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On the basis of Bogolyubov reduced description method and quasirel- parts. In this gauge, charged particles interact with one

ativistic quantum electrodynamics, the kinetics of an electromag-
netic field in an equilibrium plasma has been constructed. The cal-
culation is carried out in the Hamilton gauge up to the second or-
der of a generalized perturbation theory in interaction. Following
Bogolyubov in his theory of superfluidity, the leading contribution
to the Hamilton operator of the field is chosen with an additional
term depending on the interaction. This allows us to discuss the
kinetics of the field in the terms of photons in the plasma and
plasmons.
plementing the Maxwell equations, plane electromagnetic waves
have been considered. For the case of the Maxwell plasma, the ob-
tained spectra and the attenuation coefficients give results which
coincide with those in the standard theory. However, the devel-
oped approach allows one to avoid some difficulties of that theory.
The method of construction of an effective Hamilton operator of
the electromagnetic field in the plasma is proposed. On this ba-
sis, we have performed the renormalization of quasiparticle spectra
which coincide finally with the spectra of waves in the system.

On the basis of the obtained material equation sup-

1. Introduction

The modern quasirelativistic theory of electromagnetic
(EM) processes in a plasma medium is usually based on
the introduction of the effective direct Coulomb inter-
action between charged particles (see, for example, [1]).
This can be achieved in the Coulomb gauge, in which the
scalar potential ¢ is equal to the Coulomb one ., and
the vector potential A,, is a transversal field divA = 0.
In fact, the Coulomb interaction is introduced instead
of the longitudinal part of the vector potential A,,. This
approach leads to some difficulties in the consideration of
longitudinal freedom degrees of the system. They can be
avoided in the Hamilton gauge, in which the scalar po-
tential ¢ = 0 and the electromagnetic field is described
by a vector potential with transversal and longitudinal
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another only through the EM field. Then the transver-
sal part of the vector potential describes EM waves, and
the longitudinal part describes plasma oscillations. In
quantum theory, this leads to photons in the medium
and plasmons.

In this paper, we use the Hamilton gauge and build the
kinetics of an EM field in the equilibrium plasma medium
(bath) which describes the field by the average values of
electric field and vector potential. In a certain sense in
such an approach, we move in the reverse direction as
compared with paper [2] (see also [3]). In that work, a
system of particles which interact by Coulomb forces was
investigated. Instead of the long-distance parts of the
Coulomb interaction, they introduced an additional EM
field which is described by a longitudinal vector potential
and corresponds to plasma oscillations in the system.

Our investigation is based on the Bogolyubov reduced
description method of nonequilibrium states [4] (see the
review in [1]) and quasirelativistic quantum electrody-
namics.

2. Bogolyubov’s Reduced Description Method

An arbitrary state of the system is described by the
statistical operator (SO) p(t) that satisfies the Liouville
equation

pt) = =2 H o] =Lp(t);  H=Ho+Hu (1)
(Ifl is the Hamilton operator, L is the Liouville opera-
tor; and ﬂo is the main contribution to H ). According
to Bogolyubov [4], in the presence of a few character-
istic times in the system, its evolution passes through
the corresponding stages. At each stage, it is possible to
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describe the system by a relatively small set of reduced-
description parameters 7, (¢) (RDPs) which are average
values calculated with the SO p(t)

Na(t) = Spp(t)ia. (2)

We assume that the considered reduced description
takes place at ¢t > 0. According to the Bogolyubov func-
tional hypothesis, the solution of Eq. (1) has the struc-
ture

p(t) = p(n(t)), (3)

where the SO p(n) does not depend on the initial value
of the SO p(t). The RDPs n,(t) satisfy the equation

Na(t) = La(n(t)), La(n) = —Spp(n)Lia. (4)

The SO p( ) of the system is a solution of the equations

Z 8na

Here, the first equation is the Liouville one (1) at the
stage of reduced description, and the second is the defi-
nition of RDPs.

According to Bogolyubov [4], Egs. (5) have at least
two solutions for p(n). One has to add a boundary con-
dition written in the terms of the evolution of the system
in the natural direction of time to these equations. As a
boundary condition, we chose the functional hypothesis
in the zero approximation in interaction written for an
arbitrary initial state py of the system. We take into ac-
count that, for an arbitrary initial state pg, the system
has a statistical operator of the form p(n(t)) only at long
times t > 79 (79 depends on the SO pg). Therefore, in
the zero approximation in interaction (i.e. for the evo-
lution with the main contribution ﬁo to the Hamilton
operator H ), we have

= Lp(n), Spp(M)7a = Na- (5)

(the Liouville operator Ly corresponds to the Hamilto-
nian Ho; here, ngo) (t) depends on pg). The SO p(©(n)
is the leading contribution to p(n) and is a solution of
Egs. (5) in the zero approximation in interaction. The
(0)

parameters 7’ (t) satisfy the equation
() = L (1), L (n) = ~Spp” (n)Lofa, (7)

which follows from (4). In our investigation, the op-
erators 7, of the reduced-description parameters 7,(t)
satisfy the Peletminsky—Yatsenko condition [1]

LO’f}a =—1 Z cabf}b (8)
a
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(cap are some coefficients). Relation (7) yields obviously

(0) Z 6zi&c nbo) ) (9)

It is possible to find the initial condition 7]((10)(0) from
(6), by multiplying it by 7, and taking trace Sp of both
sides of this formula

1(0) = Sppoiia- (10)

Then condition (6) can be written in the form

e'to 0) (e Sppo).

Lo

© (Sppoi) = p' (11)

po————€"p
t>T10

The SO p(©)(n) satisfies the equations

900 (n) .
> pan(??)Z cavs = Lop (n),  Spp” ()il = 7a.

a
a,b

(12)

Condition (11) is the functional hypothesis taken in the
zero approximation of perturbation theory for an arbi-
trary initial state pg. Following [1], we call it the ergodic
relation. The evolution in (11) with the Liouville oper-
ator Lo of free evolution cannot lead the system to an
equilibrium; therefore, the SO p(©) is a quasiequilibrium
one.

From relation (11), it is possible to get the necessary
boundary condition for Egs. (5), by replacing po by p (1)
and n by e~%¢n. We have

P! (n) .

Writing this relation in an integral form and taking the
Liouville equation (5) into account, we get [1]| the inte-
gral equation for p(n):

lim eTLop (e—i'rcn) _

T——400

(13)

p(n) = pV(n / dre™ 0 {Linep(n)—

Z 8% }77%6 irens (14)
where the function L,(n) is defined by the formula
La (n) = =Spp (1) Lintla (15)

(the Liouville operator Ly, corresponds to ﬁint). This
equation is solvable within perturbation theory in inter-
action (first, it was obtained by Peletminsky and Yat-
senko (see [1])).
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3. Kinetics of an EM Field in the Equilibrium
Plasma

We neglect the influence of an EM field on the equilib-
rium plasma subsystem, by considering only low-energy
processes. The Hamilton operator of the system is cho-
sen here in the form

H=H,+ H,+ H, + H,, (16)
where
N 1 ~ A
a, =L / Po{ B2 (w) + B2 (2)),
8
R 1 R N
H, = _E/dxAn (x)]n (x),
o = 5z [ oA @) 3(2) (17)
2= 53 A% (z) X (2).

In the Hamilton gauge, the Hamilton operator of the
bath H, is the operator of kinetic energy of particles.
Therefore, the average values of plasma operators can
be calculated by the Wick—Bloch—de Dominicis theorem.
The operators of the EM field in (17) are given by the
formulas Bn = rotn/L E’n = —%An, and the vector po-
tential An(x) has longitudinal and transversal compo-
nents. The interaction between plasma particles is real-
ized only through the EM field. The operator j,(z) is
the operator of current, and the auxiliary operator x(x)
is expressed through the plasma frequency operator

@)=Y m—p (¢) = O (x) /on

a

(18)

(pa (x) is the operator of mass density; m, and e, are,
respectively, the mass and the charge of particles of the
a-th component of the bath (e, = z.e, e > 0)).

We chose the main contribution ﬁo to the Hamilton
operator of the system H in the form

Ho = H; + ﬁb,
H; = 8% / da{E2(x) + B2(x) + P A%(2) /), (19)

where H; can be considered as ‘Ehe Hamilton operator
of a free EM field in the bath Hy (Q2 = Sp,w)?, i.e.
Q is the plasma frequency; w is the equilibrium SO of
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the bath, Spy, is the trace over bath states). This under-
standing of the Hamiltonian H; follows from the proce-
dure of canonical quantization. Canonical commutation
relations have the form

[An(z), Ay(2)] =0, [Ap(2),7(2")] = ihdpd(x — '),

[fn(2), 7 (2")] = 0, (20)
where #,(z) = —E,(x)/4rc are the generalized mo-
menta corresponding to fln(m) as generalized coordi-
nates of the field. Usual steps lead to a representation of
the vector potential operator through the creation and
annihilation operators c:k, Caks

R orhi \ /? + ik
An(x) = CZ Vour eakn(cak + Ca,fk)e ;
ak «

[cakv Ca’k/] = 07 [cakv ci’k/] = 5a,a’6kk/ (21)
and transform the Hamilton operator Hy in the following

way:

A~ + 1

Hf = Zhu}ak CorCak + 5
ak

(V' is the volume of the system, and ey, are vectors of
polarization (o = 1,2, 3)). Formulas (21), (22) introduce
transversal (with o = 1, 2) and longitudinal (with oo = 3)
excitations in the system with the dispersion laws

(22)

Wak = Wk (a = ]‘?2)ﬂ w3 =

wr = (k2 + 92)1/2. (23)
These excitations are photons in the medium and plas-
mons, respectively (see another approach to their intro-
duction in [5]). Therefore, using the operator (19) as the
main contribution to the Hamilton operator of the sys-
tem allows us to discuss all processes in it in the terms
of photons in the medium and plasmons. Extracting the
last term in the expression for H; from operator fIg, we
form a new interaction between the introduced excita-
tions and charged particles:

I:I:I;[O+-Hinta ﬁint:ﬁ1+ﬁéa

7 / 0 A2 (1) {92 () - O2);

8mc?
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Hi~ )\ Hy~ ) (24)
(operator Hj is defined in (17), A is a small parameter of
the theory). Our introduction of the main Hamiltonian
H; corresponds to the role of processes with characteris-
tic frequency © in plasma (see, for example, [6]). Pertur-
bation theory with the Hamiltonian ﬁim as interaction
gives results which can be obtained in usual perturbation
theory with the summation of a class of its contribution.
The same idea was proposed by Bogolyubov in his theory
of superfluid Bose gas [7].

We construct a reduced description of the EM
field in the equilibrium plasma by the average val-
ues of the electric field and the vector potential 7,(t):
En(z,t), Ap(z,t). At the reduced description, the SO
p(n) = p(E, A) satisfies relations of type (5):

SPP(E> A)En(m) = En<$)7

Spp(E, A)A,(z) = A, (z). (25)
According to (19) and (20), these RDPs satisfy the
Peletminsky—Yatsenko condition (8)

ﬁ [I;[Ov An(m)} = _CEn(x)’

2

—_— R 02 .
%[HO, E,(z)] = —crot,rotA(x) + — A, (), (26)

c
and the kinetics of an EM field in the equilibrium plasma
can be built on the basis of integral equation (14). The

SO in the zero approximation, ,0(0)(77), can be written as

p(O)(Ea A) = qu(Ev A)7 Sppq(E> A)En(x) = En(x)a

Sppq(E7 A)An(x) = An(x)v (27)
where w is the equilibrium SO of the bath, and p,(E, A))
is the quasiequilibrium SO of the EM field. This expres-
sion for p(9)(E, A) is in accordance with the Bogolyubov
principle of the spatial weakening of correlations. In
other terms, the ergodic relation (11) in the problem
under study is the Bogolyubov condition of the complete
correlation weakening [4]

e pg——e™Mowp,(E, A).

28
T>To ( )

This relation takes into account that the free evolution
of the system brakes correlations between subsystems of
the field and of the plasma (the arbitrary SO pg describes
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a nonequilibrium EM field in the equilibrium plasma).
Using the operator of free evolution e in the above-
presented formula is only a tool to express this and has
no influence on the domain of applicability of the de-
veloped theory. However, according to Bogolyubov, the
boundary condition for the Liouville equation must be
written in the terms of the evolution in the natural di-
rection of time. The necessary boundary condition for
the Liouville equation (5) follows from (28) by the sub-
stitution pg — p(E, A). Finally, we note that, for the
calculation of the right-hand sides L,(n) of the equa-
tions for RDPs up to the second order of perturbation
theory, we do not need a specific expression for the SO
pq(E, A), and it is enough to use the last formulas from
(27).

To derive the evolution equation for the RDP, it is
convenient to use the Schrodinger equations of motion
for the operators of the EM field [1]

E,(x) = crotyrotA(z) — 4rJ, (),

where the EM current .J,, (z) is defined as
. . 1. R
In(2) = Jn(@) = ~ An(2)X(2). (30)

Averaging this relation with the SO p(E, A) of the sys-
tem gives the time equations for the RDPs

E,(x,t) = crot,rotA(z, t) — 4nJ, (x, E(t), A(t)),

Ap(z,t) = —c By (z,t), (31)
where the average current
Ju(x, B, A) = Spp(E, A)J, () (32)

is introduced. In fact, relations (31) are average Hamil-
ton equations, because An(m,t) are the average gener-
alized coordinates, and E, (z,t) are proportional to the
average generalized momentum of the field. To calculate
the average current in (31), we need a solution of the in-
tegral equation (14). The simple consideration gives 8]

0
p(E, A) :wpq(E7A)+% / dT/dx[An(x,T)x

*Jn(@,7), wpg(E, A)] + O(A?),
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where the operators

—7Lo %

Jn(z,7) = e (), An(z,7) =e T A () (34)

are introduced into the interaction picture. The longi-
tudinal and transversal parts

Al = /Almklzzm/;:n, Aflk = Amkéfnn;

n

kp = kn/k, 6., =0mn — kmkn. (35)

of the Fourier components of the operator fln(m, T) are
given by the formulas

A{nk(T) = flilk cos(Qr) — 6E£’k sin(Qr),

Al (1) = At cos(wpT) — wik t L sin(wgT). (36)

They follow from relations (26) which give

A1) + Q2 AL (r) = 0, AL(0) = A}, A(0) = —cE};

AL (r) + Wi i (1) = 0, A (0) = A}, AL(0) = —cEj.
(37)

The results of our calculation of the average EM cur-
rent J,(z, E, A) can be expressed through the retarded
Green function of currents G (z,t). It is defined by the
formula

Gual,1) = — 08Py ja(,1),71(0)] =

3
= /MGnl(k,w)ei(m*m). (38)

(2m)*

In the considered problem, the plasma is an isotropic

medium, and the function G,;(k,w) has the structure
Gk, w) = G (k,w)bhy + G (k,w)knki, (39)

where the scalar functions G*(k,w), G!(k,w) are its
transversal and longitudinal parts. In these terms, the
calculation of the average current with the help of (32)-
(36) gives

Tu(a, B, A) = / d2' o (z — 'V Ey(a' )+

+ / da' Xz — &) Ay (') + O(N?),

24

where the Fourier transformed functions o,;(z) and
Ani(z) have the form

ImG? (k,wy) 5t ImG! (k, Q)
e N e 20 (e i A

ni(k) = l;n];U
oni(k) o q 1

1
A (k) = _E{Xénl + ReG" (k,wi) o} +

+ReG (k, Q)knki} (41)
(x = Sp,wx(0); Spywj,(0) = 0 ). The functions o, (k)
and A\, (k) are the conductivity and the magnetic sus-
ceptibility of the equilibrium plasma and determine its
EM properties, taking the spatial dispersion into ac-
count. Equations (31) together with the material equa-
tion (40) give a closed set of equations for an EM field
in the plasma. However, they do not look like the usual
Maxwell equations because of the presence of the lon-
gitudinal part of the vector potential. This is a conse-
quence of the absence of a time dispersion in the ma-
terial equation (40). One can see this, by applying the
standard procedure (see, for example, [1]) based on the
time Fourier transformation, which gives this material
equation as the Ohm law

In(k,w) = on(k,w)E(k,w),

0t (k,w) = 0 (k) = i At (k)
(according to (31), A, (k,w) = —icE, (k,w)/w).

4. EM Waves in the Equilibrium Plasma

The obtained equations (31) together with the material
equation (40) can be divided into equations for longitu-
dinal and transversal fields. In the terms of the Fourier
components, the equations for the longitudinal field are

El = —an{c'(k)EL + \(k)AL},

Aéc = —cE',lc

and give the following time equation for E,é:
El 4+ 4nol(k)EL — 4weA(E)EL =0

(here, o!(k) and A (k) are, respectively, the longitudinal

parts of the functions o, (k) and A, (k) from (41)). We
find a solution of this equation in the form E! ~ e~
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that gives z; = *w;(k) — iy,(k), where w;(k), (k) are
the dispersion law and the damping rate for longitudinal
waves

k) = 2/ 20 (k)2 — eI (k).
(k) = 270! (k) (44)
for —moy(k)? — e\i(k) > 0. In the opposite case

—7o1(k)? — eh(k) < 0, longitudinal waves do not ex-
ist. The dispersion law w;(k) corrects the frequency 2 of
longitudinal oscillations described by the Hamilton oper-
ator Hy (see (23)), which is considered here as the main
contribution to the Hamilton operator of the system. In
accordance with [2, 3], we deal here with plasmons.

Equations for the transversal field have a structure
similar to that of (43),

Ef = KeAj, — dn{o' (k) B} + X' (k) AL},

A’;€ = —cE} (45)

and give the following time equation for E}:

El + 4not(k)EL + {(kc)? — dneX (k)}EL =0

(ot(k) and At(k) are, respectively, the transversal parts
of the functions o, (k) and A, (k) from (41)). We find
a solution of this equation in the form Ef ~ e~ that
gives z; = £ wi(k)—ive(k), where wy(k), v+ (k) are the dis-
persion law and the damping rate for transversal waves

V/(ke)?

wi(k) = — 420t (k)2 — dweXt(k)

v:(k) = 2mat (k) (46)
for (kc)? — 4n?0,(k)? — 4meli(k) > 0. In the opposite
case (kc)? —4m204(k)? —4me (k) < 0, transversal waves
do not exist. The dispersion law w;(k) corrects the fre-
quency of transversal oscillations wy described by the
Hamilton operator Hy (see (23)). In accordance with
[2, 9], we deal here with photons in the plasma. This
result coincides with our previous one obtained in the
Coulomb gauge [8].

5. Electromagnetic Waves in the Maxwell
Plasma

The developed theory allows one to avoid some difficul-
ties inherent in the standard theory at the calculation of
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dispersion laws and damping rates of EM waves in the
equilibrium plasma (see the standard approach, e.g., in
[10]). Here, an analysis of the obtained results is given
for the case of the Maxwell plasma, i.e. for the classical
ideal gas of charged particles. The consideration is based
on a spectral representation of the Green function (38)

’ Inl(k, w’)

hw//T_l
w—w’—l—iO(e ),

Gni(k,w) = (47)

21h

—00
where the correlation function of the currents is defined
by the formula

Ly(z,t) = Spbwil(O)j‘n(x, t) (48)

(see, for example, [1]). According to the definition of
Maxwell plasma, its particles are completely described
by the Maxwell distribution. The correlation function of
this system I,,;(k,t) can be written in the form

Inl(k7t) = Zei/d3vvnvlfa(v)eikVta
a

fav) = ng ( Ma )3/2 e — g (49)

2nT

Taking this expression and formula (47) into account,
we obtain the transversal and longitudinal parts of the
Green function

s, 1E*0? — (kv)?} (kv) fa(v)
(k) Z kQT/d w—(kv)—i—zO ’

(kv)3 _(kv)°fa(v)
3
(kyw) Zk2T/d w—( kv 10 (50)
After the standard calculation [10], we obtain
ZXCL k’[)af X7
W 9 w
S (2 () —y, (51
Sl O P2 % 6D
where the function
T e
F(x) = — [ 9
(z) ﬁ/dzz—x—io (52)
25
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was introduced (v2 = T/Mma, Xa = €2nq/Mmg; some
authors [6, 9] prefer to use the function Ji(z) =
—F(z/+/2). Function (52) has the following properties:

ReF(z) = —22% + §x4 +0(2%) (z<1),
ReF()fflfifiJrO( O (z>1)
o= 222 4zt v v ’

ImF(z) = T Pge

(53)
(see, for example, [10]).

According to (51) and (53), the attenuation constants
of EM waves in the Maxwell plasma are given by the
exact expressions

Yi(k) =

r}lﬂ 21’ [22]?

8l ~—q|

(54)

%(k):[g]w o

wi | kvg |
(here, Q2 = 47y,). In the developed nonrelativistic the-
ory, vg < ¢, and the inequality kv, < wy is true (see
(23)). Therefore, v:(k) =~ 0 in the considered theory.
However, in a consequent relativistic theory, the damp-
ing of transversal EM waves in a collisionless plasma is
absent [10].

Note that, in the standard theory [1,10], the dispersion
laws of EM waves in a plasma and their damping rates
are calculated from the equations

ee(k, ze(k)) ze(k)* = *k? - (20(k) = we(k) — ive(k)),

ek, zi(k)) =0 (zi(k) = wi(k) —iyi(k)).
These formulas contain the transversal and longitudinal
permittivities £;(k,w) and €;(k,w) of the plasma. In the
self-consistent field approximation based on the Vlasov
equation for the Maxwell plasma, they have the form
10}

(55)

w

alkw) =1+ (253)2{1 + F(m)}.

Equation (55) can be solved only approximately with re-
spect to (k). The result obtained by this way [10] (the
Landau damping rate 7 (k)) differs from the above ex-
act formula (54) by the multiplier (k) = e=3/2y,(k).
However, the standard expression for vf (k) is valid for
kv, < Q. In this situation, the damping rate v/ (k) is
exponentially small, and this multiplier is not important.
Note also that there is a problem with the usual solu-
tion of Egs. (55) and (56) related to the substitution of
complex values z;(k), z; (k) with negative imaginary part
in the function F(z) from (52). The simple substitution
brakes the rule of pole passing in the function F'(z). In
our approach, this problem does not exist, because we
substitute only real values in this function (see formu-
las (41), (44), (46), (51)). A different approach to the
Landau damping theory is discussed in [11].

For small wave vectors, formulas (44), (46), and (53)
give the dispersion laws of EM waves in the system

(kvg)?

gz T O(k*)

wk)?=02+3) Q2 (kvg < Q),

(k) =wi+> Q2M +O(kY)  (kvy < wi) (57)
wy wyi, o Ve K Wk
a “k

which coincide with the known results [9], [10]. In the
considered nonrelativistic case, v, < ¢, and the inequal-
ity kv, < wy, is true always (see (23)).

In the case of large wave vectors, longitudinal waves
do not exist because, according to (53), the expression
under root in (44) becomes negative. For transversal
waves, a simplification of the dispersion relation (46) on
the basis of formulas (53) is impossible due to the in-
equality wy > kv,.

6. Effective Hamilton Operator of an EM Field
in the Equilibrium Plasma

Here, we construct the effective Hamiltonian of an EM
field in the equilibrium plasma Hes on the basis of the
definition proposed in [12]. The SO of the field subsys-
tem is given by the formula
Pf(E, A) = gpbp(Ev A)7 (58)
where Spy, is the trace over states of the bath, which gives
an operator in the space of EM field states (see details
in [12]). Formula (33) for the SO of the system yields

pi(B, A) = pg(E, A) + O(N%). (59)
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In accordance with (1), (19), and (24), the evolution
equation for the SO pf(E(t), A(t)) can be obtained from
the identity

O ECAO) — Lt (B (1), A1)

7 ~ P
— 8, [Hig, p(B(1), A(1)]. (60)
According to [12], the last term of this equation contains
values of the type Apf+ pfA+ (A is some operator), which
give contributions to the effective Hamilton operator H.
of the form if(A — AT)/2. The above-obtained results
lead to the second-order contributions to erf.

Note that the relations

Spy[Ha, p(E, A)] = O(X*),  Spy[Hy, p(E, A)] =
0
=~ [ S [f, (7)., wp, (B )] + OO (o)

are true. Using the Jacobi identity, it is easy to see that
the last term below gives the commutator of an operator
with the SO of the field pr(E, A):

Spy [, (1) wpal]| = 550, [, (), wp,)] +

+%§pb [fﬂ(f), [ﬁl,wﬂq]} + %Spb {W’q’ [ﬁl(T)’ﬁl]} '
(62)

This identity allows us to rewrite Eq. (60) in the form

O BOAO) _ g pe((0), A}

+Laispe(E(t), A(t)) + O(X%), (63)

where the effective Hamilton operator of the EM field
and the dissipative Liouville operator are introduced by
formulas

Hy = Hy — —/daz{J(2)( A E)A, (z)+

+An(m)‘]r(12)(xa Av E)}a
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Laisps = (Spb |:-E[17 [ﬁl(T)vaw]} +

; 9]
—?h/d'r
0

+ Spy [ F1(7), [, prw]) (64)
(JT(LQ) (x,E,A) is the second-order contribution to the
function J,(z, E, A) given by expression (40)).

The effective Hamilton operator of an EM field in the
medium ﬁef is a quadratic form in the operators of gen-
eralized coordinates A, (x) and momenta 7, (z) of the
field. By using the Bogolyubov transformation [7], it can
be written in the form

ef—zhw (akcak'i';)

wa (k) = wi(k) (a=1,2), ws(k)=wi(k). (65)
Here, the spectra wy(k), w;(k) coincide with the disper-
sion laws of transversal and longitudinal EM Waves in
the plasma given by the formulas (44), (46), ¢ ak, Cak
are new Bose operators of creation and annihilation
with the usual commutation relations (21). The usual
expression for the operators of vector potential A, ()
in terms of operators (21) is also valid. The ex-
pression for new Bose operators in terms of old ones
(21) can be given too. So, in this section, we
have performed a renormalization of quasiparticle spec-
tra introduced by our choice of the leading contri-
bution Hy (19) to the Hamilton operator of the EM
field. Moreover, in the third approximation of per-
turbation theory, the effective Hamiltonian will contain
terms which describe the interaction between quasipar-
ticles.

7. Conclusion

Bogolyubov’s ideas in many-body theory allow one to
build the kinetics of an electromagnetic field in an
equilibrium plasma in the terms of photons in the
medium and plasmons. The proposed approach al-
lows one to avoid some difficulties related to the cal-
culation of the dispersion laws and the damping rates
of EM waves in the plasma. The effective Hamil-
ton operator obtained in this paper for quasiparticles
gives renormalized quasiparticle spectra which coincide
with the spectra of EM waves. The consideration is
based on the following Bogolyubov’s ideas in many-
body theory: the method of reduced description of
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nonequilibrium states (stages of evolution of a nonequi-
librium system, the functional hypothesis, boundary
condition to the Liouville equation), idea of the lead-
ing contribution to the Hamilton operator of a sys-
tem, and the principle of spatial correlation weaken-
ing.
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JIMCTIEPCIVIHI CIIIBBIAHOIIEHHS JIJ19 XBUJIb
V ILJTA3MI TA IIET BOTOJIFOBOBA
Y TEOPII BATATHOX TLJI

O0.H1. Cokonvscoruti, A.A. Cmynxa, 3.FO. Yeabacscvrudl
PezwowMme

Ha ocuoBi MmeToy ckopouenoro onucy Boroso6osa i kBazipensaTu-
BICTCHKOT KBAHTOBOI €JIEKTPOIMHAMIKY ITOOYI0BAHO KUHETHUKY €JIe-
KTPOMATrHITHOTO II0JIs B PIBHOBaXKHi# mia3mi. O64ucieHHs: mpoBo-
IUTHCS B KaJ1ibposIi ['amMisibToHA 10 APYroro HopsiaKy y3arajbHe-
HOI Teopil 30ypeHb 3a B3aemoiero. Haciinyroun Borosobosa B o~
ro Teopil HaJIJIMHHOCTi, OCHOBHUI BHECOK B oneparop l'amisibroHa
OJIsT BUOUPAETHCS 3 IOJATKOM, SIKUI 3aJIe>KUTh BiJ B3aemoil. 1le
I03BOJIsSIE OOrOBOPIOBATU KiHETUKY €JIEKTPOMATHITHOT'O TIOJIS B TE€P-
MiHax oToHIB y miasmi Ta ninasmonis. Ha ocHoBi oTrpuManoro ma-
TepiaJIbHOTO PIBHSHHS JI0aTKOBOIO 10 PIiBHAHB Makcsessia po3s-
[JISSHYTO IUIOCKI ejleKTpoMarHiTHi xBuui. Jljisi BHDAJAKY MaKCBEJ-
JIIBCBKOI IJIA3MU OTPUMaHI 3aKOHU JHUCIIEPCil Ta JeKPEMEHTH 3ra-
CaHHSI XBUJIb JAIOTh PE3yJIbTaTH, fKi 36iraloTbcs 31 cTaHgapTHOIO
Teopiero. OHAK PO3BUHYTHH MiAXiJ JO3BOJISE MMO30YTUCH JEAKUX
TpyZHOLIIB 1€l Teopil. 3aIponoHOBaHO METOX HOOYAOBH ePEeKTUB-
HOro oreparopa ['aMiJbTOHa €JIeKTPOMArHITHOIO IIOJIsS Yy ILIa3Mi.
Ha niit ocHOBI BUKOHAHO IepeHOPMYBAHHS CIIEKTPIB KBasigacTu-
HOK, fKi y MiICyMKy 30iraioTbcs 3i ClleKTpaMy XBUJIb y CHCTEMI.
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