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The critical behavior of isobaric-isothermal compressibility, the dif-
fusion and barodiffusion coefficients, and the barodiffusion ratio for
two-component liquid mixtures with a confined geometry has been
studied. To analyze the specific features of barodiffusion phenom-
ena, the scaling hypothesis for spatially confined systems and the
hypothesis of “complete scaling” have been applied. The influence
of the lower crossover dimension and spatial dispersion effects on
the characteristics of barodiffusion processes in nanoscale liquid
mixtures in their critical region has been studied.

1. Introduction

This work is aimed at describing the barodiffusion pro-
cesses in nano- and meso-sized (at the border between
the nano- and microscales) liquid systems in their criti-
cal region, by using the general ideas of thermodynamics
and statistical physics of nonequilibrium processes [1–3],
as well as the scaling theory for spatially confined sys-
tems (finite-size scaling) [4–6]. It is well known that the
barodiffusion phenomena are governed by density gradi-
ents in simple liquids or concentration gradients in liquid
mixtures and, in addition, by pressure gradients. The
latter become important, in particular, in high-frequency
ultrasonic fields which find a more and more application
in applied medicine due to a wide introduction of novel
precision methods of diagnostics and therapy [7, 8].

Earlier, we studied such characteristics of barodiffu-
sion phenomena as the diffusion coefficient and the bar-
odiffusion ratio for a one-component two-phase system
in its critical region [9], as well as the influence of a
pressure gradient on equilibrium membrane electrical
potentials (the Nernst concentration potential and the
Goldman–Hodgkin–Katz stationary potential) [10] and
the Na+ − K+ activity of ATPhase. In this paper, the
main attention is focused on the features of such quanti-

ties as the isobaric-isothermal compressibility, the diffu-
sion and barodiffusion coefficients, and the barodiffusion
ratio for nanoscale liquid mixtures. For this purpose,
the corresponding scaling hypothesis [1–3, 11] and the
hypothesis of “complete scaling” [12, 13] were applied
to two-component liquids which are confined in small
volumes characterized by different geometrical shapes,
i.e. which differ from one another by the value of lower
crossover dimension (LCD) dLCD. The very concept of
LCD arose in connection with the introduction of uni-
versality classes which turn out necessary for a regu-
lar study of critical phenomena and phase transitions of
the second kind in spatially confined systems of differ-
ent origin. As is known (see, e.g., work [14]), the class
of universality includes objects which are characterized
by identical (i) spatial dimensionality, (ii) order param-
eter dimensionality, (iii) type of intermolecular interac-
tion (short- or long-range), and (iv) Hamiltonian sym-
metry. In the case of mesoscale systems, those four at-
tributes should be appended by the similar geometrical
shape or, in other words, the identical LCD which deter-
mines the spatial dimensionality of the system, in which
its linear sizes along spatial confinement directions tend
to monomolecular ones. Under such conditions, a sphere
or a cube confined from all sides shrinks into a molecule,
i.e. into a zero-dimensional object with dLCD = 0; a
cylindrical pore into a monomolecular thread, i.e. a one-
dimensional object with dLCD = 1; and a gap-like pore
into a monomolecular plane, i.e. a two-dimensional ob-
ject with dLCD = 2 [15, 16].

2. Barodiffusion Phenomena in Two-component
Liquid Mixtures

Barodiffusion phenomena in binary mixtures are classed
as vector transport processes. In accordance with the
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Curie principle, the linear relation for a diffusion flux
Jn, which determines the number of particles that cross
a unit area per unit time, has to contain the gradients
of the chemical potential, ∇µ, pressure, ∇p, and the
temperature, ∇T (here, we do not consider the gradient
of the electric field potential and other thermodynamic
forces), and looks like

Jn = −a∇µ− b∇p− c∇T, (1)

where a, b, and c are the Onsager kinetic coefficients.
In such an approximation, the equation of state, µ =
f(p, T, x), where x is the mixture concentration, allows
the chemical potential gradient to be written in the form

∇µ = (∂µ/∂x)p,T∇x+(∂µ/∂p)T,x∇p+(∂µ/∂T )p,x∇T.

(2)

Substituting Eq. (2) into Eq. (1), we obtain the following
expression for the diffusion flux:

Jn = −a(∂µ/∂x)p,T∇x− [b+ a(∂µ/∂p)T,x]∇p−

−[c+ a(∂µ/∂T )p,x]∇T. (3)

On the other hand, the same diffusion flux can be
presented in terms of such kinetic properties of mixtures
as the diffusion, D, barodiffusion, Dp, and thermal dif-
fusion, DT , coefficients and the barodiffusion, kp, and
thermodiffusion, kT , ratios:

Jn = −D∇x− Dp

p
∇p− DT

T
∇T =

= −D(∇x+
kp
p

∇p+
kT
T

∇T ). (4)

A comparison between formulas (3) and (4) brings
about the following relation between the kinetic proper-
ties of two-component liquid mixtures, on the one hand,
and the Onsager coefficients and thermodynamic deriva-
tives, on the other hand:

D = a(∂µ/∂x)p,T , (5)

Dp = Dkp = p[b+ a(∂µ/∂p)T,x], (6)

DT = DkT = T [c+ a(∂µ/∂T )p,x], (7)

kp = p
b+ a(∂µ/∂p)T,x
a(∂µ/∂x)p,T

, (8)

kT = T
c+ a(∂µ/∂T )p,x
a(∂µ/∂x)p,T

. (9)

Below, we are interested only in barodiffusion phenom-
ena supposing – additionally to the previous approxima-
tions – that the temperature of liquid mixture is con-
stant, i.e. ∇T = 0. The features of thermodiffusion
phenomena in systems with membranes and in external
fields have been considered earlier (see, e.g., work [17]).

Another principal remark concerns the necessity to
consider the relations nonlocal in space and time be-
tween the diffusion flux and the concentration and pres-
sure gradients in binary liquid mixtures for the study of
barodiffusion phenomena in the critical region to be con-
sistent. In this work, the effects of spatial non-locality
(spatial dispersion) were studied only in a close vicinity
to the curve of liquid-vapor critical points – namely, in
the fluctuation region – in order to get rid of non-physical
results (the vanishing of the diffusion coefficient and the
infinite growth of the barodiffusion ratio).

3. Scaling Hypothesis for Barodiffusion
Phenomena in Binary Mixtures with a
Confined Geometry

Let us consider a binary liquid mixture that is confined
in a small enough volume. We assume that the inequal-
ity L ≤ ξ, where L is the characteristic linear dimension
of the system, and ξ is the correlation length of order pa-
rameter fluctuations, holds. In what follows, for definite-
ness, we concentrate our attention on the critical liquid-
liquid state. It is known (see, e.g., work [1]) that, in this
case, the two-component liquid mixture behaves like a
binary alloy, and it can be described using the collec-
tion of independent variables “temperature T–pressure
p–concentration x”. It is expedient to select the Gibbs
free energy per mole of a mixture, G(T, p, x) = µ1 + µx
(its differential equals dG = −SdT +V dp+µdx), as the
thermodynamic potential; here, µ1 is the chemical po-
tential of a pure solvent, and µ = µ2−µ1 = (∂G/∂x)p,T
is the difference between the chemical potentials of a dis-
solved substance and a solvent. The order parameter for
the system under consideration is a deviation of the con-
centration from its critical value, Δx = (x−xc)/xc. Con-
cerning the choice of an external field h, it is known that,
on the basis of the fluctuation theory of critical points,
h = Δp + (∂p/∂T )ρτ for one-component liquids, where
Δp = (p − pc)/pc and τ = (T − Tc)/Tc are deviations
of the pressure and the temperature, respectively, from
their corresponding critical values. For two-component
mixtures, the external field has to receive an additional
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contribution proportional to Δµ = (µ − µc)/µc, which,
in accordance with the hypothesis of the so-called “com-
plete scaling” [12, 13], allows the following relation to be
written for the external field:

h = c1Δp+ c2τ + c3Δµ. (10)

The researches carried out in works [4–6,11] testify that,
for mesoscale liquids within the same class of universal-
ity, their properties demonstrate identical dependences
on the characteristic dimension L of the system and the
thermodynamic parameters in a vicinity of the critical
state. Such a situation is predicted by the hypothesis of
scale invariance which can be formulated for the singu-
lar part of the Gibbs free energy for spatially confined
binary mixtures as follows:

Gsing = L−dfG(ΔxL1/ν , hLβδ/ν). (11)

Here, the critical indices of a liquid mixture, which can
be classed to the universality class of Ising-like systems
with the spatial dimensionality d = 3, take the values
β = 0.325, δ = 4.815, and ν = 0.625. The asymptotics
of the scaling function fG(y, z), which satisfy the condi-
tions fG(y → ∞) ∼ yβ(δ+1) and fG(z → ∞) ∼ z1+1/δ,
ensure the passage to the limit from spatially confined
binary mixtures to unconfined systems in the sense of
the inequality L � ξ, because, on the basis of scaling
hypothesis (11), we have Gsing ∼ Δxδ+1 ∼ h(δ+1)/δ in
this case.

Below, the external field h which is defined by for-
mula (10) is associated, as a rule, with the pressure
variation h ≈ Δp, provided that the inequality 4p �
(c2τ + c3Δµ)/c1 is satisfied. In addition, in order to
study the barodiffusion properties of liquid mixtures in
more details, we use the following result obtained in
work [16] for the temperature variable τ(S, ξ∗) in spa-
tially confined systems,

τ(S, ξ∗) = (G/S)1/ν + [1 + (G/S)1/ν ](1/ξ∗)1/νsignτ.

We now write similar expressions for the pressure and or-
der parameter variations (the latter are deviations of the
concentration from its critical value) in a liquid mixture:

Δp(S, ξ∗) = (G/S)βδ/ν+

+[1 + (G/S)βδ/ν ](1/ξ∗)βδ/νsignΔp, (12)

Δx(S, ξ∗) = (G/S)β/ν+

+[1 + (G/S)β/ν ](1/ξ∗)β/νsignΔx. (13)

In the formulas for τ(S, ξ∗), Δp(S, ξ∗), and Δx(S, ξ∗),
the following notations are used: G is a factor that char-
acterizes the geometrical shape of a studied liquid mix-
ture (G = π for a plane-parallel interlayer, and G = µ∗1
for a cylindrical specimen, where µ∗1 ≈ 2.4048 is the first
zero of the Bessel function), S = L/ξ0 is the number of
monomolecular layers along the direction of spatial con-
finement (L = H for a plane-parallel interlayer with the
thickness H, and L = d for a cylindrical pore with diam-
eter d), ξ∗ = ξ/ξ0 is the dimensionless correlation length,
and ξ0 is its amplitude which is of the atomic (molecu-
lar) dimension for short-range intermolecular potentials
in low-molecular liquids, namely, ξ0 ≈ (0.1÷ 0.3) nm.

Expressions (12) and (13) allow various limiting cases
to be analyzed, namely, (i) the case of mesoscale liquids
where S ≤ ξ∗, so that the first term, which depends
on the linear dimensions of the system, plays the dom-
inant role; and (ii) the case of macrosystems, when the
inverse inequality S � ξ∗ takes place, and the dominat-
ing role belongs to the term which includes the corre-
lation length ξ∗ depending on the thermodynamic vari-
ables reckoned from the critical point. In particular, for
large systems (L� ξ), formulas (12) and (13) yield the
following known expressions for the correlation length
[18]: ξ ∼ Δp−ν/βδ and ξ ∼ Δx−ν/β .

Now, let us consider the critical behavior of various
multipliers and terms in formulas (5), (6), and (8) which
describe the diffusion, D, and barodiffusion, Dp, coef-
ficients and the barodiffusion ratio, respectively, for a
binary mixture in three different regions, where a liquid-
liquid system approaches the critical state, i.e. the fluc-
tuation, dynamic crossover, and regular regions.

3.1. Fluctuation region

The term “fluctuation region” is used below in two senses:
(i) as a dynamic fluctuation region, where singular con-
tributions to the Onsager kinetic coefficients dominate
over their regular parts (as � a0, bs � b0), in accor-
dance with the inequalities

0 ≤ τ < τD, 0 ≤ Δp < ΔpD, 0 ≤ Δx < ΔxD, (14)

where, τD = (TD − Tc)/Tc, ΔpD = (pD − pc)/pc,
ΔxD = (xD − xc)/xc, and the quantities TD, pD, and
xD characterize the temperature, pressure, and concen-
tration, respectively, of the dynamic crossover, at which
as ≈ a0 and bs ≈ b0 [10, 20]; and (ii) as a region in an
immediate proximity to critical points or phase transi-
tions of the second kind, where, in accordance with the
Ginzburg–Levanyuk criterion [19], the role of fluctua-
tion effects becomes crucial, if the following inequalities
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for the thermodynamic variables τ , Δp, Δx, and the
Ginzburg number Gi are satisfied:

0 ≤ τ � Gi, 0 ≤ Δp� Gi1/βδ, 0 ≤ Δx� Gi1/β .

(15)

3.1.1. Onsager kinetic coefficients

The dynamic theory of scale invariance (dynamic scal-
ing) [21] predicts that the singular parts of the Onsager
kinetic coefficients as and bs behave as the correlation
length ξ of order parameter fluctuations in the system,
so that

as/a0 ≈ bs/b0 ≈ ξ/ξ0 =

= τ−ν ∼ Δp(S, ξ∗)−ν/βδ ∼ Δx(S, ξ∗)−ν/β (16)

with the power exponents ν = 0.625, ν/βδ = 0.399,
and ν/β = 1.923. In formula (16), a0 and b0 stand for
the amplitudes of the Onsager kinetic coefficients which
coincide with the values of corresponding coefficients in
the regular region, where τ ≈ Δp ≈ Δx ≈ 1.

3.1.2. Isobaric-isothermal compressibility

Formulas (5) and (8) include the derivative (∂µ/∂x)p,T
which determines the inverse isobaric-isothermal com-
pressibility of two-component liquid mixture, χp,T ∼
(∂x/∂µ)p,T . As is known from the statistical theory
of condensed systems [22], the fluctuation-dissipation
theorems (in the equilibrium case, the term “fluctua-
tion theorems” would be more precise), couple the liq-
uid compressibility (in the general case, the system sus-
ceptibility) and the pair correlation functions for order
parameter fluctuations. The “compressibility integral”
ρkTβT =

∫
G2(r)d~r, where βT = −V −1(∂V/∂p)T is the

isothermal compressibility, and G2 = 〈φ(~r1)φ(~r2)〉 is the
pair correlation function of the order parameter, i.e. a
deviation φ = Δρ = (ρ − ρc)/ρc of the density from its
critical value at two points ~r1 and ~r2 (|~r1 − ~r2| = r), can
serve as an example of such relations for one-component
liquids. Analogously, the derivative (∂x/∂µ)p,T deter-
mines the features in a critical behavior of the pair cor-
relation function G2 = 〈Δx(~r1)Δx(~r2)〉 for concentra-
tion fluctuations, in accordance with the analog of the
fluctuation theorem for a two-component liquid mixture
near its critical liquid–liquid state:

(∂x/∂µ)p,T ∼
∫
〈Δx(0)Δx(r)〉dr =

= Δp−γ/βδfχ(ΔxL1/ν , hLβδ/ν). (17)

The pressure dependence of the susceptibility χ ∼
(∂x/∂µ)p,T in expression (17) is a direct consequence
of the scaling hypothesis (11), from which we have

χ ∼ (∂2Gsing/∂z
2)y(∂z/∂h)2 ∼

∼ L−d+2βδ/ν ∼ L−γ/νfχ(y, z) ∼ Δp−γ/βδfχ(y, z) (18)

with regard for the identities dν = 2 − α, βδ = β + γ,
and α+ 2β + γ = 2 (here, α = 0.110) between the criti-
cal indices and the relation fχ(y, z) ∼ (∂2fG(y, z)/∂z2)y
between the scaling functions of the singular parts of the
Gibbs free energy and the susceptibility.

In formula (18), we used the connection between the
power-law dependence of an arbitrary physical quantity
A on the system size L, A(L) ∼ Ln, and the correspond-
ing power-law dependence of the same quantity on the
pressure, A(Δp) ∼ Δpm. Since the scale dimensional-
ities of the linear size L and the correlation length ξ
coincide, we obtain L ∼ ξ ∼ Δp−ν/βδ. Therefore, the
following relation between the exponents n and m takes
place:

m = (−ν/βδ)n. (19)

It is worth to note that, owing to the Legendre trans-
formation from the Gibbs free energy G to the Helmholtz
free energy F = G − pV , whose differential equals
dF = −SdT−pdV +µdx, the isochorical-isothermal sus-
ceptibility (∂x/∂µ)V,T emerges instead of the isobaric-
isothermal one (∂x/∂µ)p,T . The new susceptibility is
characterized by a “weak” divergence (∂x/∂µ)p,T ∼ τ−γ
rather than the “strong” one (∂x/∂µ)V,T ∼ τ−α at
T → Tc, which must ultimately manifest itself in the
critical behavior of the diffusion coefficient and the bar-
odiffusion ratio.

3.1.3. Diffusion coefficient

In accordance with formulas (5), (16), (17), and (19),
the diffusion coefficient for a binary liquid mixture in
the fluctuation region equals

D = as(∂µ/∂x)p,T =

= L1−γ/νf
(1)
D (y, z) ∼ Δp(S, ξ∗)(γ−ν)/βδf (2)

D (y, z). (20)

Formula (20) predicts that the diffusion coeffi-
cient tends to zero following the power law D ∼
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Δp(S, ξ∗)0.393, when approaching the critical state of a
binary mixture. An experimental confirmation of this
result is a reduction of the central line width in the spec-
trum of the Rayleigh scattering of light. Of course, the
vanishing of the diffusion coefficient and the narrowing
of the Rayleigh central line width Γc down to zero are
unphysical and require that the effects of spatial disper-
sion be taken into account (see, e.g., work [23]).

3.1.4. Barodiffusion ratio

On the basis of formula (8), one may assert that the
barodiffusion ratio is characterized by the divergence

kp = k0
pΔp(S, ξ

∗)−γ/βδfk(y, z) (21)

which coincides completely with the divergence of the
isobaric-isothermal susceptibility (∂µ/∂x)p,T . As for
other factors in formula (8), the singularities of the On-
sager kinetic coefficients as and bs are mutually com-
pensated, so that the derivative (∂µ/∂p)T,x has no di-
vergence in the critical state of a binary mixture, because
it is a derivative of one field variable, µ, with respect to
the other field variable, p. In expression (21), the quan-
tity k0

p = p[b/a+ (∂µ/∂p)0T,x]/(∂µ/∂x)
0
T,p stands for the

barodiffusion ratio amplitude which remains almost con-
stant, when approaching the critical state.

3.1.5. Barodiffusion coefficient

In view of all that was said above about the singular
parts of the Onsager kinetic coefficients as and bs and
the absence of a divergence in the derivative (∂µ/∂p)T,x,
it becomes clear that, according to formula (6), the bar-
odiffusion coefficient Dp has the same singularity as the
correlation length has, i.e.

Dp ∼ ξ = ξoΔp(S, ξ∗)−ν/βδfξ(y, z), (22)

and its maximal value, while approaching the critical
state, cannot exceed the largest linear size of the geo-
metrical volume occupied by a liquid mixture.

It should be noted that a reduction of the diffusion
coefficient and the simultaneous growth of the barod-
iffusion coefficient, when approaching the critical state
of a binary mixture, have obtained the indirect exper-
imental confirmation in work [24], where the thermod-
iffusion phenomena of a similar nature in macroscopic
liquid mixtures were studied [see formulas (6) and (7)].

3.2. Dynamic crossover region

In contrast to the fluctuation region, in the dynamic
crossover one, where the inequalities

τD < τ < Gi, ΔpD < Δp < Gi1/βδ,

ΔxD < Δx < Gi1/β , (23)

are satisfied, the singular and regular contributions to
the Onsager kinetic coefficients are of the same order
of magnitude, i.e. as ≈ a0 and bs ≈ b0. In this case,
the features in the critical behavior of such barodiffusion
properties of liquid mixtures as the diffusion coefficient
D and the barodiffusion ratio kp are determined by the
derivative (∂µ/∂x)p,T only, because the other quantities
in formulas (5), (6), and (8) can be regarded as approxi-
mate constants: a = as+a0 ≈ 2a0, b = bs+b0 ≈ 2b0, and
Dp ≈ 2p[a0 +b0(∂µ/∂p)0T,x]. So, instead of formula (20),
we now have the following expression for the diffusion
coefficient:

D = 2a0(∂µ/∂x)p,T =

= L−γ/νf
(3)
D (y, z) ∼ Δp(S, ξ∗)γ/βδf (4)

D (y, z), (24)

whereas the barodiffusion ratio and the barodiffusion co-
efficient preserve the same power-law dependences on
thermodynamic variables as in formulas (21) and (22),
respectively.

3.3. Regular region

Fluctuation effects cease to play a substantial role in
the regular region. Let the following conditions for the
thermodynamic variables and the Ginzburg number be
satisfied:

Gi� τ ≤ 1, Gi1/βδ � Δp ≤ 1,

Gi1/β � Δx ≤ 1. (25)

Then the corresponding critical indices in the formulas
for the diffusion coefficient D and the barodiffusion ratio
kp must accept the values characteristic of the Landau
mean-field theory, namely, β = ν = 1/2, γ = 1, and
δ = 3. As a result, we obtain the expressions

D = D0L
−2f

(5)
D (y, z) ∼ Δp2/3(S, ξ∗)f (6)

D (y, z), (26)

kp = k0
pL

2f
(1)
k (y, z) ∼ Δp−2/3(S, ξ∗)f (2)

k (y, z), (27)

where the arguments of the scaling functions are y =
ΔxL2 and z = ΔpL3.
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4. Hypothesis of “complete scaling” and
specificity of barodiffusion phenomena in
liquid mixtures

Let us consider some consequences of the “complete scal-
ing” hypothesis used to study the barodiffusion phenom-
ena in nano- and mesoscale liquids.

First of all, it is necessary to emphasize the principal
result of the use of the “complete scaling” hypothesis (see
details in works [12,13]). Namely, for two-component liq-
uid mixtures, there are three – generally speaking, dif-
ferent – susceptibilities χ1, χ2, and χ3 characterized by
“strong”, “weak”, and “intermediate”divergences, respec-
tively, in the critical region, provided that Δp→ 0. We
have

χ1 ∼ Δp(S, ξ∗)−γ/βδ, χ2 ∼ Δp(S, ξ∗)−α/βδ,

χ3 ∼ Δp(S, ξ∗)−(1−β)/βδ, (28)

where the exponents are γ/βδ = 0.792, α/βδ = 0.070,
and (1 − β)/βδ = 0.431. Note that, since the critical
indices satisfy the identity α + 2β + γ = 2, the third
index exactly equals half the sum of the first and second
indices.

As was marked above in connection with formula (17),
the “strong” divergence of the susceptibility χ1 is asso-
ciated with a specific critical behavior of the correlation
function 〈Δx(r1)Δx(r2)〉 for fluctuations of the key or-
der parameter for a liquid mixture, i.e. concentration
fluctuations. Concerning the “weak” divergence of the
susceptibility χ2, it is connected with the correlator of
thermal (or energy) fluctuations 〈ΔE(r1)ΔE(r2)〉, and
the isochoric heat capacity of the system is responsible
for the correlator critical behavior. At last, the inter-
mediate divergence of the susceptibility χ3 is caused by
the pair correlation function 〈Δx(r1)ΔE(r2)〉 of fluctu-
ations of both order parameters – the concentration and
the energy. This function is not equal to zero for liquid
systems, unlike that for magnets, for which, owing to a
different symmetry nature, this correlator is absent [19].

According to formulas (28), the specific critical be-
havior of susceptibilities of a binary liquid mixture can
manifest itself in the spectra of molecular light scatter-
ing, in particular, in experimental studies of the pressure
effect on the width Γc of the Rayleigh central line.

A direct consequence of the “complete scaling” hypoth-
esis related to different types of susceptibilities in the
two-component mixture is the emergence of three diffu-
sion coefficients, each of which demonstrates a different
critical behavior in the fluctuation region, namely,

D1 = asχ
−1
1 ∼ Δp(S, ξ∗)(γ−ν)/βδ ∼ Δp(S, ξ∗)0.393, (29)

D2 = asχ
−1
2 ∼ Δp(S, ξ∗)(α−ν)/βδ ∼ Δp(S, ξ∗)−0.329,

(30)

D3 = asχ
−1
3 ∼ Δp(S, ξ∗)(1−β−ν)/βδ ∼ Δp(S, ξ∗)0.032.

(31)

The results obtained allow the following conclusions
about the diffusion coefficients of a liquid mixture to be
formulated.

According to formula (29) the diffusion coefficient D1

decreases with the approach to the critical state of a mix-
ture as approximately the reciprocal of the correlation
length, because, on the basis of the identity γ = (2−η)ν
and owing to the small numerical value η ≈ 0.037 of
the critical index for the anomalous dimensionality of
the pair correlation function of order parameter fluctu-
ations, we have γ − ν = (1 − η)ν ≈ ν. In other words,
the diffusion coefficient D1 is isomorphic to the diffusion
coefficient D, which is given by formula (20), according
to the scaling hypothesis (11) for the singular part of the
Gibbs free energy.

In contrast to D1, the second diffusion coefficient D2,
according to formula (30), grows, rather than diminishes,
while approaching the critical state, and its divergence
D2 ∼ Δp(S, ξ∗)−0.33 (the spatial dispersion effects are
not taken into account) turns out almost the same as
that of the correlation length, ξ ∼ Δp(S, ξ∗)−0.40. It can
be stated that the diffusion coefficient D2 is isomorphic
to the diffusion coefficient D = as(∂µ/∂x)V,T , which
corresponds to the scaling hypothesis for the singular
part of the Helmholtz free energy.

The third diffusion coefficient D3, which is connected
with the reciprocal value of intermediate susceptibility,
remains almost constant and behaves itself as a “weak
zero” owing to a very small positive value of the power
exponent in formula (31).

In the dynamic crossover region, the hypothesis of
“complete scaling” gives rise to three different types of
the diffusion coefficient, but the power exponents in for-
mulas (29)–(31) change. Now, they do not, naturally,
contain the critical index ν, because the Onsager kinetic
coefficient can be considered as having no divergence in
this region and being equal a ≈ 2a0, where a0 is its
regular part. As a consequence, all the three diffusion
coefficients have to decrease with the approach to the
critical state following the dependences

D1 ∼ Δp(S, ξ∗)γ/βδ ∼ Δp(S, ξ∗)0.792, (32)

D2 ∼ Δp(S, ξ∗)α/βδ ∼ Δp(S, ξ∗)0.070, (33)
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D3 ∼ Δp(S, ξ∗)(1−β)/βδ ∼ Δp(S, ξ∗)0.431. (34)

At last, in the regular region, where conditions (25)
are satisfied, the application of the Landau mean-field
theory brings about the following results for the diffusion
coefficients:

D1 ∼ Δp(S, ξ∗)2/3, D2 = const,

D3 ∼
√

Δp(S, ξ∗). (35)

The constant value of D2 stems from the fact that
the critical index of heat capacity α = 0 in the Landau
theory.

A direct consequence of the hypothesis of “complete
scaling” is also a modification of the critical behavior of
the barodiffusion ratio k which is completely governed
by the features of three different types of susceptibilities
χ1, χ2, and χ3, in accordance with those expressions
that remain valid in both the fluctuation and dynamic
crossover regions:

kp1 = k0
p1Δp(S, ξ

∗)−γ/βδ ∼ Δp(S, ξ∗)−0.792 ∼ χ1, (36)

kp2 = k0
p2Δp(S, ξ

∗)−α/βδ ∼ Δp(S, ξ∗)−0.070 ∼ χ2, (37)

kp3 = k0
p3Δp(S, ξ

∗)−(1−β)/βδ ∼ Δp(S, ξ∗)−0.431 ∼ χ3.

(38)

In the regular region, the first and third barodiffu-
sion ratios grow with the approach to the critical state
under conditions (25) according to the formulas kp1 =
k0
p1Δp(S, ξ

∗)−2/3 and kp3 = k0
p3Δp(S, ξ

∗)−1/3, whereas
the second barodiffusion ratio kp2 = const owing to the
zero value of the critical index α.

Comparing formulas (36)–(38) and (28), it is easy to
see that the dimensionless values of barodiffusion ratios
and susceptibilities are equal in pairs, namely, k∗p1 =
χ∗1, k∗p2 = χ∗2, and k∗p3 = χ∗3, where k∗pi = kpi/k

0
pi and

χ∗i = χi/χ
0
i .

5. Influence of the low-crossover dimensionality
on barodiffusion properties of binary
mixtures

Let us consider an issue concerning the influence of the
low crossover dimension on a shift of the critical param-
eters: the critical temperature Tc, the critical pressure
pc, and the critical concentration xc. Of course, in the

case of spatially confined systems, it is not a matter of
those critical parameters, for which the singular behav-
ior of physical properties – an unlimited growth (without
taking spatial dispersion effects into account) of the cor-
relation length or the susceptibility, the vanishing of the
diffusion coefficients or the temperature conductivities,
and so forth – takes place. Under the term “critical pa-
rameters of a system with confined geometry”, we will
understand the values of the temperature, Tm(L), pres-
sure, pm(L), and concentration, xm(L), at which the fi-
nite extrema (maxima or minima) of indicated physical
properties are observed.

The critical parameters of confined and unconfined
pure liquids are related to one another by the following
formulas:

Tm(L) = Tc[1 + (G/S)1/ν ]−1, (39)

pm(L) = pc[1 + (G/S)βδ/ν ]−1, (40)

xm(L) = xc[1 + (G/S)β/ν ]−1. (41)

Formulas (39)–(41) can be easily checked with respect to
the passage to the limit of a bulk liquid mixture. Really,
at S → ∞, we obtain Tm(L) → Tc, pm(L) → pc, and
xm(L)→ xc.

For the sake of definiteness, let us examine the liquid
system “ethane C2H6–benzene C6H6” with 39.2 mol% of
ethane. For large liquid volumes, the experimental data
[25] give the following values for the critical pressures
of pure components: p1 = 4.883 Mpa for ethane and
p2 = 4.893 MPa for benzene, and the critical pressure
psum = 8.489 MPa for the given mixture with x = 0.392.
The dependence psum(x) of the critical pressure for an
ethane-benzene mixture on the concentration is essen-
tially nonlinear. To approximate it, let us use the for-
mula

psum(x) = 4.883 + 15.144x− 15.134x2 (106 Pa) (42)

which satisfies all indicated experimental data. From
this expression, it follows that the maximal pressure in
the bulk phase of this mixture, pmax = 8.671 MPa, is
attained at the concentration x = 0.5. In Fig. 1, solid
curve a represents the dependence of the critical pressure
for the binary mixture ethane-benzene, which can be
regarded as unconfined in the sense of the inequality L�
ξ, on the ethane concentration.

To elucidate the dependence of physical properties
of a nanoscale binary mixture ethane-benzene with a
given concentration on the LCD, let us assume that the
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Fig. 1. Dependences of the critical pressure for a binary mixture
ethane-benzene on the concentration

mixture occupies two volumes different by geometrical
shape: 1) a plane-parallel gap (a gap-like pore) with
dLCD = 2 and 2) a cylindrical pore with dLCD = 1. Let
their maximal linear dimensions along the direction of
spatial confinement – i.e. along the thickness H of the
gap or the diameter d of the cylinder – be identical and
equal to 4.75 nm. To calculate the geometrical factors S,
let us estimate the amplitudes of the correlation lengths
ξ0x using the approximate formula

ξ0x = 3

√
Mx

M
ξ0, (43)

where ξ0 is the known amplitude of the correlation length
for a substance with molar mass M (e.g., for water, ξ0 =
1.6 × 10−10 m and M = 18 × 10−3 kg/mol). Then, on
the basis of formula (43), the unknown amplitudes of
the correlation length ξ0x for C2H6 with the molar mass
Mx = 30 × 10−3 kg/mol and for C6H6 with the molar
mass Mx = 78× 10−3 kg/mol equal ξ01 = 1.9× 10−10 m
and ξ02 = 2.6× 10−10 m, respectively.

Let us calculate a variation of the critical pressure in
nanoscale pores, using formula (40) and the values pre-
sented above. It should be noted that the geometrical
factors S, which determine the number of monomolec-
ular layers in the direction of spatial confinement of
those objects, are different. Really, a gap with the
width H = 4.75 nm contains S1 = H/2ξ0 such par-
allel monomolecular layers, whereas a cylindrical pore
with the diameter d = 4.75 nm includes S2 = R/2ξ0
coaxial cylindrical layers, where R is the cylinder ra-

dius. With regard for these values of geometrical factors
S1 and S2, as well as the values of constants G1 = π and
G2 = µ∗1 = 2.4048, we obtain the critical pressures of
pure components pm1 and pm2 on the basis of formula
(40): pm1 = 4.734 MPa and pm2 = 4.577 MPa for a
gap-like pore (dLCD = 2), and pm1 = 4.474 MPa and
pm2 = 4.075 MPa for a cylindrical pore (dLCD = 1).

Therefore, the critical pressure in nanoscale liquids
varies towards lower values, because, for ethane, (pm −
pc)1 = −0.149 MPa in the gap and (pm − pc)2 =
−0.409 MPa in the cylinder, and, for benzene, (pm −
pc)1 = −0.316 MPa in the gap and (pm − pc)2 =
−0.818 MPa in the cylinder. Moreover, with a reduc-
tion of the low crossover dimension dLCD, the difference
|pm − pc| grows by absolute value, which is qualitatively
confirmed by theoretical calculations of the temperature
shifts |Tm − Tc| which were executed for the heat capac-
ity [15] and the diffusion coefficient [16] of water.

Now, let us calculate a variation of the critical pres-
sure in the studied binary mixture, when it is located in
nanoscale pores. In Fig. 1, line b depicts the result of
the linear approximation

pc(x) = xpc1 + (1− x)pc2 (44)

for the concentration dependence of the critical pressure
in a mixture in the unconfined (bulk) phase, whereas line
c characterizes the result of using the linear approxima-
tion

pm(L) = xpc1/[1 + (µ∗1ξ01/R)βδ/ν ]+

+(1− x)pc2/[1 + (µ∗1ξ01/R)βδ/ν ] (45)

for a cylindrical pore with the diameter d = 4.75 nm. A
comparison between the results obtained using formula
(42), which is based on experimental data [25], and the
linear approximation (44) shows that the non-linear ef-
fects in the dependence pc(x) cannot be neglected in any
case (see curve a and straight line b). This means, in par-
ticular, that approximation (45) is not valid in the case
of an ethane-benzene mixture with a confined geometry,
but it might give quite good results only in the case of
similar components in the mixture.

In order to obtain correct results for the concentration
dependence of the critical pressure in nanoscale binary
mixtures, let us apply the following technique. Using
experimental data on pc(x) for a mixture in the bulk
phase, let us determine the critical pressure shifts at the
change to the confined geometry by using formula (40)
and the linear approximation for the effective amplitude
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of the correlation length in the mixture,

ξ0sum = xξ01 + (1− x)ξ02. (46)

For the mixture 39.2% C2H2–60.8% C6H6, we ob-
tain ξ0sum = 2.375 × 10−10 m, which corresponds to 10
average diameters or 20 correlation length amplitudes
ξ0sum along the direction of the spatial confinement of
a cylindrical pore with a diameter of 4.75 nm. The
calculation of the critical pressure in such a liquid sys-
tem brings about the value pm = 8.256 MPa, i.e. the
critical pressure variation at the given concentration is
pm−pc = −0.233 MPa. In Fig. 1, curve d illustrates the
concentration dependence of the critical pressure for the
binary ethane-benzene mixture in a nanoscale cylindrical
pore 2.375 nm in radius.

At last, consider the problem on the influence of LCD
on the main properties of barodiffusion phenomena in
binary mixtures: the diffusion coefficient and the baro-
diffusion ratio.

5.1.1. Diffusion coefficient

In Fig. 2, the dependences of the diffusion coefficient
D∗ = D/D0 on the variable Δp(S, ξ∗) are depicted. The
solid curve corresponds to the diffusion coefficient in an
unconfined (bulk) binary ethane-benzene mixture, for
which the low crossover dimension coincides with the
spatial one (dLCD = d = 3). The dashed and dash-
dotted curves illustrate the dependence D∗ on the pres-
sure Δp(S, ξ∗) for a gap-like pore with dLCD = 2 and a
cylindrical pore with dLCD = 1. While calculating D∗,
we also took into account the asymmetry of the diffusion
coefficient amplitude in the critical region and behind it,
D−

0 6= D+
0 , as was done in works [16, 28].

To evaluate the diffusion coefficientD∗ at its minimum
points pm(S, ξ∗) for various LCDs, let us determine, into
which region – the fluctuation or dynamic crossover one
– fall the values of pm(S, ξ∗) that correspond to the min-
imum of the diffusion coefficient D and the maxima of
the barodiffusion coefficient Dp and the barodiffusion
ratio kp. It turns out that, for liquid mixtures with the
Ginzburg number comparable with GiH2O ≈ 0.3 (see,
e.g., work [26]), the relative changes of the critical pres-
sure |Δpc| = |pm − pc| /pc, which equal 0.027 for cylin-
drical and 0.052 for gap-like pores, fall into the interval

|ΔpD| � |Δpc| < Gi1/βδ (47)

which characterizes the dynamic crossover region. In
inequality (47), Gi1/βδ ≈ 0.46, and the notation
|ΔpD| = |(pD − pc)| /pc is used to designate the dynamic

Fig. 2. Dependences of the diffusion coefficient D∗ = D/D0 on the
pressure Δp taking the LCD and a spatial dispersion into account

crossover pressure introduced in work [10], at which the
singular and regular contributions to the Onsager ki-
netic coefficients become of the same order of magni-
tude. For liquids with a rather large Ginzburg number
Gi ≈ 0.3, the order of the dynamic crossover tempera-
ture is |ΔτD| = |(TD − Tc)| /Tc ≈ 10−5; therefore, the
dynamic crossover pressure is |Δp|D ≈ |τ |

βδ ≈ 10−7.8.
This means that, for the examined liquid ethane-benzene
mixture, the dynamic crossover occurs, provided that
the pressure is |pD − pc| ≈ 10−7.8pc ≈ 0.135 Pa. This
estimate confirms once more the conclusion of work [20]
that the dynamic fluctuation region, where the inequali-
ties 0 ≤ τ < Gi, 0 < Δp < Gi1/βδ, and 0 ≤ Δx < Gi1/β

are satisfied and the singular parts of the Onsager ki-
netic coefficients considerably exceed their regular parts,
is most likely inaccessible experimentally.

That is why the calculations of the diffusion coefficient
D∗ were carried out by such a formula that is valid in
the dynamic crossover region,

D∗ = {(G/S)βδ/ν+

+[1 + (G/S)βδ/ν ](1/ξ∗)βδ/νsignΔp}γ/βδ +D∗
min, (48)

where the diffusion coefficient at the critical point,
D∗

min = Dmin/D0, is determined by a contribution of
spatial dispersion effects. In the approximation that
takes the relation between the order parameter and the
viscous mode [27] into account, we obtain

D∗
min =

kTK0(qξ)
6πηq2ξ3D0

, (49)

where η is the shear viscosity, and K0(u) = (3/4)[1 +
u2 + (u3 − u−1) arctanu] is the Kawasaki function; in
the hydrodynamic region (u = qξ � 1), K0(u) = u2.
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dLCD pc, pm MPa pm − pc, MPa Δpc ξmax, nm D∗
min D∗ (ξ∗ →∞) (k∗p)max k∗p (ξ∗ →∞)

3 8.489 0 0 ≈ 103 9.6× 10−5 9.6× 10−5 1.04× 104 1.04× 104

2 8.048 –0.443 –0.052 4.7 2.1× 10−2 0.102 47.6 9.8

1 7.318 –1.171 –0.138 2.375 4.2× 10−2 0.238 23.8 4.2

Fig. 3. Dependences of the barodiffusion ratio k∗p = kp/k0
p on the

pressure Δp taking the LCD and a spatial dispersion into account

Substituting this asymptotics into expression (49), we
obtain an analog of the known Stokes–Einstein formula
for the diffusion coefficient of a two-component liquid
mixture in the critical state:

D∗
min =

kT

6πηξmaxD0
. (50)

The results of corresponding estimations for the mixture
concerned and various LCD values are given in the sixth
column of Table 1.

The first row of Table 1 corresponds to the quasi-
unconfined system (L � ξ) with dLCD = 3. The maxi-
mum of the correlation length obtained in modern exper-
iments for classical liquids does not exceed ξmax ≈ 1 µm.
To calculate D∗

min using formula (50), the following ap-
proximate technique was used. First, this quantity was
found for water, for which reliable experimental data ex-
ist. We obtained (Dmin)H2O ≈ 2.2× 10−13 m/s2. Since,
the diffusion coefficient of water in the bulk phase equals
(D0)H2O ≈ 2.3×10−13 m/s2, for the dimensionless value,
we obtain (D∗

min)H2O ≈ 10−4. Then, on the basis of
the known formula for the diffusion coefficient in the
elastic impact model (see, e.g., work [3]), the relation
(Dmin)sum ≈ (Dmin)H2O(

√
TsumMH2O/

√
TH2OMsum) ×

[(ξ0)H2O/(ξ0)sum]2 was derived. Ultimately, using the

critical temperatures TH2O ≈ 647 K and Tsum ≈ 462 K,
molar masses MH2O = 18 × 10−3 kg/mol and Msum ≈
59 × 10−3 kg/mol, and correlation length amplitudes
(ξ0)H2O = 0.16 nm and (ξ0)sum = 0.235 nm, for
the sought diffusion coefficients in the bulk phase of
an ethane-benzene mixture, we obtain (Dmin)sum ≈
6.8 × 10−14 m2/s, (D0)sum ≈ 7.1 × 10−10 m2/s, and
(D∗

min)sum ≈ 10−4.
The second row corresponds to a gap-like pore with

dLCD = 2 and the thickness H = 4.7 nm. In view of
the values calculated above for a change of the critical
pressure pc (the pressure pm at the extremum point) and
assuming that ξmax ≈ H, we obtain the estimate Dmin ≈
1.5×10−11 m2/s. In the same way, for a cylindrical pore
with dLCD = 1 and the radius R = 2.375 nm, we obtain
Dmin ≈ 3.0× 10−11 m2/s (see the third row).

The seventh column of Table 1 contains the calcula-
tion results by formula (48) for the diffusion coefficient
D∗ of the studied mixture, provided that the correlation
length ξ∗ → ∞, i.e. at the critical point of the bulk
phase. It should be noted that the dimensional depen-
dence D(S) of the diffusion coefficient is nonmonotonous
[16]. Therefore, in the regular region, where the correla-
tion length ξ∗ → 1, formula (48) gives a passage to the
limit D∗ → 1, when changing to macroscopic volumes
(S → ∞), and the diffusion coefficient D of liquid sys-
tems approaches its bulk value D0 from below, which is
confirmed by independent calculations [29].

5.1.2. Barodiffusion ratio

The results of calculations for the dependence of the bar-
odiffusion ratio kp on the pressure Δp(S, ξ∗) are illus-
trated in Fig. 3. As before, solid curve 1 corresponds
to the unconfined (bulk) phase with dLCD = 3, dashed
curve 2 to a gap-like pore with dLCD = 2, and dash-
dotted curve 3 to a cylindrical pore with dLCD = 1.

The calculations of the barodiffusion ratio k∗p in the
dynamic crossover region with regard for the LCD and
spatial dispersion effects were carried out by the formula

k∗p = [{(G/S)βδ/ν + [1 + (G/S)βδ/ν ]×

×(1/ξ∗)βδ/νsignΔp}γ/βδ +Bq2]−1. (51)
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In the absence of spatial dispersion effects (the last
term), the expression demonstrates an unphysical diver-
gence which is characterized by the dependence k∗p ≈
(ξ∗)−γ/ν ∼ Δp−γ/βδ for a spatially unconfined system
(S → ∞). If spatial dispersion effects are considered
in the critical point of a macroscopic liquid (Δp → 0
and ξ∗ →∞), the barodiffusion ratio remains finite and
equals k∗p = L2

max/4π
2B, where Lmax is the the maximal

linear volume of a liquid system, and B is the parameter
of non-locality that is proportional to the squared radius
of the intermolecular interaction. In two last columns of
Table 1, the calculation results for k∗max at the extremal
points and the values of k∗max obtained from formula (51)
in the limit ξ∗ → ∞ for the correlation length are pre-
sented.

Concerning the behavior peculiarities of the barod-
iffusion coefficient Dp = Dkp in the dynamic crossover
region, its value must be almost independent of the prox-
imity of the system to its critical state, because the sin-
gularities compensate each other in the product Dkp and
are absent from the Onsager kinetic coefficients (a ≈ 2a0

and b ≈ 2b0).
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БАРОДИФУЗIЙНI ЯВИЩА В НАНОМАСШТАБНИХ
РIДИННИХ СУМIШАХ У КРИТИЧНIЙ ОБЛАСТI

О.В. Чалий, Г.В. Храпiйчук, Л.М. Черненко,
К.О. Чалий, О.В. Зайцева

Р е з ю м е

Вивчено критичну поведiнку iзобарно-iзотермiчної стисливо-
стi, коефiцiєнтiв дифузiї та бародифузiї, а також бародифу-
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зiйного вiдношення для 2-компонентних рiдинних сумiшей
з обмеженою геометрiєю. Для розгляду специфiки бароди-
фузiйних явищ використано масштабну гiпотезу для про-
сторово обмежених систем та гiпотезу “повного скейлiнгу”.

Дослiджено вплив нижньої кросоверної розмiрностi та ефе-
ктiв просторової дисперсiї на характеристики бародифузiйних
процесiв у наномасштабних рiдинних сумiшах в критичнiй
областi.
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