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A theoretical model of ellipsometry of a submonolayer of semi-
conductor nanoparticles on a surface is built in the frame of the
local field method. We calculated the effective susceptibility of
the system which had been modeled as a substrate with ellipsoidal
particles. These calculations allow us to determine the reflection
coefficients and the ellipsometric parameters versus the wavelength
and the angle of incidence. It is shown that semiconductor parti-
cles on a substrate give a measurable contribution to ellipsometric
parameters. We obtain that ellipsometric parameters depend on
the concentration and the shape of particles.

1. Introduction

The study of thin films, including the films of submono-
layer coatings, is an important problem of modern sci-
ence. The technology aimed at manufacturing such films
for their application in sensorics, plasmonics, and so on
[1, 2] rapidly develops. An important part of this pro-
cess is monitoring the properties of the films obtained.
There are plently of methods to study the properties
of such systems. These are electron microscopy, x-ray
diffraction, and other methods, but optical methods turn
out to be more expedient for such researches, because
they are nondestructive and noncontact ones and char-
acterized by sufficient informativity [3–5]. The ellipso-
metric method [6] belongs to them. Parameters that
are measured in studies of thin films within the ellipso-
metric method can be expressed in terms of the Fres-
nel reflection coefficients which are determined by the
refraction indices of the film and the substrate [3, 6].
Recently, there appeared a necessity to use the ellipso-
metric method to study films that are layers of organic
molecules (e.g., dye or biological molecules) or layers of
metallic or semiconducting nanoparticles located on a
solid surface [7–11]. In this case, there emerges a neces-
sity to determine local parameters of such films, in par-
ticular, the concentration, size, and shape of particles.

Hence, one meets a problem to determine the effective
parameter of a coating thin film–the complex-valued re-
fraction index–in terms of particle parameters: particle
dimensions and the shape. The presented work aimed
at solving this problem.

2. Principles of the Ellipsometric Method

The essence of the ellipsometric method consists in
changing the polarization of light, when it is reflected
from a specimen under investigation [6]. Taking into
account the direction of electric-field vector rotation,
the light polarization ellipse is a geometrical figure and
can be described in any orthogonal coordinate system
(Fig. 1). The most convenient is a description of this el-
lipse in the coordinate system connected with own modes
of reflection from the investigated surface. The case
of reflection from isotropic systems or systems, where
the geometry predetermines the uniaxial anisotropy–the
anisotropy axis is perpendicular to the surface plane,–is
the most general one. In this case, the own modes are p-
and s-polarized light. Ellipsometry has the sensitivity
comparable with that inherent in interferometry, but,
owing to phase measurements, it is a more convenient
self-consistent method with internal normalization. In
its framework, one measures the relative variation of the
polarization ellipse which is described by two ellipsomet-
ric angles ψ and Δ. These angles are connected with the
electric field for two polarizations p and s as follows:

tg ΨeiΔ =
Epr
Epi

/
Esr
Esi

, (1)

where Exy is the field of the incident or reflected (y = i
or r, respectively) wave with the x-polarization (x = p
or s). In the case of most widespread systems, which
were indicated above, this equation transforms into the
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Fig. 1. Polarization ellipse and various coordinate systems

so-called fundamental equation of ellipsometry,

tg ΨeiΔ =
rp
rs
, (2)

where rp and rs are the Fresnel reflection coefficients for
the parallel and perpendicular polarizations, respectively
[6].

3. Self-Consistent Field Equation

The interpretation of the results obtained in ellipsomet-
ric researches for systems with nanoparticle layers is
rather a complicated problem. It is associated with diffi-
culties that arise at the construction of theoretical mod-
els, because the use of the dielectric function formalism
becomes problematic for thin films, whose thicknesses
are comparable with that of the transition near-surface
layer, where local fields change strongly in space [12–16].
Therefore, in order to construct a theoretical model, it
is desirable to apply such methods which do not use the
dielectric function directly. One of them is the devel-
opment of the electrodynamics of ultrathin films which
is based on the idea of effective susceptibility [14]. In
particular, in this work, we used the method of Green’s
functions in the framework of the self-consistent field
theory. The main idea of the local (near-) field theory
consists in that a relation between the local and external
fields should be determined at an arbitrary point of the
system. This relation has a universal character, and it
can be found in terms of the linear response function of
the system with respect to an external field action (the
effective susceptibility) [17].

The essence of the method consists in searching for the
solution of the Lippmann–Schwinger equation [18,19] for
the self-consistent field,

Ei(R, ω) = E
(0)
i (R, ω)−

−a
N∑
α=1

∫
Vα

dR′Gij(R,R′, ω)χjl(ω)El(R′, ω) (3)

where Gij(R,R′, ω) is Green’s function (the photon
propagator) of the medium, where the particles are lo-
cated; χjl(ω) is the susceptibility of a material the parti-
cles are made of (in the general case, χjl is a tensor); the
coefficient a = ω2/c2 is introduced for the SI system of
units; and the integration is carried out over the volume
of all particles in the system under consideration.

The physical meaning of the Lippmann–Schwinger
equation consists in that it determines the local
field at any point of the system. This field is a
sum of the external field E

(0)
i (R, ω) and the field

−(ω2/c2)
∫
Vα
dR′Gij(R,R′, ω)χjl(ω)El(R′, ω) induced

by self-consistent currents in the object which are gov-
erned by local fields.

For simple media–e.g., for free space, two homoge-
neous and isotropic media separated by a plane inter-
face, or planar layered structures–Green’s function can
be found easily [14,15,19]. The Green’s function method
is universal, and it can be applied to various problems
dealing with optical researches of thin films [14, 15], in
particular, with ellipsometric studies.

4. Effective Susceptibility of a Submonolayer of
Nanoparticles Covering a Surface

Let us consider a system consisting of a substrate and
particles located on its surface. The particles are ellip-
soids of revolution. The field at any point of the system
satisfies Eq. (3). We assume that the system is macro-
scopically uniform in the substrate plane, i.e. the lin-
ear dimensions of particles are much less than the field
wavelength and less than the distances between neigh-
boring particles in the layer. As follows from the results
of work [19], if the average distance between neighboring
particles exceeds their linear dimensions, the interparti-
cle interaction can be considered as the interaction be-
tween quasi-pointlike electric dipoles. In this case, the
polarization of individual particle on the surface has to
be found with regard for the dimension and the shape
of particles. Such calculations, with the account of all
multipoles [19], demonstrate that, even if the surface is
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covered with spherical nanoparticles up to a level of al-
most half a monolayer, the dipole approximation remains
valid. Therefore, the right-hand side of Eq. (3) can be
substantially simplified by applying the approximation
of quasi-pointlike dipoles:∑
α

∫
Vα

dR′Gij(R,R′, ω)χjl(ω)El(R′) ≈

≈
∑
α

Gij(r− rα, z, zα, ω)χ̃jl(ω)El(rα, zα). (4)

Here, χ̃jl(ω) = VMχjl(ω), χjl(ω) is the tensor of linear
response for a particle, and (rα, zα) are the coordinates
of the center of the α-th particle, where the vector rα
lies in the surface plane. Assuming the distribution of
particles over the surface to be uniform, let us make
averaging over the particle distribution in the layer. We
obtain

N∑
α=1

Gij(r− rα, z, zα, ω)χ̃jl(ω)El(rα, zα, ω) =
N − 1
S
×

×
∫

dk

(2π)2
e−ikrGij(k, z, zα, ω)χ̃jl(ω)El(k, zα, ω). (5)

Then, making the Fourier transformation in the surface
plane, we obtain the equation for a self-consistent field

Ei(k, zα, ω) = E
(0)
i (k, zα, ω)+

+naGij(k, z, zα, ω)χ̃jlωEl(k, zα, ω), (6)

where n = limN,S→∞(N/S) is the surface concentration
of particles in the layer. Since the tensor χ̃jl(ω) describes
a response to the local field, i.e. it couples the particle
polarization and the local field,

Pj(k, zα, ω) = χ̃jl(ω)El(k, zα, ω), (7)

Eq. (6) yields another equation that connects the polar-
ization with the external field,

(χ̃ij(ω))−1
Pj(k, zα, ω) = E

(0)
i (k, zα, ω)+

+naGij(k, z, zα, ω)Pj(k, zα, ω). (8)

The solution of this equation looks like

Pj(k, za, ω) =
[
(χ̃ji(ω))−1 − naGij(k, z, zα, ω)

]−1

×

×E(0)
i (k, zα, ω). (9)

It means that the parameter of effective susceptibility
of a submonolayer particle coating located on the solid
surface, which connects the layer polarization with the
external field, is expressed by the formula

Xij(k, za, ω) =
[
(χ̃ij(ω))−1 − naGji(k, zα, zα, ω)

]−1

.

(10)

The tensor of effective susceptibility can be easily writ-
ten down in the own coordinate system for s- and p-
polarized waves (in this system, the light incidence plane
coincides with the plane XOZ of the Cartesian coordi-
nate system):

Xij(k, ω) =

 Xxx(k, ω) 0 Xxz(k, ω)
0 Xyy(k, ω) 0

Xzx(k, ω) 0 Xzz(k, ω)

 , (11)

where

Xxx =
1
D

[
1
α⊥

+ 2πni
k2

ε0kz1ε1

(
1 +R0

p

)]
,

Xzz =
1
D

[
1
α‖

+ 2πni
kz1
ε0ε1

(
1−R0

p

)]
,

Xyy =
[

1
α‖

+ 2πni
k2
0

ε0kz1

(
1−R0

s

)]−1

, (12)

Xxz = −Xzx =
1
D

2πni
k

ε0ε1
R0
p,

D =
[

1
α⊥

+ 2πni
k2

ε0kz1ε1

(
1 +R0

p

)]
×

×
[

1
α‖

+ 2πni
kz1
ε0ε1

(
1−R0

p

)]
+ 4π2n2 k2

ε20ε
2
1

R0
p
2
,

α‖,⊥ are the components of the susceptibility tensor for
a particle on the surface (see Appendix), n is the surface
concentration of particles, ε0 is the vacuum dielectric
permittivity, ε1 is the dielectric permittivity of the ex-
ternal medium (the half-space, where the particles are
located), R0

i are the Fresnel reflection coefficients of a
clean surface for the corresponding polarization which
are multiplied by the phase factor exp(−2k0hz cosϑ).
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In the electrostatic approximation, this phase factor is
considered equal to 1. The quantity k0 = ω/c is the
wave vector of light in vacuum, and the wave vectors
kx =

√
ε1k0 sinϑ and kz =

√
ε1k0 cosϑ along the axes

X and Z, respectively, in the external medium are ex-
pressed in terms of the angle of incidence ϑ, which is
reckoned from a normal to the surface, if the latter is
illuminated from the same side of the substrate, where
the particle layer is. In the general case, the quantity kz
is defined by the equation k2

x + k2
z = ε1k

2
0.

Now, polarization (7) which enters the right-hand side
of Eq. (6) can be expressed in terms of the effective
susceptibility tensor (11) and the external field. There-
fore, we obtain the following solution of the Lippmann–
Schwinger equation for a thin submonolayer film of
nanoparticles on a surface:

Ei(k, zα, ω) = [δij + naGil(k, zα, zα, ω)Xlj(k, zα, ω)]×

×E(0)
j (k, zα, ω). (13)

That is, the local field which changes rapidly in space
can be determined, by knowing the long-wave external
field, with the help of the effective susceptibility.

The last step of the presented calculations is the in-
verse Fourier transformation of expression (9) to obtain
the polarization in the r-space. In the general case,
it is rather a complicated problem, but since the ex-
citation in our case is made by a monochromatic plane
wave, the situation becomes considerably simpler simi-
larly to that with Eq. (5). In the (k, z)-space, the depen-
dence of the external field on the wave vector looks like
E(k) = Eδ(k‖ − kx). Using this equality, as well as the
surface concentration of particles n, we obtain the fol-
lowing formula for the average polarization of the layer
in the case where no z-dependence is taken into account:

P (x) = nX(k‖ = kx)Ee−ikxx. (14)

It completely agrees with the Floquet theorem [20].
Hence, by calculating the relation between the polar-

ization of the system or the scattered field, on the one
hand, and the external field, on the other hand, we can
find the reflection coefficients of the system and use them
to determine ellipsometric parameters.

5. Reflection Coefficients

In order to calculate the coefficient of reflection of light
from a substrate covered with a layer of nanoparticles, we
use the approach of molecular optics. The field emitted

by one dipole is determined at the distance R as follows
[21]:

Eem1 = − k2
0

ε0R
p⊥e

i(ωt−kR), (15)

where p⊥ is the dipole component perpendicular to the
direction, in which the radiated field is considered. As
was shown in work [21], the field generated by a layer of
cophased dipoles propagates perpendicularly to the layer
and equals half the field produced by the first Fresnel
zone, the form of which being a circle in this case:

Eem = 2πi
k0

ε0
√
ε1
np⊥e

i(ωt−kR). (16)

At the oblique incidence of an exciting wave, the phases
of dipoles in the layer are not equal, changing as kxx,
as was obtained in formula (14). Therefore, the wave
reflected (scattered) by this dipole layer propagates ac-
cording to the reflection laws, and the Fresnel zones
transforms into ellipses, which are extended along the
X-axis, and the area of which exceeds the area of circles
by a factor of 1

cos θ . Therefore, field (16) increases at
that by the same factor 1

cos θ together with the number
of dipoles in the first Fresnel zone.

If the dipole layer is located on a surface, the surface
changes both the exciting and emitted fields. Dipoles
located at the distance hz over the surface are excited
by a field, which is a sum of the incident and reflected
ones:

Ex = Ep(1−R0
p) cosϑ,

Ey = Es(1 +R0
s),

Ez = Ep(1 +R0
p) sinϑ, (17)

where the quantity R0
i is the same as in expression (12).

Since the particle dimensions are much smaller than the
wavelength, such a dipole approximation is correct. In
the same way, by summing up the fields emitted directly
and reflected from the surface and by taking the direc-
tions of their propagation into account, we obtain the
field that is additionally scattered by the particles in the
surface layer. The corresponding dipole projections for
expression (16) are

pp⊥ = pz(1 +R0
p) sin θ − px(1−R0

p) cos θ,

ps⊥ = py(1 +R0
s). (18)
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Combining expressions (16)–(18) and taking the addi-
tional factor 1

cos θ in Eq. (16) and expression (11) for the
nanoparticle layer response into account, we obtain

Rs = R0
s + 2πi

k2
0

ε0k1z
nXyy(1 +R0

s)
2,

Rp = R0
p − 2πi

n

ε0ε 1k1z

[
Xxxk

2
1z(1−R0

p)
2+

+2Xxzk1zkx(1−R0
p
2)−Xzzk

2
x(1 +R0

p)
2

]
. (19)

These expressions completely coincide with ones from
work [22], which were derived in a different way. Unfor-
tunately, the expression for the reflection coefficient of p-
polarized light obtained in work [23] includes some errors
which are insignificant, if ε1 = 1. In expression (19), we
also took into account that cos θ = k1z√

ε1k0
, sin θ = kx√

ε1k0
,

and that there is a phase delay between the fields re-
flected by the substrate and the particle layer.

With the help of expressions (12), the result obtained
for the reflection coefficient of p-polarized light, which
enters formula (19), can be simplified to the following
one:

Rp = R0
p − 2πi

1
ε0ε1k1z

n

D′
×

×
[
α‖k

2
1z(1−R0

p)
2 − α⊥k2

x(1 +R0
p)

2
]
, (20)

where the denominator

D′ =
[
1 + 2πni

k2α⊥
ε0kz1ε1

(
1 +R0

p

)]
×

×
[
1 + 2πni

kz1α‖

ε0ε1

(
1−R0

p

)]
+ 4π2n2 k

2α⊥α‖

ε20ε
2
1

R0
p
2

is somewhat different from the denominator D in
Eq. (12). That is, the layer of dipoles on a surface mod-
ifies the reflection as a layer with the effective suscepti-
bilities nα‖

D′ along the X-axis and nα⊥
D′ along the Z-one.

Though the dipole moments induced along the Z- and
X-axes are described by the more complicated expres-
sions (12), the contributions of those two components
partially compensate each other, when the reflected field
is formed. The effective susceptibility along the Y -axis
remains to be equal to nXyy as in Eqs. (12) and (19).

It should be noted that, since every component of the
susceptibilities includes the dielectric permittivity of vac-
uum ε0, all final expressions for fields and reflection co-
efficients do not depend on this quantity.

6. Numerical Calculations

Let the particles covering the surface be made of a sub-
stance that is characterized by the following dielectric
function in its operating frequency range:

εp(ω) = 1 +
f

−ω2 + ω2
0 − iωγ

, (21)

where ω0 = 3 × 1015 s−1 is the resonance frequency,
γ = 0.01ω0 is the damping coefficient, and f is the
oscillator strength which was selected to be equal to
ω2

0 . This means that the resonance frequency is close
to the frequency of a helium-neon laser, and the dielec-
tric function simulates the behavior of a semiconduc-
tor with the frequencies of transverse and longitudinal
optical phonons ωTO = ω0 and ωLO =

√
2ω0, respec-

tively. The substrate is characterized by the real-valued
dielectric constant εr = 4 in this frequency range, i.e.
it behaves like an insulator. We suppose that parti-
cles are ellipsoids of revolution with the fixed volume
Vp = (4π/3)hxhyhz = (4π/3)×10−24 m3. Hence, spher-
ical particles were assumed to have a diameter of 20 nm,
and the prolate and oblate particles to be characterized
by the eccentricities hx/hz = 5 and 1/5, respectively.
The particle concentration was so selected that the av-
erage distance between particles exceeded their linear di-
mensions, namely, n = 4× 1015 m−2, which corresponds
to about 0.14 of a monolayer in the case of spherical
particles, if the dense hexagonal coating is taken for one
monolayer. The change of the eccentricity parameter
within the limits from 1/5 to 5 gives rise to the varia-
tion of the coating level within the limits from 0.05 to
0.4 monolayer, provided that the model of equal particle
volumes is used. However, if the coefficient of surface
filling is maintained constant, i.e. the linear dimensions
along the surface are fixed, the eccentricity change is
accompanied by the variation of the particle volume.
The following scheme was used in calculations. First,
we determined the components of the linear response of
a separate particle with a given shape on the substrate.
Then, the components of the effective susceptibility were
calculated for a submonolayer coating film by formulas
(11). Afterwards, formulas (19) were used to calculate
the reflection coefficients of the system as functions of
the angle of incidence and the frequency.

7. Results and Their Discussion

The numerical results obtained for the model described
above are exposed in Figs. 2 to 8. In Fig. 2, the general
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Fig. 2. Dependences of the coefficient of reflection from the system on the wavelength and the angle of incidence for p- and s-polarized
light

Fig. 3. Dependences of the coefficient of reflection from the system on the angle of incidence at a wavelength of 600 nm for p- and
s-polarized light and for coatings consisting of spherical (s), oblate (ob), and prolate (pr) particles

Fig. 4. Difference between the coefficients of reflection from a substrate with particles and a clean substrate versus the angle of incidence
at a wavelength of 600 nm for coatings consisting of spherical (s), oblate (ob), and prolate (pr) particles
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Fig. 5. Dependences of the coefficients of reflection from the system on the wavelength at the angle of incidence ϑ = 60◦ for p- and
s-polarized light for coatings consisting of spherical (s), oblate (ob), and prolate (pr) particles

Fig. 6. Angles Ψ and Δ versus the angle of incidence at a wavelength of 600 nm for various particle shapes: ψ1 and δ1 – oblate particles
with the ratio of the axes equal to 5; ψ2 and δ2 – oblate particles with the ratio of the axes equal to 4; ψ3 and δ3 – oblate particles
with the ratio of the axes equal to 3; ψ4 and δ4 – oblate particles with the ratio of the axes equal to 2; ψ5 and δ5 – spherical particles;
ψ6 and δ6 – prolate particles with the ratio of the axes equal to 1/5

dependences of the coefficients of reflection from a sur-
face covered with a layer of spherical particles are shown
for p- and s-polarized light. One can see that the depen-
dences of the reflection coefficient for p-polarized light
on both the wavelength and the angle of incidence are
rather complicated. At the same time, analogous de-
pendences for s-polarized light do not reveal noticeable
deviations from the behavior of the coefficient of reflec-
tion from a clean substrate. It is should be noted that,
since the substrate is considered as dispersion-free, its
reflection coefficients do not depend on the wavelength.
The spectral peculiarities in the behavior of the coeffi-
cient of reflection from a system of nanoparticles for p-
polarized light correlate with the positions of transverse
and longitudinal optical phonons. On the other hand,
the corresponding angular dependences demonstrate a

transverse anisotropy induced by the two-dimensionality
of the surface-coating particle system, which becomes
more pronounced, when the angle of incidence increases.

In Fig. 3, the cross-sections of those dependences at
a wavelength of 600 nm are demonstrated for the coat-
ing films consisting of particles with different shapes. As
we see, the different shapes of coating particles result in
almost identical behaviors of the reflection coefficients
for s-polarized light, whereas for p-polarized light, the
reflection in the case of oblate particles considerably dif-
fers from those in two other cases. To emphasize the ex-
isting difference, Fig. 4 shows the difference between the
coefficients of reflection from a substrate covered with a
particle layer and from a clean substrate.

Now, it is obvious that the reflection in the case of
oblate particles is different for s-polarized light as well.
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Fig. 7. Angles Ψ and Δ versus the wavelength at the angle of incidence λ=60◦ for different shapes of particles: ψ1 and δ1 – oblate
particles with the ratio of the axes equal to 5; ψ2 and δ2 – oblate particles with the ratio of the axes equal to 4; ψ3 and δ3 – oblate
particles with the ratio of the axes equal to 3; ψ4 and δ4 – oblate particles with the ratio of the axes equal to 2; ψ5 and δ5 – spherical
particles; ψ6 and δ6 – prolate particles with the ratio of the axes equal to 1/5

Fig. 8. Difference of the angles Ψ and Δ for the particle-covered and clean substrates versus the angle of incidence at a wavelength of
600 nm for various particle shapes: ψ1 and δ1 – oblate particles with the ratio of the axes equal to 5; ψ2 and δ2 – oblate particles with
the ratio of the axes equal to 4; ψ3 and δ3 – oblate particles with the ratio of the axes equal to 3; ψ4 and δ4 – oblate particles with the
ratio of the axes equal to 2; ψ5 and δ5 – spherical particles; ψ6 and δ6 – prolate particles with the ratio of the axes equal to 1/5

However, the difference between the coefficients of re-
flection from a clean substrate and a substrate covered
with a particle layer is very small, thus being hardly no-
ticeable in the previous figure. An almost complete co-
incidence of the reflection coefficients for spherical and
prolate particles can be explained by a smaller change
of the interaction between a particle and the surface at
the particle’s elongation than at its flattening. Since the
interaction with the substrate is reciprocal to the cubic
power of the distance, it is clear that the largest effect
has to be attained in the case of oblate particles, the cen-
ters of which are located at shorter distances from the
substrate in comparison with other cases. But, in gen-
eral, the difference between the coefficients of reflection
from a clean surface and a surface covered with particles

is rather insignificant. Therefore, it is hard to find the
contribution of particles to reflection, which is the sub-
ject of our interest, by measuring only the amplitude of
the reflected wave.

Figure 5 shows the dependences of the reflection co-
efficient on the wave frequency at a fixed angle of in-
cidence (ϑ = 60◦) for films composed of particles with
different shapes. One can see once more that the case
of oblate particles considerably differs from the others,
and the influence of the particle layer on the reflection
of s-polarized light is very weak.

In Figs. 6 and 7, the dependences of the ellipso-
metric parameters ψ and Δ on the angle of incidence
and the wavelength, respectively, for coatings with par-
ticles characterized by different axis ratios are depicted.

1142 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 10



THEORY OF THE ELLIPSOMETRY OF A LAYER

One can see that the ellipsometric parameters strongly
depend on the shape of particles that cover the sur-
face. In this case, even the difference between spher-
ical and prolate particles exceeds the standard errors
of measurements. The angular dependences of ellipso-
metric angles reveal the same features that were ob-
served in the behavior of the reflection coefficient for
p-polarized waves, Rp. The dependence on the wave-
length is rather appreciable, being governed just by the
presence of particles on the surface, because the sub-
strate is considered as dispersion-free with the parame-
ters ψ = 9◦10′ and Δ = 180◦ at the angle of incidence
ϑ = 60◦.

In Fig. 8, the dependences of the differences between
the values of ellipsometric parameters ψ and Δ calcu-
lated in the cases of a surface covered with particles
characterized by various axis ratios and in the case of
a clean surface (all at a wavelength of 600 nm) on the
angle of incidence are shown. One can easily see that
the largest deviations from the parameters characteris-
tic of the case with a clean substrate are observed in the
range of angles of incidence, the vicinity of which con-
tains the peculiarities in the dependences of the ellipso-
metric angles. At the same time, there exists a region
near 40◦, where there is almost no difference between
the parameters for a clean substrate and a substrate
covered with particles, irrespective of the shape of the
latter.

All those results evidence a possibility to determine
such important characteristics of nanosystems as the
shape of particles that form the coating, using just ellip-
sometric methods.

8. Conclusions

Within the local field method with the use of the idea
of effective susceptibility, we have developed the ellipso-
metric theory for monolayers of nanoparticles that cover
the surface of a semiconductor or insulator. For the
systems simulated as a substrate with semiconducting
particles located on its surface, which have the shape
of an ellipsoid of revolution, the effective susceptibil-
ity and the dependences of reflection coefficients and
ellipsometric parameters on the angle of incidence and
the frequency have been calculated. The presence of
nanoparticles that cover the semiconductor surface make
an appreciable contribution to the values of ellipso-
metric parameters, which can be measured experimen-
tally.

APPENDIX

As was shown in work [24], the linear response (polarization) of a
separate particle, which has the shape of an ellipsoid of revolution
and is so oriented on a surface that its axis of rotation is directed
normally to the plane surface of the substrate, can be written in
the form

α̂ =

 α‖ 0 0

0 α‖ 0

0 0 α⊥

 . (D1)

The components of this tensor are

α‖,⊥ = ε0ε1V
(εP − ε1)L‖,⊥

ε1 + (εP − ε1)m‖,⊥
, (D2)

ε0, εp, ε2, and ε1 are the dielectric constants of vacuum, particles,
the substrate, and the external medium, respectively; m‖,⊥ are
the depolarization factors; and

L‖,⊥ =

[
1 +

(ε1 − ε2) (εp − ε1)U‖,⊥

3 (ε1 + ε2)
(
ε1 + (εp − ε1)m‖,⊥

)]−1

. (D3)

For prolate particles, the depolarization factor has the following
components:

m⊥ =
1− ξ2

ξ3

(
1

2
ln

1 + ξ

1− ξ
− ξ
)
, m‖ =

1

2
(1−m⊥).

Here, ξ is a parameter that describes the particle shape and equals
ξ =

√
1− γ2

p , where γp = hx/hz is the ratio between the ellipsoid
semiaxes (the eccentricity).

For oblate particles, the depolarization factor has the following
components:

m⊥ =
1 + ξ2

ξ3
(ξ − arctan ξ), m‖ =

1

2
(1−m⊥), (22)

where ξ =
√
γ2

p − 1.

In addition, U‖ = t and U⊥ = 2t, where t = hxhyhz(2zp)−3,
and zp is the distance from the particle center to the substrate. In
our case, zp = hz , i.e. t = γ2

p/8.
For spherical particles, m‖ = m⊥ = 1/3.
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ТЕОРIЯ ЕЛIПСОМЕТРIЇ
ШАРУ НАПIВПРОВIДНИКОВИХ
НАНОЧАСТИНОК, ЩО ПОКРИВАЮТЬ ПОВЕРХНЮ

Є.Г. Борщагiвський, В.З. Лозовський, Т.О. Мiшакова

Р е з ю м е

У рамках методу локального поля побудовано теоретичну
модель елiпсометрiї субмоношару напiвпровiдникових нано-
частинок, що покривають поверхню. Для систем, якi мо-
делюються як пiдкладка з розташованими на нiй частин-
ками, що мають форму елiпсоїда обертання, було роз-
раховано ефективну сприйнятливiсть. Це дало змогу ви-
значити залежностi коефiцiєнтiв вiдбиття та елiпсометри-
чних параметрiв вiд кута падiння та частоти. Наявнiсть
напiвпровiдникових наночастинок, що покривають поверх-
ню, дає помiтний внесок у елiпсометричнi параметри, що
може бути вимiряно експериментально. Знайдено, що цi
елiпсометричнi параметри залежать вiд концентрацiї та форми
частинок.
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