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We calculate the density distribution profile of a spatially con-
fined liquid system with cylindrical geometry under the action of
a wall potential nonuniform along the cylinder axis. The problem
is solved in the general case where the system is subjected to the
action of an external field with radial symmetry. We also analyze a
particular case of the wall potential of a special kind and perform
numerical calculations.

1. Introduction

A significant breakthrough in the investigation of liquid
systems, including the spatially confined ones, is related
to the rapid development of computer technologies in
the recent decades (see, e.g., [1–4]). The reason is sim-
ple and quite clear: a wealth of theoretical methods used
for the investigation of liquid systems (though enriched
with a number of rather efficient approaches and tech-
niques) still can hardly be called sufficient. That is why
a large number of practically important problems are
solved with the use of computer calculations.

Among the most efficient computer methods success-
fully used for solving the problems of modeling and
prediction of properties of liquid spatially confined sys-
tems, we can separate two fundamental directions or ap-
proaches. They are the direct computer modeling and
the free-energy density-functional theory [5–11]. In the
framework of the first approach, one carries out the im-
itation modeling of the behavior of a many-particle sys-
tem. A characteristic feature of the given approach lies
in the fact that a liquid is considered as an assembly of
a large number of individual particles, whereas the sta-
tistical characteristics are calculated by averaging with

the use of the Monte-Carlo (MC) or molecular dynamics
methods. In this field, the considerable success has been
achieved; moreover, the majority of calculations allow
one to consider the microstructure of a liquid substance
in small pores, i.e. to perform studies on the level of
atomic distribution functions ([12]). It is worth noting
that, in spite of a certain specificity of the results ob-
tained by the MC methods, they are extremely impor-
tant, being directly applied in industry and allowing one
to verify theoretically predicted effects. Another impor-
tant field of application of the studies of liquids in small
pores by the MC methods is the prediction and the re-
search of various biophysical objects and systems. In this
case, they allow one not only to obtain new interesting
results, but sometimes to fill up certain gaps related to
the impossibility of direct experimental measurements.

Another important direction of researches effectively
developed during several recent decades is called the free-
energy density-functional theory (DFT) and has sev-
eral modifications depending on the object under study
and the level of applied computer techniques. This
method acquired a good reputation in the study of var-
ious systems and phenomena starting from quantum
many-electron systems and finishing by the processes
of sorption and the phase behavior of essentially het-
erogeneous liquids (see, e.g., [13–33]). As concerns the
application of the DFT to the study of liquids (includ-
ing those spatially confined in the presence of an exter-
nal field), the basic assumption consists in the fact that
a liquid represents a continuous medium described by
the density distribution function. Respectively, the free
energy of the system can be presented as a functional
of the free energy density, which depends, in turn, on
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the distribution density. That is why one of the prob-
lems successfully solved in the framework of the DFT
approaches is the calculation of distribution profiles of
liquids in nanopores. In spite of a considerable progress,
a number of basic questions and problems still remain
unsolved or little investigated. In particular, the numeri-
cal modeling (including the DFT-based one) gives rather
good results for spatially confined microsystems, where
dimensions of a system are only several-fold higher than
those of substance’s particles. An increase of this ratio
(i.e. the transition to mesosystems) significantly com-
plicates the numerical analysis at least due to the fact
that the number of particles in a sample, over which
one performs the statistical averaging, must essentially
grow. Moreover, the high interest in these cases is at-
tracted, first of all, by the smoothed density distribution
function, where effects related to the finiteness of parti-
cles’ sizes are smoothed over. Such functions can be re-
stored on the basis of experimental data. For example,
an important information on statistical and thermody-
namic characteristics of liquid spatially confined systems
can be obtained from experiments on neutron refraction
[34–42]. In particular, it is known that the liquid density
distribution in a cylindrical pore is essentially influenced
by the wall potential [43–45], whereas the pattern of the
distribution itself substantially depends on the temper-
ature in the system. Of special interest is the behavior
of the system in the neighborhood of a critical state. In
spite of the complexity of this problem, it is rather theo-
retical in the sense that the use of the MC or molecular
dynamics methods for its solving would allow one to ob-
tain particular results, whereas it is desirable to have a
general idea about the behavior of the system.

It is worth noting that, in a number of theoretical
works, a similar problem of calculation of the density
profile in a cylindrical system under the action of an
external field (in particular, of the wall potential) was
solved by solely analytical methods (see, e.g., [46–51]).
In this case, it was considered that the wall potential
is uniform along the cylinder axis. Naturally, it is not
always true in practice. That is why the density dis-
tribution profile of a liquid is calculated in the given
paper under the assumption of the nonuniformity of a
wall potential. We use the approach proposed earlier in
[46–50] and later developed in [51]. First, the problem
is solved for a general external field characterized with
radial symmetry and dependent on the coordinate along
the cylinder axis. After that, we separately analyze the
case where the wall potential represents a superposition
of the basic potential uniform along the cylinder axis
and a nonuniform addition. It is worth noting that the

methodology used in the work, though being rather sim-
ple, allowed one to obtain reliable results which were
verified for a number of systems, in particular, on the
basis of experiments on neutron scattering. In the case
of systems uniform along the pore axis, the results ob-
tained earlier with the help of this method are in good
agreement with data of modeling by the MC methods
(making allowance for the fact that all particles are con-
sidered to be point, that is why the calculated distri-
bution function represents an analog of the smoothed
density distribution function of finite-size particles). All
these reasons give grounds to consider that the original
results obtained for the critical behavior of a liquid in a
pore subjected to a nonuniform wall potential are reli-
able as well.

2. System under Study

Let us consider a cylindrical pore of radius R filled with
a one-component liquid. The liquid is subjected to the
action of an external field h(r, z), where r denotes the
distance from the cylinder axis (i.e. 0 ≤ r ≤ R), and z
is the coordinate along the cylinder axis. Without loss
of generality, we can consider that the field is periodic
along the cylinder axis with period L, which means that
h(r, z + L) = h(r, z), 0 ≤ z ≤ L.

Due to the action of the external field h(r, z), the
density distribution in the pore becomes nonuniform.
Let us present the dependence of the liquid density
ρ(r, z) in the pore on the spatial coordinates in the form
ρ(r, z) = ρ0 + δρ(r, z), where ρ0 denotes the liquid den-
sity in the absence of the field, and δρ(r, z) is a devi-
ation of the density from the uniform distribution ρ0.
The density ρ0 corresponds to a minimum of the free
energy functional in the absence of the field and, in par-
ticular, the wall potential. Here, one should also take
into account that, in the framework of the proposed ap-
proach, the liquid particles are considered to be point,
i.e. the liquid is considered as a continuum. Under such
assumptions, the equilibrium distribution function of the
liquid in the pore must evidently be constant, and the
distribution is uniform.

In this case, the addition to the free energy (per a cell
of the cylinder of length L) caused by the action of the
field equals

δΦ =
1
2

∫ (
a(δρ)2 + b(∇δρ)2 + 2h(r, z)δρ

)
dV, (1)

where a and b are the phenomenological parameters of
the model, while the integration here and below is per-
formed over the volume of a cylinder cell determined in
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accordance with the period of the external-field poten-
tial (see Fig. 1). The problem is reduced to the search
for a minimum of the functional under the additional
condition∫
δρdV = 0 (2)

which means the constancy of the total mass of a liquid
in the system (see, e.g., ([46–50]). As a result, we obtain
the equation

aδρ− bΔδρ = −(h(r, z) + λ), (3)

where the unknown multiplier λ is sought from condition
(2). In addition, it is necessary to satisfy the boundary
conditions

∂δρ

∂r

∣∣∣
r=R

= 0 (4)

and the periodicity conditions

δρ(r, z + L) = δρ(r, z). (5)

It is clear that the solution depends essentially on the
form of the field h(r, z). As was noted above, we will
find firstly the general solution and after that analyze a
particular case.

3. General Solution

In order to find the solution, the density deviation will
be presented as

δρ(r, z) = ξ(r, z)− λ/a. (6)

After that, the parameter ξ(r, z) can be obtained from
the equation

aξ − bΔξ = −h(r, z) (7)

with the boundary condition

∂ξ

∂r

∣∣∣
r=R

= 0 (8)

and the periodicity condition

ξ(r, z + L) = ξ(r, z). (9)

The parameter λ is determined by the relation

λ =
2a
R2L

L∫
0

dz

R∫
0

ξ(r, z)rdr. (10)

Fig. 1. Geometry of the investigated system: R is the cylinder
radius, L is the field period along the cylinder axis

Thus, in order to obtain the general solution, it is
necessary to find the function ξ(r, z).

Taking the periodicity condition (9) into account, the
required function ξ(r, z) can be presented as the series

ξ(r, z) =
∞∑
m=0

ξ(1)m (r) cos
(2πmz

L

)
+ ξ(2)m (r) sin

(2πmz
L

)
,

(11)

where the expansion coefficients ξ
(1,2)
m (r) satisfy the

equation(
a+

4π2m2

L2
b
)
ξ(k)m − bΔrξ

(k)
m = −h(k)

m (r). (12)

Here, k = 1, 2, Δr = 1
r
∂
∂r (r

∂
∂r ), while the expansion

coefficients

h(k)
m (r) =

2− δ0m
L

L∫
0

h(r, z) cos
(2πmz

L
− π(k − 1)

2

)
dz,

(13)

where δij is the Kronecker symbol. In addition, the fol-
lowing boundary conditions must be satisfied:

∂ξ
(k)
m

∂r

∣∣∣
r=R

= 0. (14)

The parameter λ is determined on the basis of the
expansion coefficient ξ(1)0 (r) and, therefore, depends on
the field h(r, z) as

λ = − 2
R2L

L∫
0

dz

R∫
0

h(r, z)rdr. (15)
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The solution for the expansion coefficients ξ(1,2)m (r) can
be sought in the form of the series (k = 1, 2)

ξ(k)m (r) =
∞∑
n=0

ξ(k)m,nJ0

(µnr
R

)
, (16)

where J0(u) are the zero-index Bessel functions, the
eigenvalues µn are the zeros of the first-index Bessel
function, i.e. J1(µn) = 0 (here, we consider µ0 = 0).
It is easy to show that the expansion coefficients ξ(k)m,n

are determined by the relation

ξ(k)m,n = − h
(k)
m,n

b
(
a/b+ (2πm/L)2 + (µn/R)2

) , (17)

where the expansion parameters of the field h
(k)
m,n (k =

1, 2) have the following form:

h(k)
m,n =

2
R2J2

0 (µn)

R∫
0

h(k)
m (r)J0

(µnr
R

)
rdr. (18)

Relations (6), (11), (13), and (15)–(18) determine
the solution of the problem. In particular, the density
δρ(r, z) of the liquid distribution in the pore (in view of
the facts that h(1)

0,0 = −λ and ξ(1)0,0 = −h(1)
0,0/a) is given by

the expression

δρ(r, z) =

=
1∑
k=0

∞∑
m=1

∞∑
n=1

ξ(k+1)
m,n J0

(µnr
R

)
cos
(2πmz

L
− πk

2

)
, (19)

where the parameters ξ(k)m,n are calculated according to
the above-presented relation (17).

Let us analyze the obtained result for a particular case
of the wall potential of a special kind.

4. Wall Potential with a Characteristic
Periodicity Scale

In the general case, the wall potential can be presented
as a superposition of space harmonics. Let us consider
the situation where one harmonic is dominant among
such a set (except for the harmonic corresponding to the
field uniform along the cylinder axis). The characteristic
nonuniformity scale corresponding to this harmonic will
be denoted by L. For the sake of simplicity, we assume
that the potential h(r, z) is described by the dependence

h(r, z) = U(r)
(
1 + ε cos

(2πz
L

))
, (20)

where ε denotes the nonuniformity degree of the poten-
tial, while the function U(r) = U0 at R − d ≤ r ≤ R
and U(r) = 0 at r < R − d, which corresponds to the
potential in the form of a “step” of thickness d.

For the wall potential of such a form, some of the
above-presented relations become essentially simpler. In
particular, the parameter λ takes the form

λ = −U0d

R

(
2− d

R

)
, (21)

the solution for the parameter ξ(r, z) is given by the
relation

ξ(r, z) = ξ1(r) + ξ2(r) cos
(2πz
L

)
. (22)

Moreover,

ξ1(r) = −1
b

∞∑
n=0

hn
a/b+ (µn/R)2

J0

(µnr
R

)
, (23)

ξ2(r) = −ε
b

∞∑
n=0

hn
a/b+ (2π/L)2 + (µn/R)2

J0

(µnr
R

)
,

(24)

and, for n > 0,

hn =
2U0

R2J2
0 (µn)

R∫
R−d

J0

(µnr
R

)
rdr =

= −
2U0(1− d/R)J1

((
1− d

R

)
µn

)
µnJ2

0 (µn)
. (25)

Figure 2 shows the parameter Δn = bδρ/U0 as a function
of the space coordinates for the values ε = 0.1, d/R =
0.05, L/R = 10, and a/b = 1.

The parameter a/b ≡ κ2 has the dimension of inverse
squared distance (in this case, the correlation radius
RC = |κ|−1 [52]). According to the generally accepted
assumption, this parameter depends on the tempera-
ture. Moreover, after the current ideas of the scale in-
variance theory (scaling), this dependence is power (see,
e.g., [52–54]). Particularly, if we denote the dimension-
less temperature by τ = (T − TC)/TC (T is the tem-
perature, and TC is its critical value), then we can put
down κ2 = κ2

0τ
2ν , where κ0 is the inverse amplitude of

the correlation radius and ν is the critical index (for a
wide class of liquids, ν ≈ 0.63) [52]. Thus, with vary-
ing temperature, the correlation radius RC of the system
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Fig. 2. Parameter Δn = bδρ/U0 as a function of space coordinates

Fig. 3. Parameter Δn = bδρ/U0 as a function of space coordinates
at the temperatures τ = 1 (solid surface) and τ = 0.1 (transparent
surface)

changes within wide limits. On the other hand, the cor-
relation radius represents a characteristic scale, to which
other characteristic space parameters of the system are
compared — in the given case, they are the pore radius
and the size of the spatial nonuniformity mode of the
wall potential.

That is why it is not surprising that a change of the
temperature essentially affects the pattern of the liquid
distribution in the pore via a change of the correlation
radius. For comparison, Fig. 3 presents the distribution
surfaces of Δn for the dimensionless temperatures τ = 1
and τ = 0.1.

As the system approaches the critical state (the pa-
rameter κ2 tends to zero), the effect of the wall poten-
tial on the nonuniformity of the density distribution in-
creases. This situation can be examined in more details
with the help of the contour graphs in Figs. 4–6. They
present the illustrations for the profiles of the density

0.5

1

1.5

2

2.5

3

z/L

–1 –0.5 0.5 1

r/R

Fig. 4. Contour graph for the dependence of the liquid density
profile (parameter Δn = bδρ/U0) in a pore on space coordinates
at the temperature τ = 1. Contour lines are presented for Δn =

0,±0.001,±0.0025,±0.005,±0.01,±0.015,±0.02

distributions at τ = 1 (Fig. 4), τ = 0.5 (see Fig. 5), and
τ = 0.1 (see Fig. 6).

For convenience, the graphs present three adjoining
cells of the system under study. In such a form, it is
easier to imagine the pattern of a liquid distribution in
the whole system with regard for its periodicity.

The effect of the temperature variation is quite ex-
pected: in a state close to the critical one, a liquid be-
comes more “structured,” and the distribution extrema
are sharper as compared with the case where the sys-
tem is beyond the limits of the critical state (τ ∼ 1). In
the given case, the effect of the temperature variation is
estimated quantitatively.

5. Conclusions

The critical behavior of liquid systems in small vol-
umes represents a perspective rather complicated prob-
lem (see, e.g., [55–59]). That is why, in spite of a con-
siderable many years’ interest of researchers, there still
remain a number of unsolved problems. Among them,
there is the problem of the filling of low-dimension sys-
tems with fluids. For this purpose, the liquid-filler is usu-
ally converted to the critical or overcritical state. On the
other hand, it is known that a liquid in the near-critical
state is characterized by anomalous susceptibility. Par-
ticularly, as was shown above, there can arise a problem
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Fig. 5. The same as in Fig. 4 at τ = 0.5
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Fig. 6. The same as in Fig. 4 at τ = 0.1

related to the nonuniformity of the liquid distribution
(along a pore) caused by an even insignificant nonuni-
formity of the wall potential. That is why the obtained
results can be also useful for the prediction of the prop-
erties of porous and low-dimension liquid-filled systems
and, in particular, for the determination of the bound-

ary values of nonuniformities of the wall potentials in
the corresponding pores.
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РОЗПОДIЛ РIДИНИ В ОБМЕЖЕНIЙ СИСТЕМI ПIД ДIЄЮ
НЕОДНОРIДНОГО ПОТЕНЦIАЛУ

О.М. Васильєв, П.I. Гордiйчук

Р е з ю м е

В статтi розраховано профiль розподiлу густини просторово
обмеженої рiдкої системи з геометрiєю цилiндра за умови дiї
пристiнкового потенцiалу, неоднорiдного вздовж напрямку ци-
лiндра. Задачу розв’язано в загальному випадку, коли система
знаходиться пiд дiєю зовнiшнього поля з радiальною симетрi-
єю, проаналiзовано частинний випадок пристiнкового потенцi-
алу спецiального типу та проведено числовi розрахунки.
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