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In the framework of stochastic variational calculations and making
no preliminary symmetrization of the wave functions with respect
to identical particle coordinate permutations, the possibility of
determining the symmetry properties of three- and four-particle
energy states with zero angular momentum has been studied. The
stochastic variational calculations revealed that the energy spec-
tra obtained for the systems under consideration include the levels
with all possible symmetries, provided that it is allowed by the
superposition of applied bases. Local and integral schemes for
the determination of permutation symmetry using the results of
bound-state calculations have been proposed. It is found that the
permutation symmetries (the Young tableaux) of energy states be-
low the lowest breakup threshold can be determined with a high
precision for a few-particle system. At the same time, the states
above this threshold, even if the breakup is prohibited, can be
studied only with the use of properly symmetrized bases.

1. Introduction

Advances attained in variational researches of few-
particle quantum-mechanical systems of various nature
(see works [1–8]) open opportunities for the comparison
of different schemes of basis construction and determin-
ing the symmetry properties of energy states with the
help of precision calculations. Moreover, the issues of
whether modern variational approaches possess a capa-
bility to reveal various hidden symmetries or a symme-
try degeneration of energy spectra by calculations and
whether such an approach can be competitive in com-
parison with the standard scheme, when the symmetry
of many-particle problems is determined analytically be-
fore calculations, are challenging. Such approaches can
be promising both for kinematic symmetries of the pre-
scribed orbital momentum type for spherically symmet-
ric, or partially symmetric, interaction potentials and for
prescribed permutation symmetries of systems involving
identical particles or particles with similar properties, as
well as for the revealing the quasisymmetries originating
from the dynamic features of problems.

From the pragmatic viewpoint, it is of importance to
answer the questions “Under which conditions can the
actual symmetry be determined in the framework of
stochastic variational methods (SVMs) that do no apply
bases with prescribed symmetries?” and, in addition, “Is
this procedure practically expedient?”. One more ques-
tion is “Is it always expedient to find the symmetry first
and to carry out calculations afterwards, using a basis
with determined symmetry?”

In this work, the problem dealing with the determi-
nation of permutation properties of many-particle wave
functions with the use of precision schemes of stochastic
variational methods has been solved, with some three-
and four-particle Coulomb systems serving as examples.

2. Formulation of the Problem with Broken
Symmetry in the Framework of SVMs

The application of variational methods for calculating
the bound states of quantum-mechanical systems of var-
ious nature that contain significant numbers of particles
meets, besides all other difficulties, the one associated
with the construction of a wave function (WF) charac-
terized by a given symmetry of identical particle coor-
dinates, when the number of terms of the WF grows as
n! in the case of n identical particles. Due to the round-
ing procedure errors, this can result in a decrease of the
calculation accuracy for Hamiltonian matrix elements,
obtaining ill-conditioned energy matrices that enter the
linear algebraic equations for characteristic values, which
makes subsequent calculations impossible. At the same
time, the application of certain SVM schemes – a pro-
cedure that long ago proved itself to be one of the most
promising approaches [5] – reveals capabilities for estab-
lishing the symmetry properties of energy states, when
the latter are obtained from the principle of energy min-
imum for each bound state.
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In the Galerkin variational method, the WFs of bound
states are presented in the form

Ψ(r1, r2, . . . , rn) =
N∑
i=1

ciφi , (1)

where ci is a linear variational parameter that defines
the presence probability for a definite configuration φi
(the basis function), and N is the basis dimension. As
the basis functions of the system with zero total angular
momentum, we will use the Gauss-type basis

φi = exp

(
−

n∑
k<l

aiklr
2
kl

)
(2)

as one of the simplest and universal enough. Here, n
is the number of particles, aikl are nonlinear variational
parameters, and rkl = |rk − rl| are particle-to-particle
distances; knowing the latter is enough for the descrip-
tion of internal states of systems with n particles. The
variational problem is reduced to the solution of systems
of linear equations for ci (the discrete algebraic represen-
tation for the Schrödinger equation)

N∑
j=1

{〈Ŝφi|Ĥ − E|Ŝφj〉}cj = 0 , i = 1, N , (3)

where, in the standard approach, the symmetrization
operator Ŝ is associated with a definite Young tableau
with respect to the identical particle permutation for the
Hamiltonian Ĥ. By solving the standard linear systems
of algebraic equations (3) separately for each given per-
mutation symmetry (the Young tableau), we obtain the
energy levels Eα and the corresponding mutually orthog-
onal wave functions.

The principal and rather cumbersome problem of the
variational method is to find the optimal (the lowest)
values of energy levels Eα with respect to the nonlinear
variational parameters aikl. For this purpose, the most
universal method is the stochastic variational one, when
random samples for the array of nonlinear variational
parameters are generated. At the same time, in the
SVM, even if the symmetrization with respect to iden-
tical particles has not been previously executed, the en-
ergy matrix 〈φi|H|φj〉 contains, in the general case, var-
ious blocks which approximately, but efficiently, realize
all possible permutation symmetries of the correspond-
ing states. Therefore, we have a possibility to exam-
ine the efficiency of such a scheme, when the variational
procedure of stochastic optimization can, by itself, both
implement a reliable calculation routine for the energy

spectrum and reveal the actual permutation symmetry
of WFs (this issue was also dealt with in work [9]).

Consider the expression for matrix elements (overlap
integrals) Λ(P )

α = 〈Ψα|PΨα〉, where P is the permu-
tation operator for identical particle coordinates. The
quantity Λ(P )

α for the state α over all permutations of
particle coordinates can be regarded as a measure of
symmetry for the given WF. For k identical particles,
there are k! such permutations which form a permu-
tation group Πk. Calculations of those quantities en-
able us to find out the symmetry in the general case,
i.e. to determine, to which representation of the irre-
ducible group Πk the wave function Ψα belongs. For
instance, in the case of two identical particles 1 and 2
– this case is associated with the permutation group Π2

– there are two one-dimensional representations: sym-
metric and antisymmetric, for which the quantity Λ(21)

α

is equal to 1 and −1, respectively. In the case of three
identical particles, there are evidently three such Young
tableaux: the one-dimensional totally symmetric repre-
sentation [3], the totally antisymmetric representation
[13], and the two-dimensional representation [21] of the
permutation group Π3.

3. Calculations of Energy Spectra and
Determination of Permutation Symmetry

3.1. Helium atom

As the simplest example, let us consider the calculation
of the energy spectrum of a helium atom with zero an-
gular momentum with the use of the variational func-
tions (1) and without previous symmetrization of iden-
tical electron coordinates. The Hamiltonian of such a
three-particle system looks like (in a.u.)

H =
p2

1 + p2
2

2
+

p2
3

2M
+

1
r12
− Z

(
1
r13

+
1
r23

)
, (4)

where Z = 2 is the charge of a He nucleus (α-particle),
and M = 7294.299537 is its mass in terms of electron
mass units. Note that the energy spectrum of Hamilto-
nian (4) is infinite for the given angular momentum, and
it has already been studied from various points of view.
In addition, the states symmetric (parahelium) and an-
tisymmetric (orthohelium) with respect to the coordi-
nate permutation (1 ↔ 2) alternate (see the discussion
in work [8]). In this work, we aim at achieving a re-
liable accuracy of the energy spectrum calculation and
concentrate our main attention on the symmetry proper-
ties of WFs with respect to the two-electron permutation
(1↔ 2) in bases without a symmetry prescribed a priori.
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The results of calculations of the spectrum and the
overlap integral Λ(21)

i in the basis containing 300 gaus-
soids are quoted in Table 1. First, we note that the
energy of each level (the second column) calculated with
no previously prescribed symmetry has a sufficient accu-
racy: the corresponding errors for practically all levels
in Table 1 comprise several decimal digits in the 5-th
to 6-th decimal positions in comparison with the results
of precision calculations taken from work [8] (the fourth
column). An especially high accuracy was obtained for
the ground state which is characterized by the highest
symmetry and is separated from the next (antisymmet-
ric) level by a considerable energy interval (gap). Such
a situation is typical of the atomic mode. Second, the
third column of Table 1 testifies that the corresponding
symmetries with respect to the permutation of electrons
1 and 2 were also determined reliably. Should the num-
ber of basis functions be increased, the calculation ac-
curacies for energies and corresponding symmetry char-
acteristics would naturally grow. Third, the permuta-
tion symmetry of different states was not revealed always
monotonously, but with a certain intervening symmetry
violation depending on the gradual expanding of non-
symmetrized basis. However, on the average about 50
basis functions (2) were enough for the permutation sym-
metry to be reliably determined. It is pertinent to em-
phasize that the distance between a certain antisymmet-
ric level and the previous symmetric one is larger than
the distance between the symmetric and previous anti-
symmetric levels. Note that the degree of the permuta-
tion symmetry determination can be also demonstrated
by a coincidence of the density distributions for both
electrons (see the determination procedure in work [10]).
In Fig. 1, an example of the calculation results concern-

T a b l e 1. Energy spectrum and overlap integrals Λ
(21)
i

for a helium atom
i −Ei Λ

(21)
i −Ei from work [8]

0 2.9033031 0.999952 2.9033044
1 2.1749285 −0.999950 2.17493011
2 2.1456621 0.999929 2.14567849
3 2.0684045 −0.998911 2.06840517
4 2.0609761 0.998858 2.060989
5 2.0362326 −0.994342 2.03623268
6 2.033274 0.994178 2.03330771
7 2.022301 −0.966029 2.022344
8 2.020816 0.964221 2.0208997
9 2.014856 −0.955985 2.01510
10 2.013798 0.953298 2.0142867
11 2.008703 −0.903414 2.01852
12 2.008066 0.907575 2.0103483

Fig. 1. Electron density distribution in the third excited state of
a He atom

ing the electron density distribution for the third excited
level (it is the first antisymmetric excited state) is pre-
sented; for lower levels, the density distributions and the
pair correlation functions calculated with the use of 300
basis functions completely coincide with the exact results
taken from work [6]. It follows from Fig. 1 that a he-
lium atom has rather substantial dimensions in the first
excited antisymmetric state characterized by the mean-
square distance (MSD) of an electron from the center of
mass of the helium atom 〈r2〉1/2e = 8.289 (hereafter, in
a.u.) and a specific three-mode behavior of the electron
density distribution. By the way, the MSD of the α-
particle, the mass of which is substantial, with respect
to its center of mass is very short, 〈r2〉1/2α = 0.0016;
the MSD between electrons is 〈(r1 − r2)2〉

1/2
ee = 11.727;

and the MSD between the electron and the α-particle,
〈(r1 − r3)2〉

1/2
eα = 8.290, is close to the electron MSD.

Note that the electron density distribution at the third
excited level (the first excited antisymmetric level) of a
helium atom practically vanishes at r = r0 = 5.218 and
has a long halo at farther distances, whereas the corre-
lation function geα(r) is very close to ρe(r) owing to a
significant mass of the nucleus. At the same time, as
was obtained in work [10], the electron density distribu-
tions for the ground and first two excited levels (of both
symmetries) do not vanish within a finite distance range
because of considerable correlation effects.

In addition, those distributions have two modes: the
internal part of the electron distribution repeats itself in
all states, but the halo structure of the first excited sym-
metric state has different characteristic dimensions. For
higher excited levels, the electron density distributions
are close to the electron–nucleus correlation functions
and oscillate with growing r: the density distributions
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for the excited k-th symmetric and excited (k − 1)-th
antisymmetric states have k − 1 zeros each and rather
extended halos. In general, the calculation accuracy ob-
tained for the energy – and, the more so, for the den-
sity distributions and other structural functions – in the
framework of a scheme with no prescribed symmetry gets
worse for higher states, so that the return to the calcu-
lation scenario with a prescribed permutation symmetry
of two electrons becomes more effective.

3.2. Symmetry properties of states in a system
with three gravitating particles

Let us consider the symmetry properties of various states
for a system with three self-gravitating particles charac-
terized by the Hamiltonian

H =
p2

1 + p2
2 + p2

3

2
−
(

1
r12

+
1
r13

+
1
r23

)
(5)

and the zero angular momentum in basis (2) without a
prescribed symmetry.

Hamiltonian (5) has infinite energy spectra for a given
angular momentum and each permutation symmetry be-
low the corresponding two-particle breakup threshold
(see work [6]): −1/4 for one-dimensional totally symmet-
ric representation [3] and two-dimensional representa-
tion [21] of permutation group Π3, and −1/16 for totally
antisymmetric representation [13]. In this case, the levels
with Young tableau [21] are twice degenerate in the exact
formulation. How can all that be reproduced in stochas-
tic variational calculations using nonsymmetrized bases?

In the second column of Table 2, the energy spectrum
calculated in a nonsymmetrized basis with 750 basis
functions (2) is presented. The fourth column contains
the results of precision energy calculations obtained in
work [6] in the standard scheme with prescribed Young
tableaux. First of all, we note the fundamental fact
that, in the framework of the approach free of a pre-
scribed permutation symmetry, we have a continuous
spectrum above the energy of the lowest two-particle
breakup threshold E0(2) = −0.25, where a straightfor-
ward variational calculation of bound states with any
symmetry has no sense. Then, there exists no possi-
bility to determine even the lowest totally antisymmet-
ric state of three particles in the approach with no pre-
scribed symmetry (see the opposite result obtained for a
certain six-particle nuclear problem in work [9]). In the
scenario with the prescribed symmetry [6], the known
precise energy of the lowest totally antisymmetric state
Ea0 (3) = −0.127445 lies above the lowest two-particle
threshold of −0.25. This fact is also fundamental for

other systems with identical particles and a nonsym-
metrized scheme of variational calculations, so it does
not allow one to rise above the lowest two-particle en-
ergy threshold.

Let us dwell on the problems that arise in calcula-
tions in the framework of the scheme with no prescribed
symmetry for Hamiltonian (5). First, the alternation of
singly and approximately twice degenerate (quasidegen-
erate) excited energy levels is observed: if the basis is
expanded and the calculation accuracy is enhanced, the
degeneration becomes more and more trustworthy.

Even this fact alone testifies that the twice quaside-
generate levels are related to a series with the Young
tableau [21]. Note that, for a system with three self-
gravitating particles, the absolutely lowest totally sym-
metric ground state has a coherent character, being sepa-
rated by a rather appreciable interval (gap) from the first
excited state which is also totally symmetric. Second, for
the permutation symmetry of approximately calculated
states to be determined reliably, we used additionally
several procedures. For instance, we used the amplitudes〈

Ψα

∣∣∣∣∑
i<j

r2ij

∣∣∣∣Ψβ

〉
(6)

of monopole transitions between different states α and
β. Since the wave function of the ground state is totally
symmetric with respect to coordinate permutations, the
enhanced transitions (6) between the ground and excited
states can be realized only between the states with iden-
tical permutation symmetry, being strongly suppressed
for states with different permutation symmetries. This
technique turned out reliable enough for the first 6 to 10

T a b l e 2. Energy spectrum and dominating probabili-
ties of Young tableaux in nonsymmetrized bases for three
gravitating particles

i −Ei symmetry – Γ
[k]
α −Ei,[6]

0 1.071778933 [3]: 0.99999999 1.07177937297
1 0.5744912 [3]: 0.99999993 0.57449221540
2 0.4528858 [21]: 0.999999909 0.4528869754
3 0.4528850 [21]: 0.99999992 -//-
4 0.393785 [3]: 0.99999951 0.39381649823
5 0.359535 [21]: 0.999999734 0.3595387446
6 0.35952287 [21]: 0.99999763 -//-
7 0.330819 [3]: 0.999979 0.33082419747
8 0.31678 [21]: 0.99999533 0.3167897461
9 0.316771 [21]: 0.99996357 -//-
10 0.3019888 [3]: 0.999831 0.301992565558
11 0.2947328 [21]: 0.999981 0.2947441034
12 0.2947176 [21]: 0.999605 -//-
13 0.2862493 [3]: 0.99773 0.28625287633
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levels and confirmed that the first two levels from Ta-
ble 2 have an identical symmetry, whereas the following
two quasidegenerate levels have a different symmetry.
Then another symmetric level and two more levels with
a different symmetry take place. For higher excited lev-
els, this way gradually loses its reliability, but it remains
valid for transitions between neighbor levels. Certainly,
transitions (6) between distant states are strongly sup-
pressed and require the very accurate calculations with
the use of large bases.

In addition, we systematically considered the deter-
mination of a permutation symmetry for the functions
obtained which was carried out after variational calcula-
tions. For this purpose, the functions Ψα(123) obtained
for each state were used to construct all irreducible rep-
resentations: the function that is symmetric with respect
to permutations ([3])

Ψs(123) = Ψ(123) + Ψ(132) + Ψ(213) + Ψ(231)+

+Ψ(312) + Ψ(321) (7)

the antisymmetric function ([13])

Ψa(123) = Ψ(123)−Ψ(132)−Ψ(213) + Ψ(231)+

+Ψ(312)−Ψ(321) (8)

and the irreducible representation [21]

Ψ
′
(123) =

√
3

2
{Ψ(231) + Ψ(213)−Ψ(312)−Ψ(321)}

Ψ
′′
(123) = −1

2
{Ψ(213) + Ψ(231) + Ψ(312) + Ψ(321)}+

+Ψ(123) + Ψ(132) (9)

(note that the representation [21] has two equiva-
lent realizations). Then the nonsymmetrized functions
Ψα(123) normalized to 1 can be expanded in series of
functions (7)–(9) (also previously normalized to 1) of ir-
reducible representations of the permutation group:

Ψα =
∑
[k]

N [k]
α Ψ[k]

α . (10)

The squares of the expansion coefficients N [k]
α (the over-

lap integrals between the wave function Ψα with no
symmetry prescribed a priori and the wave function

Fig. 2. Dependences of the probabilities of dominating Young
tableaux on the number of basis functions for a system with three
gravitating particles

Ψ[k]
α with reconstructed permutation symmetries), Γ[k]

α =(
N

[k]
α

)2

, determine the probabilities for corresponding
Young tableaux to be present in the α-state with the
normalization condition

∑
[k] Γ

[k]
α = 1, where the sum-

mation is carried out over all Young tableaux.
The third column in Table 2 displays the dominating

probabilities for the corresponding permutation symme-
try Γ[k]

α calculated in the 750-function basis, which un-
ambiguously evidences the practical purity of the states
with respect to permutations. We emphasize that the
completely antisymmetric representation is not realized
for the examined states, since they are located above the
two-particle energy threshold E0(2) = −0.25. Rather
interesting are the nonmonotonous dependences of the
probabilities of prescribed Young tableaux Γ[k]

α on the
number of basis functions taken into account. In this
case, the absence of the unambiguous correlation be-
tween corrections to both the energy and the symmetry
(the “symmetry violation” effect) revealed itself. Con-
sider the simplest rather economical scheme of the basis
expansion in expression (1), when the basis functions are
added one by one, and a large enough stochastic sam-
ple (of about 2× 105) of nonlinear parameters are made
only in the added function. In addition, the stochastic
minimization over nonlinear parameters was carried out
for each state separately. In Fig. 2, the dependence of
the dominating probability Γ[k]

α of the determined Young
tableau [3] on the number of basis functions is depicted
for the ground state (curve 0 ). As one can see, tak-
ing one, two, and three basis functions (2) into account
in the framework of the variational method with the
stochastic sampling of nonlinear variational parameters
gradually improves, to some extent, the energy value,
whereas the WF remains totally symmetric and depends
only on the squared hyperradius

ρ2 = r212 + r213 + r223. (11)
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Considering the fourth basis function (2) somewhat im-
proves the energy value obtained, but breaks the sym-
metry of the ground-state WF (at a level of 0.2%). This
effect of the WF symmetry violation at the energy cor-
rection is general enough for various interaction poten-
tials and for bases with various dimensions. For larger
numbers of basis functions, the nonmonotonous depen-
dence (the symmetry violation) of Γ[3]

0 on this parameter
also takes place (especially, when the number of basis
functions is not very large), but about 50 (on the aver-
age) basis functions are enough for the totally symmetric
character of the ground state WF to be reliably deter-
mined. In this case, the quantity Γ[3]

0 reaches the asymp-
totic value of 1. For the first excited state, the quantity
Γ[3]

1 also characterizes the dominating totally symmetric
character of the WF, and certain oscillations (symme-
try violations) reveal themselves again, although there
are enough basis functions (of about 50) for the Young
tableau [3] to be determined (curve 1 in Fig. 2). Curves
2 and 3 in Fig. 2 show the dependences of the probabil-
ity of the Young tableau [21] realization on the number
of basis functions for the second and third excited states,
respectively. Curve 4 corresponds to the probability
of the totally symmetric tableau for the fourth excited
state. As one can see, the corresponding Young tableaux
were authentically found in all those cases (though non-
monotonously and with an insignificant symmetry vi-
olation for small numbers of basis functions) with the
bases including a little more than 50 functions, when
the asymptotics was attained. Similar calculations were
also executed for about 10 excited states. In general,
higher levels require more basis functions both for ob-
taining a definite accuracy for the energy value and for
determining the valid asymptotics for symmetry coeffi-
cients.

Concerning the behavior of the structural functions
for three gravitating particles – such as the one-particle
distributions of particle density and the pair correlation
functions – in the scheme, where bases without sym-
metrization are used, the situation is rather close to the
helium atom problem considered above. Already about
100 basis functions (2) are enough for those structural
functions for the ground and first excited levels not to
depend on the particle number and to quantitatively co-
incide with precise results taken from work [6].

One more scenario of the partial symmetrization can
be used in this and other problems. In particular, if the
wave function is symmetrized with respect to only two
arbitrary particles, the number of levels will become ap-
proximately half as large, provided that the dimension of

the basis used is fixed, and the accuracy of corresponding
calculated levels will enhance, as well as the probability
of a reconstructed symmetry.

3.3. Analysis of a complete permutation set

Let us consider the overlap integrals Λ(P )
α = 〈Ψα|PΨα〉

in more details, but in a smaller basis with regard for
the role of all permutations in a system with three iden-
tical gravitating particles. The results of calculations
obtained with the use of the basis of 220 gaussoids are
quoted in Table 3, where the binding energies εj ≡ −Ej .
The minimization was carried out with respect to the
second excited level. Hereafter, the combinations of
numbers 123, 132, and so on designate the permutations

of particle coordinates P =

(
123
123

)
,

(
123
132

)
, and so on,

respectively. From Table 3, one can see that the ground
and first excited states are totally symmetric and real-
ize one-dimensional representations. At the same time,
for the second and third excited states, a quasidegen-
eration is observed, these levels are split, because the
calculations were approximate, and a two-dimensional
representation that corresponds to a mixed symmetry is
realized. Then, we see that the fourth excited state is
approximately totally symmetric again.

Let us consider the realization of a two-dimensional
representation of the permutation group Π3 correspond-
ing to the second and third excited states in more details.

We construct two-dimensional vectors f =

(
Ψ(2)

Ψ(3)

)
and

fP =

(
PΨ(2)

PΨ(3)

)
, where Ψ(2) and Ψ(3) are the WFs of

the second and third excited states, respectively, and P
is a certain permutation of identical particle coordinates.
Then, as is known, fP = AP f , where AP = {aPij} are
matrices of a two-dimensional irreducible representation
of group Π3. That is, we have a system of equations

PΨ(2) = a11Ψ(2) + a12Ψ(3) ,

T a b l e 3. Overlap integrals for the lowest levels and all
permutations in a system with three gravitating particles

j εj ΛPjj
123 132 321 213 231 312

0 1.0717570 1.00 1.00 1.00 1.00 1.00 1.00
1 0.5742926 1.00 1.00 1.00 1.00 1.00 1.00
2 0.4528858 1.00 0.50 −0.50 −1.00 −0.50 −0.50
3 0.4517665 1.00 −0.50 −0.49 1.00 −0.50 −0.50
4 0.3903133 1.00 0.93 0.94 1.00 0.93 0.93
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PΨ(3) = a21Ψ(2) + a22Ψ(3) . (12)

Whence, owing to the orthogonality of WFs, we have

aPij = ΛP(i+1)(j+1) , i, j = 1, 2 . (13)

In Table 4, the calculation results for the quantities
Λ and aPij and for all permutations are given. The data
presented in Table 4 allow us to construct the matrices
AP which look like

AP =
123(

1.0 0
0 1.0

)
,

132(
0.50 −0.86
−0.86 −0.50

)
,

321(
0.50 0.87
0.87 −0.49

)
,

213(
−1.0 0

0 1.0

)
,

231(
−0.50 −0.86
0.86 −0.50

)
,

312(
−0.50 0.86
−0.86 −0.50

)
.

(14)

Since
√

3/2 ≈ 0.866025, one can see that this calcula-
tion gives rise to a representation equivalent to the two-
dimensional irreducible representation of the permuta-
tion group Π3, where cyclic permutations 231 and 312

are totally reproduced, whereas transpositions 132, 321,
and 213 demand that some similar transformation be
done:

M−1APM =
123(

1.0 0
0 1.0

)
,

132(
−0.50 0.86
0.86 +0.50

)
,

321(
−0.49 −0.87
−0.87 0.50

)
,

213(
1.0 0
0 −1.0

)
,

231(
−0.50 −0.86
0.86 −0.50

)
,

312(
−0.50 0.86
−0.86 −0.50

)
,

(15)

where

M =

(
cos(π/2) − sin(π/2)
sin(π/2) cos(π/2)

)
=

(
0 −1
1 0

)
,

M−1 =

(
0 1
−1 0

)
. (16)

In the calculation with the minimization with respect
to the third excited level, the splitting of levels substan-
tially decreases, the representation equivalent to an ir-
reducible one is reproduced as well, but the angle of a
similar transformation which reduces either of the rep-
resentations to the other, can be arbitrary. The results
of such calculations in the basis with 204 gaussoids are

shown in Table 5. From this table, one can see that the
structure of the system states did not change, but the
calculation accuracy became substantially better, even
for a little smaller basis, since the quasidegenerate states
are rather close. The representation which is equivalent
to an irreducible one looks like

T a b l e 4. Matrix of the two-dimensional representation
aP

ij and overlap integrals for the second and third excited
levels for three gravitating particles

123 132 321 213 231 321
aP11 ΛP22 1.00 0.50 0.50 −1.00 −0.50 -0.50
aP12 ΛP23 0.00 −0.86 0.87 0.00 0.86 −0.86
aP22 ΛP33 1.00 −0.50 −0.49 1.00 -0.50 −0.50
aP21 ΛP32 0.00 −0.86 0.87 0.00 −0.86 0.86
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T a b l e 5. Calculation results for symmetry properties of the lowest states with regard for the unitary transfor-
mations (15) and the minimization with respect to the third excited level

j εj ΛPjj
123 132 321 213 231 312

0 −1.071751 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 −0.5744743 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 −0.4528811 1.00000 −0.17706 −0.76381 0.94087 −0.50000 −0.50000

ΛP23 → 1.00000 −0.98420 0.64543 0.33876 −0.86602 0.86602
3 −0.4528810 1.00000 0.17706 0.76381 −0.94087 −0.50000 −0.50000

ΛP32 → 1.00000 −0.98420 0.64543 0.33876 0.86602 −0.86602
4 −0.3935422 1.00000 0.99966 0.99968 0.99979 0.99958 0.99958

AP =
123(

1.0 0
0 1.0

)
,

132(
−0.17706 −0.98420
−0.9842 0.17706

)
,

321(
−0.76381 0.64543
0.64543 0.76381

)
,

213(
0.94087 0.33876
0.33986 −0.94087

)
,

231(
−0.50000 −0.86602
0.86602 −0.50000

)
,

312(
−0.50000 0.86602
−0.86602 −0.50000

)
.

(17)

The angle θ of a similarity transformation can be found,
e.g., from the relation sin 2θ = 0.33876. Then, θ =
0.1727993296, and the transformation looks like

M =

(
0.9851073087 −0.1719406592
0.1719406592 0.9851073087

)
,

M−1 =

(
0.9851073087 0.1719406592
−0.1719406592 0.9851073087

)
.

Applying this transformation to the matrices AP , we
obtain

M−1APM =
123(

1.0 0
0 1.0

)
,

132(
−0.50000 −0.86603
−0.86603 0.50000

)
,

321(
−0.50000 0.86602
0.86602 0.50000

)
,

213(
1.0000 1 · 10−6

1 · 10−6 −1.0000

)
,

231(
−0.50000 −0.86602
0.86602 −0.50000

)
,

312(
−0.50000 0.86602
−0.86602 −0.50000

)
.

(18)

One can see that, in this calculation, the detailed sym-
metry is determined with rather a high accuracy.

The character of a representation D(P ) =
∑
iA

P
ii

is known to play an important role, because it is
not changed at similarity transformations. For two-
dimensional irreducible representations of the group Π3,
D(P ) has the following values: 2 for the identical per-
mutation (123 in our notation); 0 for transpositions 132,
321, and 213; and −1 for cyclic permutations 231 and
312. The results of our calculations confirm this fact

with a high accuracy. Hence, it would be enough to cal-
culate the representation character, rather than to build
the matrices of a representation and look for a similarity
transformation. The accuracy of such calculations will
be the accuracy of the symmetry reconstruction.

The results of corresponding calculations in a gaussoid
basis with 542 functions in dimension are presented in
Table 6, where D(P ) is the exact values of characters
of the two-dimensional representation. The minimiza-
tion was carried out over all levels in turn, increasing
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T a b l e 6. Calculated results for the characters of irreducible representations of the permutation group for three
gravitating particles

D̂(P ) 2.0 0.0 0.0 0.0 −1.0 −1.0
j εj ΛPjj

123 132 321 213 231 312
0 −1.071776 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 −0.574488 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 −0.452883 1.00000 −0.994174 0.590427 0.403747 −0.500000 −0.500000
3 −0.452882 1.00000 0.994174 −0.590427 −0.403748 −0.500000 −0.500000

|D(P )| − |D̂(P )| 0.32× 10−13 0.53× 10−6 0.23× 10−6 0.50× 10−7 −0.68× 10−6 −0.68× 10−6

4 −0.393803 1.00000 0.999998 0.999998 0.999998 0.999998 0.999998
5 −0.359517 1.00000 0.891803 −0.837704 −0.054097 −0.499998 −0.499998
6 −0.359506 1.00000 −0.891800 0.837707 0.054095 −0.499998 −0.499998

|D(P )| − |D̂(P )| 0.25× 10−13 0.33× 10−5 0.35× 10−5 0.26× 10−5 −0.39× 10−5 −0.39× 10−5

7 −0.330728 1.00000 0.999897 0.999904 0.999978 0.999900 0.999900
8 −0.316719 1.00000 0.488361 0.511544 −0.999900 −0.499995 −0.499995
9 −0.316561 1.00000 −0.488158 −0.511320 0.999795 −0.499780 −0.499780

|D(P )| − |D̂(P )| 0.75× 10−13 0.20× 10−3 0.22× 10−3 0.11× 10−3 −0.22× 10−3 −0.22× 10−3

10 −0.301797 1.00000 0.999137 0.999024 0.999871 0.999097 0.999097
11 −0.294636 1.00000 0.515815 0.483996 −0.999791 −0.499981 −0.499981
12 −0.294355 1.00000 −0.514688 −0.482861 0.999491 −0.498904 −0.498904

|D(P )| − |D̂(P )| 0.31× 10−13 0.11× 10−2 0.11× 10−2 0.30× 10−3 −0.11× 10−2 −0.11× 10−2

13 −0.285861 1.00000 0.997556 0.996175 0.998018 0.996009 0.996009
14 −0.281520 1.00000 0.965797 −0.269215 −0.682057 −0.492610 −0.492610
15 −0.281053 1.00000 −0.954190 0.274642 0.694196 −0.492370 −0.492370

|D(P )| − |D̂(P )| 0.51× 10−11 0.12× 10−1 0.54× 10−2 0.12× 10−1 −0.15× 10−1 −0.15× 10−1

16 −0.274792 1.00000 0.930606 0.992712 0.900378 0.913221 0.913221
17 −0.270548 1.00000 0.653855 −0.963852 0.331035 −0.488725 −0.488725
18 −0.268570 1.00000 −0.554538 0.966735 −0.199195 −0.390550 −0.390550

|D(P )| − |D̂(P )| 0.18× 10−10 0.99× 10−1 0.29× 10−2 0.13 −0.12 −0.12

19 −0.262261 1.00000 0.272561 0.977084 0.364904 0.314611 0.314611

the number of basis functions and making a stochas-
tic sample of nonlinear coefficients for added functions
only. The table demonstrates that, in this calculation,
the symmetry is reproduced with a sufficient accuracy
up to the 12-th level inclusive. A further enhancement
of accuracy could be done by expanding the basis, which
would demand, in turn, that computer’s word length be
increased.

3.4. Examples of other three- and four-particle
systems

Similarly to what was done in Section 3 3.2, the three-
particle calculations in a scheme without permutation
symmetry for the ground and some lowest states were

executed for a number of other pair potentials, such as
the linear potential V (rij) = γrij , a superposition of
linear and oscillatory potentials, a superposition of the
Coulomb and oscillatory potentials, and so on. Let us
dwell on a system with three identical particles (~ =
M = 1), with the pair potentials being superpositions of
the Coulomb and linear potentials,

V (rij) =
α

rij
+ γ rij , (19)

which is often used as a model quark–quark confining
interaction potential. Consider the case α = −1 and
γ = 0.1 where the spectrum (infinite) of three self-
gravitating particles (Table 2) shifts upward due to a
repulsive potential in formula (19).
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The second column in Table 7 shows the calculated
energies, as well as the corresponding Young tableaux,
for the examined states which were determined by ana-
lyzing the monopole transitions (6) and partially using
representation (10). It is evident that this problem of
three particles has infinite series of energy levels unlim-
ited from above for fixed angular momenta and for each
possible permutation symmetry. In the case under con-
sideration, the positions and the permutation symme-
tries of the lowest levels in the energy spectrum can be
determined reliably enough using only the force criterion
for the monopole transitions (6). As a general remark,
we note that the lower part of the spectrum for poten-
tial (19) becomes grouped in such a way that it reminds
a spectrum for the case where an oscillatory potential
is present: the ground state corresponds to the “zeroth
shell”, three following levels to the “second main shell”,
and six following levels to the “fourth main shell”. The
ground state from the “zeroth shell” is separated from
the following first excited state from the “second shell”
by a gap, as it also takes place for other attractive po-
tentials, and both the lowest levels are totally symmetric
owing to the attractive character of the chosen potential
at short distances. The next two quasidegenerate lev-
els are characterized by the Young tableau [21], being
located considerably closer to the energy of the previ-
ous level (also from the “second shell”). Then, there ap-
pears a totally symmetric level separated by a wide gap
from the next “fourth shell”. The following two pairs of
quasidegenerate levels belong to a representation with
the mixed symmetry [21]. Afterward, there appears a
totally symmetric level which closes the “fourth shell”.
From subsequent levels, we note the emergence of a to-
tally antisymmetric state (with regard for the degener-
acy order, it is the 17-th excited level) which is known
[11] to belong to the sixth shell. For its identification, the
monopole transitions to neighbor levels were calculated,
and its ultimate permutation symmetry was found on
the basis of formula (10). On the average, the distances
between higher excited levels become shorter and shorter
(we recall that we consider a linearly growing potential,
for which intervals between levels have to decrease for
higher excitations).

The results obtained for the case of a purely linear
potential (α = 0 in formula (19)), when the attraction
potential had been omitted, turned out to be also in-
teresting. The calculated energy levels and their per-
mutation symmetries are listed in the third column of
Table 7. By the way, the highest accuracy was achieved
for all levels in this example. We also note that the al-
ternation of different symmetries somewhat changes in

such a way that the levels with higher symmetry shift
upward (taking also into account that the scale is dif-
ferent, since we chose γ = 1). For example, the lowest
antisymmetric level is now at the 16-th place in the gen-
eral excitation list and belongs to the sixth “shell”. For
this potential, the level grouping into shells manifests it-
self pronouncedly enough up to the eighth shell inclusive.
We recall that, in the case of three particles with the os-
cillatory (quadratically dependent on r) potential, the
levels are strictly degenerate in each shell, and the first
antisymmetric state belongs to the sixth shell [11] (the
zeroth shell is nondegenerate, the second one is three-
fold degenerate, the fourth one is sixfold degenerate, the
sixth one is tenfold degenerate, and so on). In addi-
tion, should the Coulomb potential be added to a weak
oscillatory one, the level arrangement would be similar
to that for potential (19), and, in the case with the os-
cillatory and repulsive Coulomb potentials, the totally
antisymmetric level would be the tenth in the level list.
Interesting regularities manifest themselves in the case
of potential (19) with a repulsive Coulomb term. The
results of corresponding calculations with α = 1 and
γ = 0. are listed in the fourth column of Table 7. One
can see that, owing to a repulsion at short distances, the
levels with higher symmetry are shifted upward much

T a b l e 7. Energy spectra and Young tableaux for
three particles with potentials (19) calculated in nonsym-
metrized bases

i Ei(α = −1, Ei(α = 0, Ei(α = 1,

γ = 0.1) γ = 1) γ = 0.1)

0 −0.5374711 [3] 6.1322623296 [3] 2.35863665 [3]
1 0.4351935 [3] 8.4460183583 [3] 2.6836025 [21]
2 0.6814962 [21] 8.6248514892 [21] 2.6836026 [21]
3 0.6814974 [21] 8.6248514892 [21] 2.7361357 [3]
4 1.088206 [3] 10.468906007 [3] 3.015767 [3]
5 1.225461 [21] 10.572169109 [21] 3.032422 [21]
6 1.225466 [21] 10.572169109 [21] 3.032424 [21]
7 1.466758 [21] 10.799850983 [21] 3.0402091 [21]
8 1.466760 [21] 10.799850983 [21] 3.0402106 [21]
9 1.5075641 [3] 10.970678650 [3] 3.0935262 [3]
10 1.615565 [3] 12.289856674 [3] 3.351440 [13]
11 1.6860224 [21] 12.34459748 [21] 3.355503 [3]
12 1.6860522 [21] 12.34459750 [21] 3.360576 [21]
13 1.9215544 [3] 12.577399637 [21] 3.360587 [21]
14 1.9328835 [21] 12.577399664 [21] 3.366835 [21]
15 1.932899 [21] 12.70399441 [3] 3.366839 [21]
16 2.02983147 [3] 12.75225890 [13] 3.38232 [21]
17 2.0486622 [13] 12.82852283 [3] 3.38232 [21]
18 2.0753597 [3] 12.97594242 [21] 3.39606 [3]
19 2.089238 [21] 12.97594242 [21] 3.43508 [3]
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more. Accordingly, the totally antisymmetric states be-
came located relatively lower. For instance, the lowest
antisymmetric state became the tenth excited level in the
general list (and the lowest in the sixth shell), whereas
the next excited totally antisymmetric state became the
20-th one (and the lowest in the eighth shell). The per-
mutation symmetries of all those states were found using
the amplitudes of monopole transitions (6) and on the
basis of representation (10); however, a basis with about
300 functions was required to be used for higher excited
states.

We now consider, in brief, an example of the determi-
nation of a permutation symmetry for a system with four
particles, in particular, for a hydrogen molecule. Let the
Hamiltonian be (in a.u.)

H =
p2

1 + p2
2

2M
+

p2
3 + p2

4

2
+
Z2

r12
+

1
r34
−

−Z
(

1
r13

+
1
r14

+
1
r23

+
1
r24

)
, (20)

where M = 1836.152701 is the relative proton mass, and
Z = 1 is the relative charge. The results of calculations
of the spectrum are given in the second column (a non-
symmetrized basis with 1200 components), and the prob-
ability of dominating permutation symmetry according
to the representation of type (10) is presented in the
third column of Table 8. The fourth column gives the en-
ergy spectrum (a basis with 1200 components) obtained
in the framework of the standard method with prescribed
permutations: symmetric with respect to protons and
symmetric with respect to electrons (ss). The fifth col-
umn exposes the best literature data taken from work
[12]. Note that, first, there are no levels with other sym-
metries different from ss for the zero angular momentum

T a b l e 8. Comparison of energy levels calculated in
nonsymmetrized and symmetrized bases (with 1200 com-
ponents) with the most accurate literature data taken
from work [12]

i −Ei symmetr. (ss) −Ei(symmetr.) −Ei[12])
0 1.161329 0.99966 1.163501 1.1640250300
1 1.132503 0.99876 1.141878 1.1450653676
2 1.093697 0.99696 1.119645 1.1271779152
3 1.053905 0.99238 1.091461 1.1103404429
4 1.017269 0.97868 1.064515 1.0945391187
5 0.999428 0.4991 1.03230 1.0797693217
6 0.994166 0.5689 1.005119 1.0660370737
7 0.989407 0.5711 0.999522 1.0533604890
8 0.9777 0.1943 0.9983 1.0417726950

and, second, according to the results of special precise
calculations [12] and experimental data obtained for en-
ergies below the threshold energy of the breakup into two
hydrogen atoms (4→ 2+2, Ethres = −0.999455679432),
there are actually 15 levels with the ss-symmetry. Our
calculation with a gaussoid-like basis containing 1200
functions allows, even in the case of a symmetrized basis,
only eight levels to be obtained with an accuracy of 3 to
4 decimal digits. Third, using a nonsymmetrized basis
with 1200 gaussoids, we can determine only about 5 en-
ergy levels (with an accuracy of 2 to 3 decimal digits);
however, their ss-symmetry can be found for sure. This
example of a hydrogen molecule demonstrates that the
results of calculations for complicated systems with non-
symmetrized bases can be regarded only as qualitative
estimations, but the precise calculations demand for spe-
cial optimizing variational procedures to be elaborated
(see work [12]).

To complete a discussion concerning the system with
four self-gravitating particles, we note that the calcu-
lations with a nonsymmetrized basis allow the order of
different levels with reconstructed permutation symme-
tries to be approximately determined. In particular, the
ground state is associated with the totally symmetric
Young tableau [4] (see work [6]). The next level which
is separated by a substantial interval (gap) is a totally
symmetric state too. The subsequent three quasidegen-
erate levels correspond to the Young tableau [31]. Fur-
ther, there are located two quasidegenerate levels with
the Young tableau [22]. The seventh excited level is also
totally symmetric; it belongs already to the fourth “main
shell”, being separated from the lower levels by a certain
gap. The calculations of subsequent levels in the scheme
with nonsymmetrized basis reveal considerable errors,
and it is expedient to come back to the standard scheme
with prescribed permutation symmetries.

4. Conclusions

To summarize, in this work we obtained the following
main results.

1. Calculations in the framework of SVM with a non-
symmetrized, with respect to permutations of identical
particles, basis allow all low energy states in systems
with three or four particles to be determined with a sat-
isfactory accuracy. In addition, the permutation symme-
tries of those states can be satisfactorily found as well.

2. A nonsymmetrized basis can be used only at en-
ergies below the absolutely lowest breakup threshold,
in the range of true bound states. The calculations of
strongly antisymmetrized states in the approach with-
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out a prescribed symmetry cannot be reliable even above
the forbidden threshold with a prescribed symmetry, so
that the permutation symmetry for identical particles
must be prescribed from the very beginning to study
such states.

3. In all considered cases with three and four par-
ticles, a natural advantage of using the a priori sym-
metrized bases to calculate bound states was observed,
when the number of symmetrized basis functions, which
were needed to be used to achieve a required accuracy
of calculations, was several times less.

4. The variational calculations showed that the expan-
sion of nonsymmetrized variational bases is accompanied
not only by an increase of the calculation accuracy for
energy levels, but also by the temporary violation of a
symmetry of wave functions – especially, if the basis is
not very large – although the actual symmetry can be
determined more reliably, on the average, for significant
bases.

5. For larger numbers of particles and more compli-
cated systems of quantum-mechanical particles, the pos-
sibilities to attain a required high accuracy for the energy
and other parameters become more and more problem-
atic, both for nonsymmetrized, it is especially true for
them, and a priori properly symmetrized bases.

The authors are grateful to O.M. Gavrylyk and
P.I. Golod for their useful remarks concerning the prob-
lems considered in the paper. The work was supported
in the framework of a target program of fundamental
researches by the Division of Physics and Astronomy of
the National Academy of Sciences of Ukraine.

1. V.I. Kukulin, Izv. Akad. Nauk SSSR, Ser. Fiz. 39, 535
(1975).

2. V.I. Kukulin and V.M. Krasnopol’sky, J. Phys. G 3, 795
(1977).

3. N.N. Kolesnikov and V.I. Tarasov, Yad. Fiz. 35, 609
(1982).

4. K. Varga and Y. Suzuki, Phys. Rev. C 52, 2885 (1995).
5. Y. Suzuki and K. Varga, Stochastic Variational Approach

to Quantum-Mechanical Few-Body Problems (Springer,
Berlin, 1998).

6. S.M. Bubin and I.V. Simenog, Zh. Fiz. Dosl. 4, N 2, 124
(2000).

7. I.V. Simenog, Yu.M. Bidasyuk, B.E. Grynyuk, and
M.V. Kuzmenko, Ukr. Fiz. Zh. 52, 79 (2007).

8. I.V. Simenog, Yu.M. Bidasyuk, M.V. Kuzmenko, and
V.M. Khryapa, Ukr. Fiz. Zh. 54, 881 (2009).

9. P.I. Golubnychyi, S.D. Kryvonosov, and T.M. Slepichko,
Ukr. Fiz. Zh. 50, 425 (2005).

10. M.V. Kuzmenko and I.V. Simenog, Zh. Fiz. Dosl. 14, N 4
(2010) (to be published).

11. V.I. Ovcharenko, I.V. Simenog, and G.F. Filippov,
preprint ITF-70-100P (Inst. Theor. Phys. AN UkrSSR,
Kiev, 1970) (in Russian).

12. S. Bubin and L. Adamowicz, J. Chem. Phys. 118, 3079
(2003).

Received 24.08.10.
Translated from Ukrainian by O.I. Voitenko

РОЗРАХУНКИ ЗВ’ЯЗАНИХ СТАНIВ
У СТОХАСТИЧНОМУ ВАРIАЦIЙНОМУ
МЕТОДI З НЕСИМЕТРИЗОВАНИМИ БАЗИСАМИ

I.В. Сименог, М.В. Кузьменко, В.М. Хряпа

Р е з ю м е

Дослiджено можливостi встановлення симетрiйних властиво-
стей енергетичних станiв в системах трьох та чотирьох части-
нок з нульовим кутовим моментом у стохастичних варiацiй-
них розрахунках без попередньої симетризацiї станiв за коор-
динатами тотожних частинок. Виявлено, що у стохастичних
варiацiйних розрахунках енергетичнi спектри включають рiвнi
всiх можливих для даної системи симетрiй, якщо це дозволено
суперпозицiєю базисiв, що використовуються. Запропоновано
локальнi та iнтегральнi схеми встановлення перестановочнiй
симетрiї за результатами розрахункiв зв’язаних станiв. Пока-
зано, що для енергетичних станiв квантових систем декiлькох
частинок нижче найнижчого порога розвалу на пiдсистеми пе-
рестановочнi симетрiї (схеми Юнга) можуть бути встановленi
з високою точнiстю. Стани ж вище найнижчого порогу розва-
лу, якщо вiн навiть заборонений, можна розглядати лише на
вiдповiдно симетризованих базисах.
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