +
∣∣∣∣A13

M33

M11

∣∣∣∣2
}]

, (40)

∑
α

(
|hα2|2 + |hα3|2

)
Im[h∗α2hα3] =

= |h12|2
M

ν2

{(
1 +

∣∣∣∣h13

h12

∣∣∣∣2
)

Im
[
h∗12
h12

M11

]
+

+

(
1

|A12|2
+
∣∣∣∣h13

h12

∣∣∣∣2 ∣∣∣∣M22

M11
A12

∣∣∣∣2
)

Im
[
h∗12
h12

A12

A∗12
M22

]
+

+

(
1

|A13|2
+
∣∣∣∣h13

h12

∣∣∣∣2 ∣∣∣∣M33

M11
A13

∣∣∣∣2
)

Im
[
h∗12
h12

A13

A∗13
M33

]}
,

(41)

Here, we took into account that h32 = h12
A13

, h22 =
h12
A12

, h23 = h13
h23
h13

= h13
M22
M11

A12, and h33 = h13
h33
h13

=
h13

M33
M11

A13.
Substituting formulas (37)–(41) into Eq. (36), we ob-

tain the final expression for the CP-phase:

δCP(ξ, ε) = |M11|−1C−3[ε
(
Im
[
e−2iξA

]
B − CD

)
+

+ε3(C1D − CD1) + ε5
(
C1D1 −B1Im

[
e−2iξA

])
], (42)

where, besides the dependence on the masses and the
parameters of the active neutrino mixing matrix, the
dependence on the following parameters of the Yukawa
matrix was singled out:

ξ = arg[h12], ε =
∣∣∣∣h13

h12

∣∣∣∣ = ε
√
C/C1, (43)

and the following notations were used:

ε = F3/F2; A = M11 +
A12

A∗12
M22 +

A13

A∗13
M33,

B = 1 + |A12|−4 + |A13|−4; C = 1 + |A12|−2 + |A13|−2,

B1 = 1 +
∣∣∣∣A12

M22

M11

∣∣∣∣4 +
∣∣∣∣A13

M33

M11

∣∣∣∣4 ,
C1 = 1 +

∣∣∣∣A12
M22

M11

∣∣∣∣2 +
∣∣∣∣A13

M33

M11

∣∣∣∣2 ,
D = Im

[
e−2iξM11

]
+ |A12|−2Im

[
e−2iξA12

A∗12
M22

]
+
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+|A13|−2Im
[
e−2iξA13

A∗13
M33

]
,

D1 = Im
[
e−2iξM11

]
+
∣∣∣∣M22

M11
A12

∣∣∣∣2Im[e−2iξA12

A∗12
M22

]
+

+
∣∣∣∣M33

M11
A13

∣∣∣∣2Im[e−2iξA13

A∗13
M33

]
.

Numerical calculations using the obtained expression
(42) confirm general properties of CP-phase (36) re-
ported in work [14]:
1) the sign of the CP-violating phase and, hence, the sign
of the baryon asymmetry cannot be determined knowing
only the elements of the active neutrino matrix;
2) if ε→ 0, then δCP ∼ ε, and δCP also tends to zero;
3) the CP-violating phase can differ from zero5, if ε = 1;
4) the CP-violating phase can be different from zero in
the cases where θ13 = 0 and θ23 = π/4;
5) in the inverse hierarchy case, the CP-violating phase
can be different from zero in the case where m1 = m2,
θ13 = 0, and θ23 = π/4.

Expression (42) includes parameters that vary in the
known range6. This allows the limits that confine the
value of CP-violating phase to be estimated. In par-
ticular, |δCP| . 0.27 for the normal hierarchy, and
|δCP| . 0.08 for the inverse one.

Consider whether the baryon asymmetry is generated
in a particular case where the active neutrino mixing ma-
trix U(1) is real-valued. It can be done analytically. Since
the elements of the active neutrino mass matrix Mij are
given explicitly in terms of the parameters of the mix-
ing matrix (28), the matrix Mij is also real-valued. The
form of the matrix Mlight = U∗(1)mU

+
(1) can be found in

the general case where the mixing matrix is real, irre-
spective of the restrictions dictated by the unitary ma-
trix condition. One can get convinced that the following
minors are positive: M11M22 −M2

12 = m2m3(U12U22 − U13U23)2 ≥ 0,
M11M33 −M2

13 = m2m3(U12U33 − U13U32)2 ≥ 0,
M22M33 −M2

23 = m2m3(U22U33 − U23U32)2 ≥ 0,

(44)

5 Hereafter, the statement “the CP-violating phase can differ from
zero” means that the mixing angles and phases can be chosen in
such a way that δCP = 0.

6 There exists an experimentally allowed range for mixing angles
(see Table); the phases vary from 0 to 2π; and ε ≤ 1.

where Uij are the elements of the real-valued matrix U .
This means that the radicands in Eq. (25) are negative
(or equal zero in those particular cases where expression
(44) equals zero).

Hence, the ratio between the elements of the Yukawa
matrix (30) and (31) can be complex, which gives rise
to the generation of a nonzero CP-phase even in the
case where the active neutrino mixing matrix is real-
valued. This result was confirmed by numerical calcula-
tions making use of the explicit expression (42).

5. Conclusions

Provided that the νMSM is valid and right-handed (ster-
ile) neutrinos do exist – which can simultaneously ex-
plain active neutrino oscillations, ensure the baryon
asymmetry generation, and elucidate the dark matter
structure – rather severe restrictions are imposed on the
νMSM parameters which can be experimentally tested7.
For the time being, the numerous data of observations
by means of XMM-Newton, Chandra, INTEGRAL, and
Suzaku satellites did not discover evidences for the exis-
tence of right-handed neutrinos in the range allowed by
instrument capabilities (see work [7] and the references
therein). However, new researches are planned – e.g., the
Xenia project [16] – which must test the whole range of
model parameters that is allowed theoretically; in partic-
ular, these are the mixing angle of sterile neutrinos with
active ones and the mass of the lightest right-handed
neutrino. If the indicated experiments confirm the exis-
tence of sterile neutrinos, the exact solutions of νMSM
equations will be useful for the analysis and treatment
of the results observed.

In this work, we have analyzed the system of equations
(18) which couples the elements of the Yukawa matrix
in the νMSM with those of the active neutrino mass ma-
trix (28). The element values for the latter are known to
within a certain accuracy and specified in experiments
on neutrino oscillations. General relations between the
elements of the second and third columns in the Yukawa
matrix have been obtained as functions of the parame-
ters of the active neutrino mass matrix (30), (31). The
same analysis for specific values of active neutrino mix-
ing angles has been carried out in works [5–7, 10, 14].

The obtained solutions (25) were used to numerically
determine the value ranges for the ratios between the

7 The matter concerns the search for the lightest right-handed
neutrino decay into an active neutrino and a photon. This pro-
cess is suppressed very much and can take place owing to right-
handed neutrino oscillations into an active left-handed neutrino
which interacts with SM particles.
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absolute values and phases of the Yukawa matrix ele-
ments in the cases of the normal and inverse hierarchies,
provided that the parameters of the active neutrino mass
matrix fall into the experimentally allowed range (see Ta-
ble). It has been demonstrated that, in the framework
of the νMSM, even if the active neutrino mass matrix is
real-valued, there can exist a nonzero CP-violating phase
that is responsible for the baryon asymmetry generation.

The authors express their gratitude to Oleksii Bo-
yarskyy, Oleg Ruchayskiy, and Mikhail Shaposhnikov for
the idea, useful advices, and discussion of the results ob-
tained.
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ТЕОРЕТИЧНI ОБМЕЖЕННЯ НА ЕЛЕМЕНТИ МАТРИЦI
ЮКАВИ В МОДЕЛI νMSM

В.М. Горкавенко, С.Й. Вiльчинський

Р е з ю м е

У роботi проаналiзовано та розв’язано систему рiвнянь Стан-
дартної моделi (νMSM) розширеної за рахунок додаван-
ня трьох правих нейтрино (синглети слабкого iзоспiну), що
пов’язують елементи матрицi Юкави з елементами масової
матрицi активних нейтрино, з метою подальшого отриман-
ня бiльш точного обмеження на значення параметрiв моделi.
На основi отриманих розв’язкiв проведено дослiдження СР-
порушуючої фази для випадку, коли елементи масової матрицi
активних нейтрино є дiйсними. Показано, що в цьому випадку
також може вiдбуватися генерацiя барiонної асиметрiї.
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