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The thermodynamics of a lattice model of intercalation of ions in
crystals is considered in the mean-field approximation (MFA). The
pseudospin formalism is used for the description of the interaction
of electrons with ions, and the possibility of the hopping of in-
tercalated ions between different positions is taken into account.
Phase diagrams are built. It is shown that the effective interac-
tion between intercalated ions can lead to the phase separation or
the appearance of a modulated phase (it depends on the filling of
the electron energy band). At high values of the parameter of ion
transfer, the ionic subsystem can pass to the superfluid-like state.

1. Introduction

The theoretical investigation of the intercalation of ions
in crystals is an actual problem of modern physics. Metal
oxides as hosts for the ion (for example, lithium ions) in-
sertion are very promising electrode materials. It should
be noted that theoretical descriptions of such processes
were restricted, in most cases, to numerical ab initio
and density-functional calculations. For example, the
quantum-chemical Hartree–Fock and density-functional
calculations were performed in [1–3] to investigate the
lithium intercalation in a TiO2 crystal. It was shown
that Li is almost fully ionized once intercalated (Li looses
its valence electron), and a reconstruction of the elec-
tron spectrum takes place at the intercalation. Thus,
the ion-electron interaction can play a significant role.
Another interesting feature of such crystals is a shift of
the chemical potential at the intercalation into the con-
duction band. As a result, these crystals have metal-
lic conductivity ([4]; for a review, see also [5]); before
the intercalation, such crystals are semiconductors with
wide gap. At the intercalation of lithium in TiO2, the
phase separation into Li-poor (Li∼0.01TiO2) and Li-rich
(Li∼0.5−0.6TiO2) phases occurs. This two-phase behav-
ior leads to a constant value of electrochemical potential
[6, 7] (this fact is used when constructing batteries). In
[8], the Monte-Carlo simulation was performed to in-
vestigate the intercalation using a Hamiltonian which
included the interaction between ions only.

In our previous works [9, 10], we have formulated
the pseudospin-electron model of intercalation and have
taken into account the ion-electron interaction. It has
been revealed that the effective attractive interaction be-
tween ions was formed, and the condition for the appear-
ance of the phase separation has been established. The
ion-electron interaction was also considered in [11] at the
investigation of the thermodynamics of the S = 1 model
of intercalation (the model was similar to the known
Blume–Emery–Griffiths model), but the electron trans-
fer, as well as the ion one, was not taken into account. It
should be noted that models of the pseudospin-electron
model type are widely used in the physics of strongly-
correlated electron systems in recent years. The applica-
tion of this model to high-temperature superconductors
allows one to describe the thermodynamics of the anhar-
monic oxygen ion subsystem and to explain the appear-
ance of inhomogeneous states and bistability phenomena
([12]). Such a model can also be applied to the descrip-
tion of hydrogen-bonded systems.

In the present paper, we deal with a more com-
plicated model and take into account the possibility
of the transfer of intercalated ions. The considered
model corresponds to the hard-core boson approach.
Hard-core bosons obey the Pauli spin-1/2 commuta-
tion rules. Since the original work of Mahan [13], such
models were applied for the description of ionic conduc-
tors and the calculation of their conductivity. Recently,
the one-particle spectrum was investigated in the one-
dimensional limit [14]. A system of hard-core bosons
is a particular case of the well-known Bose–Hubbard
model which has been intensively investigated in the
last 15 years (see, for example, [15]). The model is of
great interest due to the experimental realization of op-
tical lattices (see, for instance, [16]). This model can
be directly applied to investigate such objects. The
Hamiltonian of the Bose–Hubbard model includes two
terms, one of which is connected with the on-site inter-
action U between particles, and another term is con-
nected with the particle hopping between sites (parti-
cles in this model obey the bosonic commutation rules).
In the limit U → ∞, this model reduces to the hard-
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core boson model. Different theoretical methods were
used to study this model: mean-field theory [17], random
phase approximation [18, 19], strong coupling approach
[20], and quantum Monte-Carlo method [21]. Recently,
a bosonic version of the dynamical mean-field theory
was formulated [22]. The existence of the superfluid and
Mott-insulator phases is a characteristic feature of this
model.

In addition to our previous investigations [9], the aim
of this work is the study of the ion transfer influence on
equilibrium states of the intercalated ion subsystem. As
was shown in [9, 10], the effective interaction between
ions can change (depending on the electron band fill-
ing) its character from repulsion to attraction, leading
to the charge-ordered modulated phases or phase sep-
aration into uniform phases with different particle con-
centrations, respectively. The ion hopping between local
positions is unfavorable for the realization of such phases
or phase transitions. In addition, the ion hopping leads
to the appearance of a superfluid-type phase.

We investigate phase transitions in the intercalated
ion subsystem within the framework of the lattice model
with ion transfer in the regime of the fixed chemical po-
tential of ions and electrons. The electron subsystem is
described by a partially filled one energy band.

2. The Model

We consider the following model Hamiltonian:

H =
∑
ij

ΩijS+
i S

−
j +

∑
ijσ

tijc
+
iσcjσ+

∑
iσ

(gSzi niσ−µniσ)−

−
∑
i

hSzi . (1)

Here, we introduce the pseudospin variable Szi which
takes two values, Szi = 1/2 when there is an interca-
lated ion at the site i and Szi = −1/2 when there is no
ion, and c+iσ and ciσ are the electron creation and an-
nihilation operators, respectively. We take into account
the possibility of ion and electron jumps between sites
(the first and the second term in (1)) and the interaction
of electrons with ions (g term). The last one is related
to the electron band shift at the intercalation (such an
effect is known, for example, for the system LixTiO2

[3]); µ and h play the role of the chemical potentials of
electrons and ions.

It should be noted that we do not consider the direct
interaction between ions. In our previous paper [9], it
was shown that the ion-electron interaction leads to the

formation of an effective interaction between ions and,
even at the repulsive direct ion-ion interaction, an ef-
fective ion-ion interaction of the attractive type can be
formed. This can lead to a phase transition of the first
order between uniform phases with jumps of the ion and
electron concentrations.

The thermodynamics of the model is investigated in
the mean-field approximation

gniS
z
i → g〈ni〉Szi + gni〈Szi 〉 − g〈ni〉〈Szi 〉

ΩS+
i S

−
j → Ω〈S+

i 〉S
−
j + ΩS+

i 〈S
−
j 〉 − Ω〈S+

i 〉〈S
−
j 〉. (2)

Here, the average ion concentration w = 〈Sz〉 + 1/2 is
introduced; in our approximation, 〈S+〉 = 〈S−〉 = 〈Sx〉,
〈Sy〉 = 0. The average value 〈Sx〉 plays the role of order
parameter for the case of the superfluid phase (this is a
phase with condensate of the Bose-type) and determines
the concentration of condensed particles.

Application of the MFA to strongly correlated sys-
tems in the limit of a weak one-site correlation makes it
possible to satisfactorily describe their properties, when
there is no correlational splitting of the electron band.
This approximation is an analogy to the virtual crystal
approximation which is often used for mixed systems.
To go beyond the MFA, one can use more complicated
approximations, for instance, the coherent potential-like
approximations. In addition, in the case of the Bose–
Hubbard model, the kinetic energy term is often consid-
ered within the mean-field approach. This approxima-
tion is well known to give a reasonable estimate of the
critical on-site repulsion at which the Mott-insulator –
superfluid phase transition occurs [15, 17].

In [23, 24], the case Ω = 0 was considered. It was
shown that if the chemical potential is near the band cen-
ter, the double modulation phase is realized in the sys-
tem, while the phase transition between uniform phases
occurs in the case where the chemical potential is close
to the band edges. At intermediate values of the chemi-
cal potential, the incommensurate modulated phase ap-
pears. In the present investigation, we restrict ourselves
to the cases of double modulation phase and uniform
phase.

The Hamiltonian of the model in the MFA is as fol-
lows:

HMFA =
∑
iασ

(gηα − µ)niασ +
∑
iα

(gnα − h)Sziα+

+
∑
iα,jβ

tαβij c
+
iασcjβσ +

∑
αβi

2Ωαβ〈Sxα〉Sxiβ − g
∑
iα

nαηα−
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Fig. 1. Phase diagram in the (h−Ω) plane at µ = 0. The parameter
values are: g = −0.4, W = 1, T = 0.03. (1), (3) – uniform
phase with 〈Sx〉 6= 0 ((1): 〈Sx

1 〉 = 〈Sx
2 〉, (3): 〈Sx

1 〉 = −〈Sx
2 〉);

(2)– uniform phase with 〈Sx〉 = 0; (4)– modulated phase ((a):
〈Sx

1,2〉 = 0, (b): 〈Sx
1,2〉 6= 0). The solid line denotes the phase

transitions of the second order and the dotted line denotes the
phase transition of the first order

−NΩ〈Sx1 〉〈Sx2 〉. (3)

Here, we consider two sublattices: 〈
∑
σ niασ〉 =

nα, 〈Sziα〉 = ηα; α = 1, 2 is a sublattice index, i
is an unit cell index, N is the number of lattice sites,
Ω ≡ Ω12 = Ω21 =

∑
i Ω

12
ij ; Ωαα = tαα = 0.

This Hamiltonian can be diagonalized. We pass to
the k-representation and perform the unitary transfor-
mation in the pseudospin subspace

HMFA =
∑
ασk

(λkα − µ)ñkασ −
∑
iα

λ̃ασ
z
iα−

−gN
2

(n1η1+n2η2)−NΩ〈Sx1 〉〈Sx2 〉 (4)

λkα = g
η1 + η2

2
+ (−1)α

√
(g
η1 − η2

2
)2 + t2k

ck1σ = c̃k1σ cosφ+ c̃k2σ sinφ,

ck2σ = −c̃k1σ sinφ+ c̃k2σ cosφ,

sin 2φ =
tk√

(g η1−η22 )2 + t2k

Sziα = σziα cos θα + σxiα sin θα,

Sxiα = σxiα cos θα − σziα sin θα, sin θα =
2Ω〈Sxβ〉
λ̃α

,

λ̃α =
√

(gnα − h)2 + (2Ω〈Sxβ〉)2, α 6= β.

The doubling of a unit cell leads to the splitting in the
electron spectrum. Two subbands are separated by the
gap g|η1 − η2|. The electron band changes its position
at the intercalation.

Using MFA, we can calculate the mean values of both
the electron and ion concentrations:

nα=
1
N

∑
kσ

(
1 + cos 2φ

2
(e

λkα−µ
T + 1)−1+

+
1− cos 2φ

2
(e

λkβ−µ
T + 1)−1), (5)

ηα =
h− gnα

2λ̃α
tanh(

βλ̃α
2

), 〈Sxα〉 = −
2Ω〈Sxβ〉

2λ̃α
tanh(

βλ̃α
2

).

To find the thermodynamically stable states, we have
to calculate also the grand canonical potential

Φ
N
2

= − T
N

∑
kσ

ln((e
µ−λk1
T + 1)−1)(e

µ−λk1
T + 1)−1))−

−T ln(4 cosh(
βλ̃1

2
cosh(

βλ̃2

2
))− g(n1η1 + n2η2)−

−2Ω〈Sx1 〉〈Sx2 〉. (6)

The absolute minima of the Φ-function determine the
equilibrium states.

3. Results

The semielliptic density of states, ρ(ε) = 2
πW 2

√
W 2 − ε2,

−W < ε < W , where W is a half width of the elec-
tron band, was used (W is chosen as the energy unit; in
our calculations, we put W = 1). Using this density of
states, we perform the summation over k in the equa-
tions of self-consistency (5) and in the expression for the
grand canonical potential (6).

As noted above, the stable states are obtained using
the condition of minimum of the function Φ. In Figs. 1
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Fig. 2. Phase diagram in the (h − Ω) plane at µ = −0.7. The
parameter values are: g = −0.4, W = 1, T = 0.03. The notations
are the same as in Fig. 1. The solid line denotes the phase tran-
sition of the second order and the dashed line denotes the phase
transition of the first order

and 2, the (h − Ω) phase diagrams are shown for the
cases µ = 0 (at the center of the band) and µ = −0.7W
(near the lower band edge).

In the case µ = 0 and at small values of the ion hop-
ping parameter Ω, the system undergoes the phase tran-
sition of the first order from the uniform to modulated
phase (in the modulated phase, n1 6= n2, η1 6= η2) at
a change of the chemical potential of ions (dotted line
in Fig. 1). In the case µ = −0.7W and at small val-
ues of Ω, the phase transition of the first order between
two uniform phases with jumps of the average ion and
electron concentrations (and the phase separation in the
regime of the fixed concentration, see [9, 10, 23, 24] for
more details) takes place (dashed line in Fig. 2).

It is easy to see that, at high values of the parameter of
ion transfer Ω, the only possible phases are the uniform
phases with 〈Sx〉 6= 0 and 〈Sx〉 = 0. The phase with
〈Sx〉 6= 0 appears due to the presence of the ion hopping
between sites; this phase is an analog to a superfluid
phase in the systems of hard-core bosons and can corre-
spond to the state with a high mobility of intercalated
ions. In the case Ω < 0, one finds 〈Sx1 〉 = 〈Sx2 〉, while, in
the case Ω > 0, one finds 〈Sx1 〉 = −〈Sx2 〉.

In Figs. 3 and 4, the (h−µ) phase diagrams are shown
for the cases Ω = 0 and Ω = 0.25. The dotted line
denotes the first order phase transition between the uni-

Fig. 3. Phase diagram in the (h−µ) plane at Ω = 0. The parameter
values are: g = −0.4, W = 1, T = 0.03. The notations are the
same as in Figs. 1 and 2

Fig. 4. Phase diagram in the (h − µ) plane at Ω = 0.25. The
parameter values are: g = −0.4, W = 1, T = 0.03. The notations
are the same as in Figs. 1 and 2

form and modulated phases, and the dashed line denotes
the first-order phase transition between uniform phases.

The next four diagrams which are shown in Figs. 5–8
are the (T −h) phase diagrams. In Fig. 5, the first-order
phase transition curve between two uniform phases with
jumps of the ion and electron concentrations is shown.
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Fig. 5. Phase diagram in the (T − h) plane at Ω = 0. The param-
eter values are: g = −0.4, W = 1, µ = −0.7. The notations are
the same as in Figs. 1 and 2

Fig. 6. Phase diagram in the (T − h) plane at Ω = 0.2. The
parameter values are: g = −0.4, W = 1, µ = −0.7. The notations
are the same as in Figs. 1 and 2

This curve ends at the critical point at some value of
temperature Tcr. At high values of Ω, this phase transi-
tion disappears (see Figs. 2 and 6). The existence of such
phase transitions (in the regime of a fixed concentration,
it corresponds to the phase separation into phases with
different concentrations of ions) is in accordance with
experimental data for intercalated crystals, where the
appearance of poor and rich ion concentration phases

Fig. 7. Phase diagram in the (T − h) plane at Ω = 0. The param-
eter values are: g = −0.4, W = 1, µ = 0. The notations are the
same as in Figs. 1 and 2

Fig. 8. Phase diagram in the (T − h) plane at Ω = 0.3. The
parameter values are: g = −0.4, W = 1, µ = 0. The notations are
the same as in Figs. 1 and 2

was observed (see, for example, [6]). The presence of a
modulated phase in intercalated crystals is also indicated
in experiments (for review, see [5]).

The phase transition from the uniform to modulated
phase can be of the second or the first order; this is
illustrated in Figs. 7 and 8 for the cases Ω = 0 and
Ω = 0.3. We should draw attention to the fact that,
as the temperature increases, the first-order transition
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will transform into the second-order one and then will
disappear (as it is shown in Figs. 7 and 8).

4. Conclusions

In this work, a pseudospin-electron model of ion interca-
lation in crystals has been formulated. The model can
be applied for the description of the thermodynamics of
such a process in materials with electron bands, where
the band filling has metallic or semimetallic character
(in particular, compounds of transition metals such as
TiO2 or other similar systems with narrow conduction
bands). The thermodynamics of the model has been
investigated in the mean-field approximation. The effec-
tive interaction between intercalated ions is formed due
to their interaction with the electron subsystem. Such
an interaction is attractive or repulsive depending on the
filling of the electron band (in the first case, the chemical
potential of electrons should be close to the band edge;
the second case is realized near the half filling). The ap-
pearance of a modulated phase or phase transitions of
the first order with jumps of the ion and electron con-
centrations (in the regime of the fixed concentrations,
it corresponds to the phase separation) has been estab-
lished.

An increase of the ion transfer parameter leads to
the disappearance of both the modulated phase and the
phase transition with jumps of the ion and electron con-
centrations. In addition, the new phase with 〈Sx〉 6= 0
appears due to the ion hopping between sites; this phase
is an analog to the superfluid phase in the systems of
hard-core bosons or the superionic phase in crystalline
ionic conductors (the phase with a high mobility of ions).
Such a phase can exist at intermediate values of the
chemical potential of intercalated ions, and the transi-
tion to this phase is of the second order. To investigate
this phase in detail, we should examine the behavior of
the conductivity and other characteristics of the system.
This is the task for future investigations.
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ҐРАТКОВА МОДЕЛЬ IНТЕРКАЛЯЦIЇ

Т.С. Мисакович, В.О. Краснов, I.В. Стасюк

Р е з ю м е

Дослiджено термодинамiку ґраткової моделi iнтеркаляцiї iонiв
у кристали в наближеннi середнього поля. Для опису взаємо-
дiї електронiв з iонами використано псевдоспiновий формалiзм

та враховано можливiсть перескоку iонiв мiж вузлами ґратки.
Побудовано фазовi дiаграми. Показано, що ефективна взаємо-
дiя мiж iнтеркальованими iонами може приводити до роздiле-
ння фаз або до появи модульованої фази (залежно вiд запов-

нення електронної енергетичної зони). При достатньо значнiй

iнтенсивностi iонного переносу пiдсистема iонiв може перейти
у стан, подiбний до надплинного.
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