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The dynamics of a vortex-antivortex pair in the presence of an
immobile vortex in a two-dimensional ferromagnet is theoretically
studied. The calculations are performed within the model of col-
lective variables. Criteria for the initial conditions allowing one to
separate the finite and infinite motions of the pair are obtained.
General characteristics of each of the types of motion are described.

1. Introduction

One of the main reasons for a significant increasing in-
terest in magnetic vortices which is observed now in
the physics of nanomagnets is the possibility to use
nanomagnets as bits of information for the energy-
independent memory in computers (MRAM – Magnetic
Random Access Memory) [1, 2]. As nanomagnets, it is
accepted to call particles of a magnetic material with
submicronic sizes. Experimental studies are carried out
most frequently with quasi-two-dimensional magnetics,
whose thickness does not exceed several tens of nanome-
ters. Thus, a particle is sufficiently small in order that
its magnetization be considered invariable through its
thickness. An attracting specific feature of nanomag-
nets consists in that the minimum of their magnetic en-
ergy corresponds to an essentially inhomogeneous dis-
tribution of their magnetization, whose specific shape
is determined by the competition between the exchange
and nonlocal magnetostatic interactions. As a result, the
magnetization distribution is very sensitive to the shape
and size of a particle. In this case, the characteristic size
of inhomogeneities is ` =

√
A/(4πM2

s ), where A is the
exchange interaction constant, Ms is the magnetic mo-
ment per unit volume in the saturation state. For most
magnets, ` = 5 − 10 nm [3]. For particles of symmetric
shapes such as nanodisks, nanorings, and regular prisms,
the vortex distribution of magnetization turns out often
to be most energy-gained [4–8]:

cos θ = pf(r), ϕ = qχ+ ϕ0. (1)

Here and below, we use a cylindrical coordinate sys-
tem (r, χ, z), whose axis z is directed normally to the
plane of a magnet. To describe the distribution of
a magnetization M(r), we use the angular variables
θ(r) and ϕ(r) which are defined in the following way:
M = Ms(sin θ cosϕ, sin θ sinϕ, cos θ). The function f
is localized near the vortex center (r = 0) and is such
that f(0) = 1, f(∞) = 0. The region of localization of
the function f has a characteristic size ` and is called
the vortex core. The quantity p = ±1 is called the vor-
tex polarity. The vorticity q is an integer and is equal
to the number of full turns of the magnetization vector
at the bypass around the vortex center. If q is nega-
tive, distribution (1) is conditionally called an antivor-
tex.

The polarity of a vortex p is a promising candidate
to store a bit of information [9, 10]. In the continuous
model of a magnetic medium, the value of p is a topolog-
ical invariant and cannot be changed by external factors.
However, in a real magnetic crystal which is a discrete
system, the polarity p remaining stable to the random
external factors can be switched in a controlled manner
[9, 11]. All available methods to switch the polarity of a
vortex [12–17] are realized through the intermediate pro-
cess of creation of a vortex-antivortex pair with polarities
opposite to the polarity of the initial vortex. In this case,
two types of the dynamics which depend on the position
of the initial vortex and the new created pair are possi-
ble: (i) a new antivortex is captured by the initial vortex,
approaches it due to the damping, and annihilates. As a
result, only a new vortex with opposite polarity remains.
This mechanism presents the essence of the switching of
the vortex polarity. (ii) The new vortex-antivortex pair
performs a fast quasicollinear movement, goes far away
from the initial vortex, and self-annihilates. In this case,
no switching occurs. The question about the determina-
tion of conditions, under which a certain mechanism is
realized, is open and actual. The purpose of the present
work is to find an evaluation criterion for the initial con-
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ditions which would allow one to separate two indicated
mechanisms.

2. Model. Equations of Motion

The statics and the dynamics of inhomogeneous distribu-
tions of magnetization are traditionally described by the
Landau–Lifshitz phenomenological equation [18] which
has the following form in terms of the angular variables
[19]:

sin θθ̇ = − δE
δϕ
, sin θϕ̇ =

δE
δθ
. (2)

Here and below, we measure the time in the units τ =
1/ω0, where ω0 = 4πγMs, and γ = g|e|/(2mc) is the
gyromagnetic ratio; for most magnets, τ = 10 − 50 ps;
E = E/(4πM2

s ), where E is the total magnetic energy
of a magnet. One of the possible static solutions of Eqs.
(2) for an easy-plane magnetic is the vortex distribution
(1) [19]. In this case, the role of effective easy-plane
anisotropy for quasi-two-dimensional magnetics can be
played by the magnetostatic interaction [20].

In what follows, the dynamics of a magnetic vortex
(antivortex) will be described within the approximate
method of collective variables [21, 22], where the dynam-
ics of the magnetization field [θ(r, t), ϕ(r, t)], which is a
system with the infinite number of degrees of freedom, is
approximately described by a finite number of collective
variables. In the simplest case, we can choose the coor-
dinates of the vortex center as such collective variables.
In this case, it is assumed that the vortex moves as a
whole, without any change in its shape. Within such an
approach, the equation of motion (2) takes the form of
the Thiele equation [23, 24][
G× Ṙ

]
+ F = 0, (3)

where the radius-vector R(t) gives a position of the vor-
tex center. The gyrovector G =

∫
gd3r, where the gyro-

density g(r) = [∇(cos θ)×∇ϕ]. For the vortex distribu-
tion (1), G = −2πhpqẑ [24], where h is the thickness of a
magnetic, and ẑ is the unit vector along the axis z. The
effective force F = −dE/dR can be induced by the action
of an external field, the effect of a surface, the inhomoge-
neous distribution of material parameters in a specimen,
or by the interaction with other vortices. If the distances
between vortices in a magnetic are sufficiently large, so
that their out-of-plane components (cos θ) do not over-
lap, then the force acting on the i-th vortex from the

side of all other vortices is determined as [24]

Fi = 2π`2hqi
∑
j 6=i

qj
Ri −Rj

|Ri −Rj |2
. (4)

The problem posed in the previous section is solved
in the frame of the following model: (i) Let us consider
a quasi-two-dimensional ferromagnetic plate with infi-
nite size which contains an immobile vortex (IV); for
example, a vortex pinned by an impurity. The same
plate contains a vortex (V) and antivortex (AV) with
identical polarity p = +1 and with |q| = 1, whose mo-
tion is not artificially limited. (ii) It is assumed that
the out-of-plane components of V and AV do not over-
lap each other at their motion. That is, the distribu-
tion of gyrodensity in the system is given by g(r) =
−2πh[δ(r −Rv) − δ(r −Ra)], where the radius-vectors
Rv and Ra determine the positions of V and AV, respec-
tively. (iii) Interaction (4) is unique in the system. (iv)
Damping is absent.

The above-described model can be applied only in the
case where the distance d between V and AV is large
(d � `), which justifies the assumption that their out-
of-plane components do not overlap each other. The
description of the interaction of a V–AV pair at small
distances was recently given in [25, 26] on the basis of
numerical calculations.

Within our model, the equations of motion (3) for V
and AV take the form

Rv

Rv
+ [Ṙv × ẑ] +

Ra −Rv

|Ra −Rv|2
= 0,

−Ra

Ra
− [Ṙa × ẑ] +

Rv −Ra

|Rv −Ra|2
= 0. (5)

Here and below, the distances are measured in units `,
and the coordinate system origin is located at IV.

We denote Ri = Ri(cos Φi, sin Φi, 0), where i = a, v.
By introducing the variable Ψ = Φa − Φv, we reduce
the system of four equations (5) to a system of three
equations

Ψ̇ =
R2

a −R2
v +RaRv cos Ψ
R2

aR
2
v

− 2
sin2 Ψ

|Rv −Ra|2
,

Ṙv =
Ra sin Ψ
|Rv −Ra|2

, Ṙa =
Rv sin Ψ
|Rv −Ra|2

. (6)
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2.1. Stationary solutions

It is easy to see that system (6) has two stationary solu-
tions: (i) (Ψ = 0, Ra/Rv = γ) and (ii) (Ψ = π, Ra/Rv =
γ̄), where we introduce the notation γ = (

√
5 − 1)/2,

γ̄ = (
√

5 + 1)/2.
Substituting the first of these solutions to the initial

system (5), we obtain Φ̇v = Φ̇a = γ/R2
a = γ̄/R2

v = Ω1.
Analogously, for the second solution, Ω2 = −γ̄R2

a =
−γR2

v. The first solution means that if IV, AV, and
V are positioned on a single straight line at the initial
time moment so that AV divides the segment IV-V by
the golden section, being closer to V, then such a system
uniformly rotates around IV with constant frequency Ω1.
This dynamics is illustrated in Fig. 1,a. The interpreta-
tion of the second solution is analogous: if V, IV, and
AV are positioned on a single straight line at the initial
time moment so that IV divides the segment V–AV by
the golden section, being closer to V, then the whole sys-
tem uniformly rotates around IV with frequency Ω2 (see
Fig. 1,b).

The analysis for the stability by Lyapunov indicates
that both mentioned stationary solutions are saddles, i.e.
the solutions are unstable.

3. Integrals of Motion. Different Types of the
Dynamics

By dividing two last equations of system (6) by each
other, we obtain Ṙv/Ṙa = Ra/Rv. This yields
d
dt

(
R2

v −R2
a

)
= 0, i.e. we have shown the conservation

of the quantity

L = R2
v −R2

a (7)

which has sense of the angular momentum [25–27]. Once
more integral of motion is the energy. In view of inter-
actions (4), it has form E = ln Rv

Ra|Ra−Rv| [24]. We can
easily verify the formula Ė = 0, by carrying out the di-
rect differentiation with the use of (6). But it is more
convenient to use another conserved quantity:

E = e2E =
R2

v

R2
a(R2

v +R2
a − 2RvRa cos Ψ)

. (8)

For simplicity, we also call the quantity E the energy.
At once, it is worth to note that E > 0 in all cases.

The form of the integrals of motion (7) and (8) allows
us to make a few conclusions: (i) due to the conservation
of quantity (7), the motion of both particles V and AV
should be finite or infinite. That is, the situation where
one particle realizes a finite motion, whereas the motion

R v

R a
W1

HB

AB

B

R v

Ra

W2

B

AB

HB

a) b)

Fig. 1. Stationary solutions of system (6): a) Ψ = 0, b) Ψ = π

of another one is infinite, is impossible. (ii) At the infi-
nite motion, Rv/Ra → 1. In this case, (iii) the distance
d between V and AV tends to a constant d→ 1/

√
E.

Possessing two integrals of motion (7) and (8), we can
pass from the system of three equations (6) to a single
equation. For the quantity Rv, such an equation has
form

Ṙ2
v =

[
4ER6

v − (E2L2 + 6EL+ 1)R4
v+

+2EL2(EL+ 1)R2
v − E2L4

]
/(4R6

v), (9)

and the quantity Ra obeys the equation

Ṙ2
a =

[
4ER6

a − (E2L2 − 6EL+ 1)R4
a+

+2L(EL− 1)R2
a − L2

]
/
[
4R2

a(L+R2
a)

2
]
. (10)

The relevant equation for Ψ has form too awkward for
the analysis, and we will not consider it. It is sufficient
to solve one of Eqs. (9) and (10). In this case, the solu-
tion of another equation follows automatically from (7).
However, to ensure the symmetry of calculations and the
clearness, we will analyze both indicated equations (9)
and (10) simultaneously.

First, we consider the simplest partial case where
L = 0. This means that Rv = Ra = R, and, by virtue of
the conservation of the quantity L, this equality remains
true at any time moment of the dynamics. In this case,
energy (8) takes form E = 1/[2R2(1 − cos Ψ)] = 1/d2,
where d is the distance between V and AV. The conserva-
tion of the quantity E means that the distance between
V and AV does not vary during the dynamical process
and is equal to d = 1/

√
E. In the case under considera-

tion, system (6) can be easily solved:

R = R0
cos Ψ0/2
cos Ψ/2

, ctg
Ψ
2

= ctg
Ψ0

2
+ 2Et, (11)
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Fig. 2. Dependences ṙv(rv) (thick lines) and ṙa(ra) (thin lines) for various values of the parameter λ. The upper row (a, b, c) shows
dependences (14) corresponding to positive λ, and the lower row (d, e, f) corresponds to negative λ. The inserts give the examples of
possible trajectories of the V–AV pair for a given value of λ. The black and white points indicate the initial positions of AV and V,
respectively. The trajectories are constructed as a direct numerical solution of Eqs. (5); the distances are measured in units `

where we denoted R0 = R(t = 0), Ψ0 = Ψ(t = 0). In
addition, in the case where Rv = Ra, the initial system
(5) yields easily the relation Φ̇a = 3Φ̇v. By integrating
this relation, we get

Φa − Φa0 = 3(Φv − Φv0). (12)

Substituting (12) in the first of Eqs. (11) and taking
Ψ = Φa − Φv into account, we obtain the trajectory of
motion for V and AV:

Rv = R0
cos Ψ0/2

cos
(
Φv − Φv0 + Ψ0

2

) ,
Ra = R0

cos Ψ0/2
cos
(

Φa−Φa0
3 + Ψ0

2

) . (13)

As seen, the trajectory of motion of the vortex Rv(Φv)
is a straight line. In this case, the motion of the V–AV
pair is infinite.

In the general case where L 6= 0, by changing the
variables rv = Rv/

√
|L|, ra = Ra/

√
|L|, t′ = t/|L|, we

succeeded to reduce the number of parameters in Eqs.
(9) and (10) to 1:

ṙ2v = σ
4λr6v − σ(λ2 + 6λ+ 1)r4v + 2λ(λ+ 1)r2v − σλ2

4r6v

ṙ2a = σ
4λr6a − σ(λ2 − 6λ+ 1)r4a + 2(λ− 1)r2a − σ

4r2a(1 + σr2a)2
. (14)

Here, σ = sign(L), λ = EL, and the dot stands for
the differentiation with respect to the new time t′. The
dependences ṙv(rv) and ṙa(ra) set in (14) for various
values of the parameter λ are shown in Fig. 2. The
upper and lower rows correspond to L > 0 and L <
0, respectively. In the further analysis, the cases with
different signs of L will be considered separately.
L > 0. This means that Rv > Ra, and this inequal-

ity is valid at any time moment of the dynamics of the
V–AV pair. A simple analysis shows that the critical
value of the parameter λ, at which the form of relations
(14) changes qualitatively, is equal to λc1 = 3 + 5γ̄ (see
Fig. 2,a–c). At 0 < λ < λc1, the motion of the V–
AV pair can be only infinite (Fig. 2,a). At λ > λc1,
there appears a cycle on the dependences ṙv(rv) and
ṙa(ra), which means the possibility of a finite motion
(see Fig. 2,c). In this case, the vortex and the antivor-
tex move in the limits of the rings r−v (λ) < rv(t) < r+v (λ)
and r−a (λ) < ra(t) < r+a (λ), respectively, and the sizes
of these rings decrease with increase in λ (see Fig. 3 for
λ > 0).

The maximally possible values of the quantities ra and
rv at a finite motion are, respectively, rS1 =

√
γ and

rS2 =
√
γ̄ (see Fig. 3 and Fig. 2,b). The conditions

214 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 2



VORTEX-ANTIVORTEX PAIR DYNAMICS

l
lc1lc2

v a

0

0

1

s2

+ +

B2

s1

B1

AB B

ABB

Fig. 3. Sizes of the rings where V (red color) and AV (blue color)
move at their finite motion. For the critical values of the parameter
λ, these sizes are: rS1 =

√
γ, rS2 =

√
γ̄, rB1 =

√
2γ − 1/2, rB2 =√

2γ̄ + 1/2

ra < rS1 and rv < rS2 turn out equivalent (see the first
consequence of the conservation of L on p. 213) and take
the form Ra < γRv in terms of the variables Ra, Rv.
Thus, the condition of the finiteness of the motion of the
V–AV pair at L > 0 is the simultaneous fulfilment of two
conditions{
λ > λc1,

Ra < γRv.
(15)

In this case, it is worth noting that if conditions (15) are
satisfied at the initial time moment, then they will be
satisfied at any time moment of the dynamics.

Since the quantity λ = EL can be written through
ρ = Ra/Rv:

λ =
1− ρ2

ρ2 (1 + ρ2 − 2ρ cos Ψ)
, (16)

it is convenient to show the region λ > λc1 on the plane
(x, y) in length units Rv (this is realized in Fig. 4).

In Fig. 4, the condition λ > λc1 determines two finite
regions bounded by a bold line λ = λc1, but the condi-
tion Ra < γRv is satisfied only for the region which is
positioned to the left from the “saddle point” (shaded in
blue).
L < 0. That is, Rv < Ra, and this equality remains

valid at any time moment of the dynamics. In this case,
the possibility of a finite motion appears at λc2 < λ <
0, where λc2 = 3 − 5γ (see Fig. 2,e, f ). At λ < λc2,
the motion of the V–AV pair can be only infinite (see
Fig. 2,d). Since the sizes of the rings, where V and
AV move during a finite motion, decrease with increase
in λ (see Fig. 3 for λ < 0), the conditions ra < rS2

and rv < rS1 can serve the additional condition for the

HB

B

l=20

l=15

l=12
l=11

l=8

l=4

l=12

l=15

l=20

l=9.9

l=lc1

Fig. 4. Ratio ρ(Ψ) given in (16) for various positive values of the
parameter λ. If, at a given initial position of V, the initial position
of AV falls in the shaded region, then the motion of the V–AV pair
will be finite

separation of a finite motion. Two last assertions are
equivalent and can be written as Ra > γ̄Rv. Thus, the
condition for finiteness of the motion of the V–AV pair
at L < 0 is the simultaneous fulfilment of two conditions{
λc2 < λ < 0,
Ra > γ̄Rv.

(17)

The curve λ = λc2 is shown in Fig. 5 by a bold line.
In this case, the region λc2 < λ < 0 is composed from

two parts: the internal region bounded by the internal
bold line and the circle ρ = 1, which corresponds to
λ = 0, and the shaded external region. But the inequal-
ity Ra > γ̄Rv is satisfied only for the external part. The
bold dotted line in this figure shows the curve λ = λc1

which is presented in Fig. 4 in more details. Thus, the
relative position of V and IV determines the region of
finiteness, where AV should be placed (at the given po-
sition of V relative to IV) in order that the motion of the
V–AV pair be finite. The region of finiteness in Fig. 5 is
shaded.

4. Conclusion

The condition of finiteness of the motion of the V–AV
pair is the fulfilment of one of conditions (15) and (17).
Each of these conditions, being true at the initial time
moment, remains valid at any time moment of the dy-
namics. At a finite motion, V and AV move in the lim-
its of concentric nonoverlapping rings (see Fig. 2,c, f ).
The sizes of these rings are determined by the product
EL (see Fig. 3). If condition (15) is satisfied, the ring,
where AV moves, is positioned inside of the ring, where
V moves. If condition (17) is satisfied, the situation is
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Fig. 5. Ratio ρ(Ψ) given in (16) for various negative values of the
parameter λ and for λ = λc1. If, at a given initial position of
V, the initial position of AV falls in the shaded region, then the
motion of the V–AV pair will be finite. The length unit is Rv

opposite. The graphic interpretation of conditions (15)
and (17) is shown in Fig. 5: if, at the given initial posi-
tion of V relative to IV, AV falls in the shaded region,
then the motion of the V-AV pair will be finite.

The infinite motion of the V–AV pair at large distances
from IV has the following characteristics: (i) velocities
of V and AV tend to constant values Ṙv, Ṙa →

√
E, and

Φ̇v, Φ̇a → 0; (ii) the distance between V and AV also
tends to a constant d→ 1/

√
E.

The calculation in the present work was performed in
the case of an unbounded magnet. But since the V–
AV pair is a localized perturbation [25, 26], the effect of
boundary conditions on the dynamics of the V–AV pair
will be significant in the case of a particle with finite
sizes only if the pair approaches the lateral surface of a
magnetic at a distance comparable with d. Therefore,
for particles with size larger than the distance between
V and AV, the criterion of separation of the finite and
infinite motions (15) can be considered as the estima-
tion criterion of separation of the modes of annihilation
of AV and IV and self-annihilation of the V–AV pair.
For small-size particles, the mentioned criterion is in-
applicable, and it is expedient to consider, in this case,
the effect of the edge surface within the model of fixed
boundary conditions [7, 28, 29]
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ДИНАМIКА ПАРИ ВИХОР-АНТИВИХОР
У ПРИСУТНОСТI НЕРУХОМОГО ВИХОРУ
У ДВОВИМIРНОМУ ФЕРОМАГНЕТИКУ

В.П. Кравчук

Р е з ю м е

У двовимiрному феромагнетику теоретично дослiджено дина-
мiку вихор-антивихрової пари в присутностi нерухомого вихо-
ру. Розрахунки проведено в рамках моделi колективних змiн-
них. Отримано критерiї для початкових умов, що дозволяють
роздiлити фiнiтний та iнфiнiтний рух пари. Дослiджено за-
гальнi характеристики кожного з типiв рухiв.
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