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Experimental and theoretical works studying the shear ηS and
bulk ηV viscosity coefficients of simple liquids and the optimal
choice of the intermolecular interaction potential Φ(|r |) and the
radial distribution function g (|r |) are briefly analyzed. The last
are used to determine the friction coefficient β and the relaxation
times τ and τ0 as functions of the temperature T and the den-
sity ρ, as well as to numerically calculate the viscosity coefficients
ηS(ω) and ηV (ω) in wide ranges of state parameters and frequen-
cies. The obtained results are in satisfactory quantitative agree-
ment with the theoretical and experimental data for liquid argon
reported in the literature.

1. Introduction

Investigations of the structure and nonequilibrium prop-
erties of liquids are closely related to the study of the
nature of internal relaxation processes and transport
phenomena in them. The last are accompanied by dis-
sipative phenomena described with the help of trans-
port coefficients and corresponding elastic moduli. The
most extensive experimental researches were performed
for such static and dynamic transport characteristics as
the coefficients of diffusion, shear viscosity, heat conduc-
tion, and electrical conduction, as well as the acoustic
parameters such as the velocity and the absorption co-
efficient of sound waves in a wide range of thermody-
namic state parameters and frequencies [1–3]. However,
the bulk viscosity coefficient and the moduli of shear
and bulk elasticities, as well as thermo- and electroe-
lasticities, cannot be determined by direct experimental
measurements. They are found indirectly by measur-
ing other coefficients or physical parameters. For ex-
ample, the bulk viscosity coefficient ηV is determined

from measurements of the excess absorption of sound
waves in liquids [4–8]. Due to uncertainties of measur-
ing the sound absorption coefficient α, as well as errors
in the used data on thermodynamic and kinetic prop-
erties of liquids (densityρ, velocity of sound C, heat
capacities cP and cV , shear viscosity ηS , and ther-
mal conduction λ), the accuracy of determination of
ηV in liquids [4–6] is insufficient to obtain clear em-
piric regularities and to compare them with theoretical
data.

The experimental values of ηV and ηS obtained in [7]
for liquid argon at ν = 5 × 106 Hz were compared to
the theoretical results [3] which are due mainly to two
contributions: one of them is caused by the “hard” part
of the interaction potential at the interparticle distance
r = σ, while the other “structural” contribution is due to
the long-range forces and is also related to the distortion
of the pair distribution function at the distances r > σ.
The experimental values of ηV and ηS decrease, by sat-
urating at large densities ρ (low T and high P ). More-
over, the temperature interval grows with the pressure
P . The region, the function ηV (T )p decreases, is longer
and sharper in the case of higher isobars (P = соnst),
which results in their intersection with one another and
with the boundary curve ηV (T )H .

It is shown that, at T ≥ 100 K, the saturation curve
of liquid argon manifests the dependence of α/ν2 on the
frequency ν, that is the frequency dispersion of the sound
absorption is caused by the contributions of the kinetic
viscosity coefficients, whose study is of high interest.

The authors of work [7] made an attempt to deter-
mine and analyze the interrelation between the charac-
teristic relaxation times of the bulk and shear viscosi-
ties (τV and τS , respectively) and the equilibration times
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in the configuration and momentum parts of the phase
space (τq and τp). The high-frequency expansions of the
momentum flux autocorrelators in the Green–Kubo re-
lations for the viscosity coefficients [9] yield the limit
values of the bulk (K0, K∞) and the shear (µ∞) elas-
tic moduli used for the determination of the relaxation
times τV and τS . The latter represent the decay times
of the autocorrelators for the diagonal and non-diagonal
elements of the momentum flux tensor in the exponen-
tial approximation. We now follow [10], by assuming
that the autocorrelators can be expanded into the inde-
pendently relaxing potential and kinetic parts and that
the times τq and τp determine the exponential decay
of each part. Then, according to [7], we obtain that
the viscosity coefficients ηV and ηS can be expressed in
terms of the same decay times τq and τp. The authors
also tried to independently estimate the latter consid-
ering τq as the decay time of the mean force autocor-
relator τq ≈ τ〈|F 2|〉 ≈ 3 k T

〈|F 2|〉 β and deriving τp from
the definition of the self-diffusion coefficient under the
assumption about the exponential time dependence of
the velocity autocorrelator, τP ≈ τ〈|v2|〉 ≈ m/β. In
this case, in order to determine τq and τp, one needs
to know the dependence of the friction coefficient β
of the liquid on the state parameters (temperature T ,
density ρ, and pressure P ) that remains unclear till
now.

The molecular dynamics method [11–14] was used to
numerically calculate the frequency-dependent kinetic
coefficients and the corresponding elastic moduli of sim-
ple liquids in a wide range of thermodynamic state pa-
rameters and frequencies. The low-frequency behavior
of the transport coefficients of simple liquids is charac-
terized by the “cuspidal point” singularity (i.e. asymp-
totics) proportional to ω1/2. Analyzing this singularity,
one can see that the time autocorrelation function of mi-
croscopic stresses has “far tails” of the t−3/2 type at large
times and that the amplitude of this tail considerably
exceeds the value following from theoretical estimates of
the corresponding kinetic contributions.

The theoretical study of transport phenomena, elas-
tic and acoustic properties of liquids based upon both
model and molecular-kinetic theories was the subject of
numerous works [1–3, 15–17], where analytical expres-
sions for transport coefficients of liquids and their elastic
and acoustic parameters were obtained with the use of
various approximations. The results contain the contri-
butions of internal relaxation processes and are given in
terms of the potential of interaction between liquid struc-
tural units, the radial distribution function, and other
molecular parameters of the medium.

In [18], the kinetic equations for the one- and two-
particle distribution functions were used to obtain the
analytical expressions for the dynamic shear ηS(ω) and
bulk ηV (ω) viscosity coefficients and to perform numer-
ical calculations for liquid argon in a wide frequency
range. However, the value of the friction coefficient β
was supposed constant in all these calculations (β =
2.85 × 10−13 kg/s), i.e., its dependence on the ther-
modynamic state parameters was not taken into ac-
count. The density dependence in the radial distribu-
tion function was also neglected, because we were in-
terested in the frequency behavior of the kinetic coef-
ficients. In order to improve the agreement between
the theoretical calculations and the experimental re-
sults obtained for the coefficients β, ηS , and ηV , as
well as for the relaxation times of the stress tensor in
the momentum and configuration spaces, it is neces-
sary to choose the real intermolecular interaction poten-
tial Φ (|r |) and the radial distribution function g (|r |)
in the optimal way, but this problem remains else un-
solved.

In [19, 20], the friction coefficient β, the relax-
ation times τ and τ0, and the shear viscosity coeffi-
cient ηS(ω) for liquid argon were theoretically calcu-
lated in wide temperature and density ranges by choos-
ing the optimal form of two modified Lennard-Jones
potentials and the Buckingham potential and by tak-
ing the temperature and density dependences of the ra-
dial distribution function into account. The obtained
results were compared with the theoretical data re-
ported in [3] and experimental results [7]. The anal-
ysis of the numerical calculations of the shear vis-
cosity ηS(ω) shows that the most satisfactory agree-
ment between the theoretical and experimental results
is obtained with the modified intermolecular interac-
tion potential for real liquids proposed by J. Rowl-
inson in [3], where the attraction potential was cho-
sen almost twofold less than the r−6 coefficient in
the Lennard-Jones potential. Based upon this opti-
mal model, we will study the dynamic shear ηS(ω)
and bulk ηV (ω) viscosity coefficients in wide tem-
perature and density ranges, whose numerical val-
ues are borrowed from [7]. Moreover, the parame-
ters present in the potential parts of the coefficients
ηS(ω) and ηV (ω) (the friction coefficient β, the re-
laxation time of the stress tensor in the momen-
tum space τ , and the phenomenological parameter τ0
that represents an analog of the relaxation time of
a diffusing molecule) are self-consistently determined
on the basis of the given model as functions of ρ
and T .
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2. Choice of Model and Initial Expressions for
Viscosity Coefficients

The initial expressions will be chosen as the following an-
alytical relations for the dynamic shear ηS(ω) and bulk
ηV (ω) viscosities coefficients obtained on the basis of the
kinetic equations for the one- and two-particle distribu-
tion functions with regard for the space correlation of
the density in the configuration space [17, 18]:

ηS(ω) =
nk T τ

1 + (ωτ)2
+

2π n2 σ3

15

∞∫
0

dr r3
dΦ (|r|)
dr

×

×
+∞∫
−∞

G1(r, r1, ω)
∂g(|r1|)
∂r1

r1 dr1 , (1)

ηV (ω) =
2π n2 σ3

3

∞∫
0

dr r3
dΦ (|r|)
dr

×

×
+∞∫
−∞

G1(r, r1, ω) ϕ0(|r1|) dr1, (2)
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τ0(2ω τ0)−1/2
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]
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3
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−
[
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)
T

+ γT

(
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]
,

γ =
1
ncV

(
∂P
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)
ρ

,

ϕ1 = ϕ1(r, r1, ω) =
(ωτ0

2

)−1/2

(r − r1);

ϕ2 = ϕ2(r, r1, ω) =
(ωτ0

2

)1/2

(r + r1),

τ = m/(2β); τ0 = β σ2 /2kT . Here, m, σ, n = N
V ,

r12 = q2 − q1, and r = r12/σ are the mass, diam-
eter, density, distance and reduced distance between
the liquid particles, respectively, β is the friction coef-
ficient, k is the Boltzmann constant, T is the absolute

temperature, and ω is the cyclic frequency of the pro-
cess.

Formulas (1)–(3) describe the dynamic behavior of the
viscosity properties of liquids in a wide frequency range.
The first (kinetic) term of the shear viscosity ηS(ω) takes
into account the contribution of the translational relax-
ation, i.e. the relaxation of the viscous stress tensor in
the momentum space, whose characteristic time is equal
to τ = m/(2β). The frequency dependence of the viscos-
ity coefficients ηS(ω) and ηV (ω) is mainly described by
means of the space-time behavior of the fundamental so-
lution (Green function) of the Smoluchowski equation for
the binary density in the configuration spaceG1(r, r1, ω).

The function G1(r, r1, ω) is a complex mathematical
expression and characterizes the recovery of the equilib-
rium structure in the configuration space according to
the diffusion law, but it does not allow one to explicitly
separate the characteristic relaxation time. The process
of structural relaxation has a continuous time spectrum,
so an analog of the time τq from [7] can be obtained only
in the approximation of the exponential decay of relaxing
flows. The phenomenological parameter τ0 enters (3) in
a complex way. The presence of the function G1(r, r1, ω)
enables one to determine the values of ηS(ω) and ηV (ω)
in the whole frequency range and the asymptotic behav-
ior of these coefficients: they change as ω1/2 at low fre-
quencies (which agrees with the results obtained within
the molecular dynamics method [11–14]) and as ω−1 at
high frequencies.

According to expressions (1)–(3), the coefficients
ηS(ω) and ηV (ω) can be determined if the molecular pa-
rameters of the liquid such as the mass m, the particle
diameter σ, and the potential well depth ε are known.
However, the study of the viscosity coefficients ηS(ω) and
ηV (ω) on the basis of the kinetic equations meets some
difficulties concerning the friction coefficient β that can-
not be determined in the framework of the considered
theory. The right-hand sides of the kinetic equations
that ensure their time irreversibility (in our case, the
Fokker–Planck collision operator) describe the dissipa-
tive processes in liquids and include the friction coeffi-
cient β. In [3], the friction coefficient was derived by
finding the autocorrelation momentum function and the
mean force acting on a trial particle moving with con-
stant velocity and had the form

β2 = (4π/3) ρ σ

∞∫
0

∇2 Φ (|r |) g (|r |) r2 dr, (4)

where ρ is the liquid density, ∇2 = 1
r2

∂
∂r

(
r2 ∂
∂r

)
is the

radial part of the Laplace operator, Φ (|r |) is a modified
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T a b l e 1
T , R ρ, P , ηS , mPa·s ηV , mPa·s ηV /ηS

kg/m3 atm [3] [7] this [3] [7] this [3] [7] this
work work work

90 1380 1.32 0.171 0.235 0.239 0.252–0.116 0.156 0.231 1.474 0.663 0.967
128 1120 50 0.073 0.096 0.086 0.093 0.170 0.075 1.274 1.771 0.872

133.5 1120 100 0.073 0.084 0.087 0.097 0.165 0.077 1.329 1.964 0.885
185.5 1120 500 0.087–0.077 0.092 0.097 0.112 – 0.089 1.287 – 0.918

Lennard-Jones potential with a strong repulsion term
such as the hard sphere potential, and r is the dimen-
sionless mutual distance. Therefore, in order to study
the nature and to obtain the dependences of the friction
and viscosity coefficients on the state parameters (den-
sity, temperature, and pressure), one should choose the
optimal intermolecular interaction potential Φ (|r |) and
radial distribution function g(r).

Following the results of works [19, 20], we accept the
following initial expressions for the potential Φ (|r |) and
the function g (|r |):

Φ (|r|) =

{
∞, at r < σ,

4ε
[
r−12 − 0, 5 r−6

]
, at r ≥ σ,

(5)

g (|r |) = y (ρ∗) exp (−Φ (|r |) /kT ) , (6)

where y (ρ∗) = (2 − ρ∗)/2(1 − ρ∗)3 is the Carnahan–
Starling function, ρ∗ = (π/6)N0 σ

3ρ/M is the reduced
density, N0 is the Avogadro number, M is the molar
mass, and ρ is the liquid density.

Substituting formulas (5) and (6) into expressions (1)–
(4), we obtain the following expressions used for the nu-
merical calculation of the coefficients of friction β and
viscosity ηS(ω) and ηV (ω):

β2 = (192M ε/N0 σ
2) ρ∗×

×
∞∫
0

r−6
(
22 r−6 − 2.5

)
g (r) dr, (7)

ηS(ω) = 6ε τρ ∗ T ∗/πσ3(1 + ω∗2)−

− (24)3

5π
ε τ0
σ3

(
ρ∗2

T ∗

) ∞∫
0

dr r−5 (2r−6 − 0.5)×

×
r∫

0

G∗1 (r, r1, ω)r−5
1 (2r−6

1 − 0.5) g(r1) dr 1 , (8)

ηV (ω) =
48
π

ε τ0
σ3 ρ ∗2 T ∗( I1 + I2), (9)

where

I1 = − 96
T ∗2

∞∫
0

dr r−5 (2r−6 − 0.5)×

×
r∫

0

G∗1 (r, r1, ω) r−5
1 (2r−6

1 − 0.5) g(r1) dr 1 ,

I2 =
12
T ∗

∞∫
0

dr r−5 (2r−6 − 0.5)×

×
r∫

0

G∗1(r, r1, ω) [y2(ρ∗) + γ Φ∗(r1)] g(r1) r 1 dr 1 ,

G∗1(r, r1, ω) =
4π r r1
τ0

G1(r, r1, ω) =

=
1
α

[
e−ϕ1(sinϕ1 − cosϕ1)− e−ϕ2(sinϕ2 − cosϕ2)

]
,

γ =
cP
cV

=
KS

KT
; y2(ρ∗) = ρ∗(5−2ρ∗)/(1−ρ∗)(2−ρ∗);

α =
√

2ωτ0 =
√

2ω∗
τ0
τ

;

ϕ1 = ϕ1(r, r1, ω) =
α

2
(r − r1) ;

ϕ2 = ϕ2(r, r1, ω) =
α

2
(r + r1),

T∗ = kT/ε is the reduced temperature, ε is the value
of the potential Φ (|r |) at the point r = rmin, and ω∗ =
ωτ = ωm/2β is the reduced frequency.

Thus, the obtained analytical expressions (7)–(9) en-
able one to study theoretically and to perform numerical
calculations of the kinetic shear ηS(ω) and bulk ηV (ω)
viscosities of liquids as functions of the state parameters
in a wide frequency range.
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T a b l e 2
T , K ρ, ηS , mPa·s ηV , mPa·s ηV /ηS

kg/m3 [7] this [7] 〈ηV 〉, this [7] 〈ηV 〉/ηS , this
work [7] work [7] work

86

1402 0.272 0.271 0.152 0.163 0.262 0.559 0.599 0.970
1407 0.276 0.276 0.163 0.168 0.269 0.591 0.609 0.975
1413 0.280 0.282 0.174 0.177 0.277 0.621 0.632 0.981
1419 0.283 0.289 0.185 0.185 0.285 0.654 0.654 0.987

90

1377 0.235 0.236 0.153 0.161 0.228 0.651 0.685 0.964
1383 0.239 0.241 0.155 0.162 0.234 0.649 0.678 0.970
1390 0.242 0.248 0.168 0.171 0.242 0.694 0.707 0.977
1396 0.245 0.254 0.180 0.182 0.249 0.735 0.743 0.983
1405 0.250 0.262 0.193 0.193 0.260 0.772 0.772 0.992
1418 0.255 0.276 0.211 0.211 0.277 0.827 0.827 1.005

100

1312 0.180 0.173 0.156 0.157 0.165 0.867 0.872 0.952
1319 0.183 0.178 0.152 0.155 0.171 0.831 0.847 0.959
1327 0.186 0.183 0.155 0.156 0.177 0.833 0.839 0.967
1334 0.189 0.188 0.161 0.160 0.183 0.852 0.847 0.974
1347 0.194 0.197 0.172 0.172 0.195 0.887 0.887 0.986
1362 0.199 0.209 0.188 0.188 0.209 0.945 0.945 1.001

110

1240 0.144 0.130 0.167 0.154 0.121 1.160 1.069 0.930
1248 0.148 0.134 0.160 0.150 0.125 1.081 1.014 0.938
1258 0.151 0.139 0.149 0.144 0.131 0.987 0.954 0.948
1268 0.155 0.144 0.151 0.150 0.138 0.974 0.968 0.958
1286 0.162 0.153 0.166 0.159 0.150 1.025 0.981 0.976
1303 0.169 0.163 0.175 0.175 0.162 1.036 1.036 0.993

120

1160 0.113 0.098 0.184 0.167 0.087 1.628 1.478 0.888
1164 0.114 0.099 0.174 0.165 0.089 1.526 1.447 0.893
1181 0.119 0.105 0.161 0.156 0.096 1.353 1.311 0.911
1195 0.123 0.111 0.156 0.153 0.102 1.268 1.244 0.926
1219 0.130 0.119 0.163 0.163 0.112 1.254 1.254 0.947
1241 0.137 0.130 0.169 0.169 0.127 1.234 1.234 0.974

130

1065 0.086 0.072 0.191 0.189 0.059 2.221 2.198 0.811
1092 0.088 0.079 0.179 0.175 0.067 2.034 1.989 0.844
1113 0.092 0.085 0.165 0.161 0.074 1.793 1.750 0.869
1149 0.099 0.096 0.163 0.163 0.087 1.646 1.646 0.910
1175 0.105 0.104 0.164 0.164 0.098 1.562 1.562 0.938

135
1031 0.075 0.066 0.222 0.221 0.051 2.960 2.947 0.781
1037 0.076 0.067 0.195 0.194 0.053 2.566 2.553 0.789
1065 0.079 0.073 0.170 0.166 0.060 2.152 2.101 0.824

No estimates were made for the saturation line

140

968 0.065 0.055 0.253 0.253 0.039 3.892 3.892 0.707
1011 0.068 0.063 0.198 0.193 0.048 2.912 2.838 0.765
1065 0.073 0.074 0.176 0.176 0.062 2.411 2.411 0.835
1103 0.077 0.084 0.169 0.169 0.074 2.195 2.195 0.881

3. Results of Numerical Calculations

Relations (7)–(9) with regard for formulas (5) and
(6) were used for numerical calculations of the shear

ηS(ω) and bulk ηV (ω) viscosity coefficients of liquid ar-
gon as functions of the thermodynamic state param-
eters (ρ, T, and P ) in a wide frequency range. The
values of the temperature T (86 ÷ 140 K) and other
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T a b l e 3
T , K ν∗ ηS , mPa·s ηV , mPa·s

ρ, kg/m3 [7] 10−6 10−4 10−2 1 [7] 10−6 10−4 10−2 1

86

1402 0.272 0.271 0.262 0.188 0.011 0.152 0.262 0.265 0.252 0.017
1407 0.276 0.276 0.267 0.191 0.011 0.163 0.269 0.272 0.257 0.017
1413 0.280 0.282 0.273 0.195 0.011 0.174 0.277 0.280 0.263 0.018
1419 0.283 0.289 0.279 0.199 0.012 0.185 0.285 0.288 0.270 0.018

90

1377 0.235 0.236 0.229 0.171 0.011 0.153 0.228 0.231 0.225 0.017
1383 0.239 0.241 0.235 0.174 0.011 0.155 0.234 0.237 0.231 0.017
1390 0.242 0.248 0.241 0.178 0.011 0.168 0.242 0.245 0.237 0.017
1396 0.245 0.254 0.246 0.182 0.012 0.180 0.249 0.252 0.243 0.018
1405 0.250 0.262 0.255 0.187 0.012 0.193 0.260 0.263 0.251 0.018
1418 0.255 0.276 0.268 0.195 0.012 0.211 0.277 0.280 0.264 0.018

100

1312 0.180 0.173 0.170 0.135 0.011 0.156 0.165 0.167 0.169 0.016
1319 0.183 0.178 0.174 0.138 0.011 0.152 0.171 0.173 0.174 0.016
1327 0.186 0.183 0.179 0.142 0.011 0.155 0.177 0.180 0.180 0.016
1334 0.189 0.188 0.184 0.145 0.011 0.161 0.183 0.186 0.185 0.017
1347 0.194 0.197 0.193 0.152 0.011 0.172 0.195 0.197 0.195 0.017
1362 0.199 0.209 0.204 0.159 0.012 0.188 0.209 0.211 0.207 0.018

110

1240 0.144 0.130 0.128 0.107 0.010 0.167 0.121 0.122 0.125 0.014
1248 0.148 0.134 0.132 0.109 0.010 0.160 0.125 0.127 0.129 0.015
1258 0.151 0.139 0.136 0.113 0.010 0.149 0.131 0.133 0.134 0.015
1268 0.155 0.144 0.141 0.117 0.010 0.151 0.138 0.139 0.140 0.015
1286 0.162 0.153 0.151 0.124 0.011 0.166 0.150 0.151 0.151 0.016
1303 0.169 0.163 0.160 0.131 0.011 0.175 0.162 0.164 0.161 0.017

120

1160 0.113 0.098 0.097 0.083 0.009 0.184 0.087 0.088 0.089 0.012
1164 0.114 0.099 0.098 0.084 0.009 0.174 0.089 0.089 0.091 0.013
1181 0.119 0.105 0.104 0.089 0.009 0.161 0.096 0.097 0.098 0.013
1195 0.123 0.111 0.109 0.093 0.009 0.156 0.102 0.103 0.104 0.014
1219 0.130 0.119 0.117 0.099 0.010 0.163 0.112 0.113 0.113 0.014
1241 0.137 0.130 0.128 0.108 0.010 0.169 0.127 0.127 0.125 0.015

130

1065 0.086 0.072 0.072 0.064 0.007 0.191 0.059 0.059 0.060 0.010
1092 0.088 0.079 0.078 0.069 0.008 0.179 0.067 0.067 0.067 0.011
1113 0.092 0.085 0.084 0.073 0.008 0.165 0.074 0.074 0.074 0.011
1149 0.099 0.096 0.094 0.082 0.009 0.163 0.087 0.087 0.086 0.013
1175 0.105 0.104 0.103 0.089 0.009 0.164 0.098 0.098 0.096 0.013

135
1031 0.075 0.066 0.065 0.059 0.007 0.222 0.051 0.052 0.052 0.009
1037 0.076 0.067 0.066 0.060 0.007 0.195 0.053 0.053 0.053 0.009
1065 0.079 0.073 0.072 0.065 0.007 0.170 0.060 0.061 0.060 0.010

No estimates were made for the saturation line

140

968 0.065 0.055 0.055 0.050 0.006 0.253 0.039 0.039 0.039 0.008
1011 0.068 0.063 0.062 0.056 0.006 0.198 0.048 0.048 0.048 0.009
1065 0.073 0.074 0.073 0.065 0.007 0.176 0.062 0.062 0.061 0.010
1103 0.077 0.084 0.083 0.073 0.008 0.169 0.074 0.074 0.071 0.011

parameters were taken from [7]. When calculating
τ , τ0, ηS(ω), and ηV (ω), the friction coefficient β
was determined according to (7) in the hard sphere
approximation [20]. Table 1 presents the theoreti-
cal results obtained for the isofrequency (ν∗ = 10−6,

ν ∼ 106 Hz) and the shear ηS(ω) and bulk ηV (ω)
viscosities, the theoretical data reported in [3], and
the experimental results of Table 4 from [7] at vari-
ous temperatures, densities, and pressures of liquid ar-
gon.
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The calculated values of ηS(ω),ηV (ω), and the ratio
ηV /ηS are in better agreement with the experimental re-
sults [7] than the theoretical data given in [3]. It is worth
noting that, according to our calculations, the values of
the ratio ηV /ηS as a function of ρ, T , and P lie in the
interval 0.872÷0.967. It is due to the correct account of
the contributions of structural relaxation, as, according
to [1,2], this interval is of the order of 0.5÷10.

Table 2 shows the results of our theoretical calcu-
lations of ηS(ω), ηV (ω), and the ratio ηV /ηS for liq-
uid argon at ν∗ = 10−6 in the temperature interval
86 ≤ T ≤ 140 K at various densities. Our results are
compared to the experimental results and the values ob-
tained for these coefficients and 〈ηV 〉 in [7].

As follows from Table 2, the data obtained for ηS(T )ρ
and ηS(ρ)T are in good quantitative agreement with the
experimental results. One observes an increase of ηS(ρ)T
for each isotherm and a decrease of ηS(T )ρ for the iso-
chors. As for the values of ηV (T )ρ and ηV (ρ)T , those
obtained in this work and in experiments, as well as
〈ηV (T )ρ〉 and 〈ηV (ρ)T 〉 (according to [7]), are in sat-
isfactory agreement. It is worth noting that, at low
temperatures, our data are somewhat overestimated,
but the quantitative agreement is getting better with
increase in the temperature. The ratios ηV

ηS
(T ) and

ηV

ηS
(ρ) in the whole temperature and density ranges lie

within 0.707÷1.005, whereas their experimental values
lie in the interval 0.559÷3.892. At low temperatures and
large densities, the experimental and theoretical values
of ηV /ηS coincide quantitatively. At high temperatures
T ≥ 130 K, the experimental ratios ηV /ηS grow due to
an increase of ηV and a decrease of ηS , while the the-
oretical ratio ηV /ηS remains almost constant and equal
to 0.707÷0.938 in this temperature range, because both
ηS and ηV decrease with rising the temperature in this
region.

As was noted in [7], the saturation line for liquid ar-
gon manifests the dependence of α/ν2 on ν at T ≥ 140 K
caused by the frequency dispersion of the transport coef-
ficients. That is why we used relations (5)–(7) to inves-
tigate the frequency dependence of the shear and bulk
viscosity coefficients in a wide range of reduced frequen-
cies ν∗ = 10−6÷1 (ν ∼ 106÷1012 Hz) at a fixed temper-
ature T and a fixed density ρ. The results are presented
in Table 3 and compared with the static experimental
data on the dependences ηS(ν) and ηV (ν) obtained in
[7] at ν = 5× 106 Hz.

The theoretical results given in Table 3 show that the
frequency dispersion region is located at ν∗ = 10−6 ÷ 1
(ν ∼ 106÷1012 Hz), i.e. in a wide frequency range, which
is due to the contribution of the structural relaxation.

According to the general relaxation theory, this interval
is approximately equal to 102 Hz according to the decay
law of these coefficients ∼ ν−2, whereas in our case, it is
∼ ν−1.

Thus, the results of theoretical researches performed
in the framework of the chosen model of the intermolec-
ular interaction potential Φ (|r |) and the radial distribu-
tion function g (|r |) are in satisfactory qualitative and
quantitative agreement with the experimental data on
the viscosity coefficients of liquid argon. Good agree-
ment is observed at low temperatures and high densities
of liquid argon. Consequently, this model allows one to
study viscous, elastic, and acoustic properties of simple
liquids in a wide range of the state parameters and in a
vicinity of the triple point.
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ВИВЧЕННЯ ЧАСТОТНОЇ ДИСПЕРСIЇ КОЕФIЦIЄНТIВ
ЗСУВНОЇ I ОБ’ЄМНОЇ В’ЯЗКОСТI РIДКОГО АРГОНУ
ЗАЛЕЖНО ВIД ПАРАМЕТРIВ СТАНУ

С. Одiнаєв, Х. Мiрзоамiнов

Р е з ю м е

Наведено короткий аналiз експериментальних i теоретичних
робiт по вивченню коефiцiєнтiв зсувної ηS та об’ємної ηV

в’язкостi простих рiдин, а також оптимальний вибiр потенцiалу
мiжмолекулярної взаємодiї Φ(|r|) й радiальної функцiї розпо-
дiлу g (|r|). Останнi використовуються для визначення коефiцi-
єнта тертя β i часу релаксацiї τ та τ0, залежно вiд температури
T i щiльностi ρ, а також проведення безлiчi розрахункiв кое-
фiцiєнтiв в’язкостi ηS(ω) i ηV (ω) у широкому iнтервалi змiни
параметрiв стану i частот. Отриманi результати знаходяться в
кiлькiсному задовiльному узгодженнi з теоретичними i експе-
риментальними лiтературними даними для рiдкого аргону.
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