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The results on an additional, not long-wave region of instability of
weakly non-linear waves on the surface of a liquid layer with finite
depth h obtained earlier in one-dimensional case (JETP Letters
86, 502 (2007)) have been extended on a two-dimensional geom-
etry. The consideration is carried out in the framework of Za-
kharov’s Hamiltonian approach for a system of coupled Fourier
amplitudes of the first harmonic with the wave vector k0 and the
non-oscillating wave component (the zeroth harmonic). When an-
alyzing the linear stability of a weakly non-linear Stokes solution of
this system, the dispersion equation of the fourth order, obtained
earlier by Zakharov and studied analytically in the range of wave
perturbations with small wave vectors, gives, besides the known
instability region, a new one for not too large angles θ between the
main and perturbation waves, in contrast to the quadratic equa-
tion usually obtained in the long-wave region, which gives only
the ordinary Benjamin–Feir instability. The additional instability
region grows with a reduction of the liquid depth, whereas the re-
gion of ordinary instability becomes narrower and disappears at
k0h = 1.363 for θ = 0 or does not exist at any θ, if k0h = 0.38.

1. Introduction

Researches dealing with the stability of the exact solu-
tion of the equations of motion with respect to small
modulations be carried out by obtaining the straight-
forward solution of the corresponding Cauchy problem,
with the initial condition being given as a sum of this
solution and a perturbation. But such an approach can-
not be applied in the case of nonlinear waves on the
surface of a liquid of finite depth, because 1) there is
a zeroth harmonic B in the system, 2) the perturba-
tion is two-dimensional, and 3) the spectral width of a
perturbation is large. Due to the last circumstance, it is
impossible to use a spectrally narrow pulse of the nonlin-
ear Schrödinger equation (NSE), for which the method
for the solution of the one-dimensional Cauchy problem
has been elaborated, for the description of amplitude
A of the first harmonic. In this regard, the stability
is studied by an indirect method, namely, by the lin-
ear expansion near the solution, the stability of which
is analyzed. It is worth recalling the terminology and

the known results and indicating the accents of this
work.

In a nonlinear conservative medium, which admits
wave motion, the account of only linear terms in the
equations of motion gives rise to a linear dispersion law
ω(k) and a solution in the form of a sine wave (the first
harmonic) with constant amplitude A, the frequency
ω0 = ω(k0), and the wave vector k0 = 2π/λ, where λ
is the wavelength. Making allowance for the nonlinear
terms of the second and higher orders brings about the
appearance of the second and higher harmonics in the
wave profile η(x, t):

η(x, t)=
(

1
2
A(x, t) exp iθ+A2(x, t) exp 2iθ +. . .+ c.c.

)
+

+B(x, t), θ = k0x− ω0t. (1)

We also obtain the corresponding system of evolution
equations for the amplitudes of those harmonics. In the
narrow-spectrum approximation and applying a simpli-
fied dependence on time, it is possible to eliminate the
zeroth and higher harmonics. In this fashion, we obtain
an NSE for the description of the time evolution of the
first harmonic amplitude A,

i (At + ω′Ax) +
1
2
ω′′Axx + qA|A|2 = 0, (2)

or its higher generalizations [1]. The reduction of the
system of equations to a single closed equation – the
NSE – becomes more substantiated in problems, where
the zero harmonic is absent in the system or appears in
higher approximations. For the waves on the liquid sur-
face, the formulas for the amplitudes of the zeroth, B,
and the second, A2, harmonics are given in Appendix in
terms of the first harmonic amplitude, A. The formu-
las demonstrate that the neglect of the zeroth harmonic
corresponds to the limiting case of infinite liquid depth
to the accuracy order concerned.
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Being written down in terms of the variables

τ =
1
2
ω′′t, ξ = x− ω′t, and u =

√∣∣∣ q

ω′′

∣∣∣A,

the NSE takes a canonical form,

iuτ + uξξ ± 2u|u|2 = 0. (3)

The sign ± is determined by that of qω′′. If qω′′ > 0,
Eq. (3), along with other solutions – for example, the
soliton one u = eiτ/ cosh(ξ) – has a trivial plane-wave
solution:

u = e2iτ . (4)

Taking into account the fact that, provided that
u(ξ, τ) is a solution of Eq. (3), the function au(aξ, a2τ)
also satisfies this equation, choosing

a =
√∣∣∣ q

ω′′

∣∣∣A0

and returning back to the variables t, x, and A, we ex-
press solution (4) as

A(x, t) = A0 exp iqA2
0t. (5)

Solution (5) implies that the linear dispersion law is ap-
pended with the dependence of the frequency on the
squared amplitude,

ω0 → ω0 − qA2
0. (6)

This is a non-linear correction found by Stokes [2] for a
liquid of infinite depth,

ω0 → ω0(1 +
1
2
k2
0A

2
0). (7)

Really, in this case q = − 1
2ω0k

2
0 for the NSE [3]. For the

finite-depth case [4], the expression for q is presented in
Appendix.

Weakly nonlinear solution (1), where the amplitude
A(x, t) is given by expression (5), is conventionally re-
ferred to as a Stokes wave in the case of waves on the
ideal liquid surface. This wave, similarly to the sine
one, has a constant amplitude, but a wider trough and
a narrower crest. Its time evolution corresponds to the
plane-wave solution of NSE, and the evolution of a weak
perturbation of Stokes wave corresponds to the solution
of NSE, provided that the perturbed plane-wave solution
is its initial condition.

The procedure of consecutive account of nonlinear
terms, which was put forward by Stokes, looks regular,

and it was proved to be convergent. However, it turned
out that the Stokes solution can be unstable with re-
spect to a harmonic perturbation with a small, in com-
parison with k0, wave vector κ. It was found that such
a modulation instability (MI) manifests itself for waves
of various origins. First, it was studied for waves on the
ideal liquid surface, namely, by Zakharov, making use
of the Hamiltonian method in the Fourier plane (as well
for ion-acoustic oscillations in plasma) [3, 5]; by Ben-
jamin, by analyzing harmonic series [6]; by Whitham, in
the framework of the Lagrange method [7]; by Zakharov
[3] and, later, by Hasimoto and Ono [4], with the help of
NSE. The instability was studied at the linear stage of its
development, by linearizing the relevant equations and
analyzing the imaginary part of roots of the dispersion
equation for the perturbation frequency. The condition
κ ¿ k0 was selected to simplify calculations.

How does the excited Stokes solution evolve? This
question can be answered, in principle, in the framework
of the first and fourth indicated approaches, because
they contain the corresponding evolution equations. In
the approach that uses the NSE, the evolution was stud-
ied both by the method of inverse scattering transform
(IST) for a periodic boundary condition, which is valid
for a harmonically excited Stokes wave [8], and by di-
rect methods as the evolution of the plane-wave limit of
exact NSE solutions at t → ±∞. It was shown [9, 10]
that, in the course of a long-term evolution, the Stokes
solution can transform its profile into a spatially or tem-
porally repetitive cnoidal wave, breather, Kuznetsov–Ma
soliton, or other soliton- or quasisoliton solutions of the
NSE, depending on the wave amplitude A0 and the ratio
between the wave, k0, and perturbation, κ, wave vector
moduli.

The source of the fundamental harmonic instability
in a nonlinear medium is the presence of higher-order
harmonics in the system. Namely, if two perturbations
with wave vectors k0 ± κκκ act on the first harmonic A0

with the wave vector k0, a resonance with the second
harmonic with the wave vector 2k0 is possible,

(k0 + κκκ) + (k0 − κκκ) = 2k0, (8)

and, therefore, the perturbation excitation (the instabil-
ity of the first harmonic) arises. The specific values of
the parameters A0, k0, and κ, at which the perturbation
increases, are determined by the equations of motion for
harmonics. Such a mechanism was considered in the ma-
jority of previous works, where the inequality |κκκ| ¿ |k0|
was supposed—mainly, in order that analytical transfor-
mations be possible. In works [3, 5], the higher analogs
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of expression (8) were also studied – e.g.,

(2k0 + κκκ) + (k0 − κκκ) = 3k0,

which describes the instability of the second and first
harmonics, if, being perturbed, they come into resonance
with the third harmonic – and the corresponding insta-
bility increment was found. Now, it is coined as class II
instability [11]. For the time evolution of such an in-
stability to be described, higher-order terms have to be
included into the NSE [1, 12].

In this work, quantitative changes in the MI descrip-
tion are considered in the case where there is the zeroth
harmonic in the expansion. For waves on the surface of
a finite-depth liquid, it corresponds to a flow induced by
waves. In nonlinear optics, the zeroth harmonic is asso-
ciated with the so-called optical detecting. At a quali-
tative level, an additional possibility for the instability
is supposed as a result of the development of the pro-
cess (8) of resonance of two first perturbed harmonics
together with the second and zeroth ones, provided the
validity of the relation

(k0 + κκκ) + (k0 − κκκ) = 2k0 + 0, (9)

between their momenta and keeping in mind that the
excitation of the zeroth harmonic can change the energy
resonance relations (8) and intensify the perturbation.
One may suggest that the interaction will be more effec-
tive at κκκ ≈ k0, when the first pair in expression (9) res-
onates with the second harmonic, and, simultaneously,
the second pair with the zeroth one.

The quantitative consideration is carried out, when
the zeroth harmonic contribution to the evolution equa-
tion for the complex amplitude of the first harmonic and
the additional evolution equation of the second order
for the actual amplitude of the zeroth harmonic with a
term given by the first harmonic are taken into account.
In this case, if the Stokes solution is modulated by a
harmonic wave with the wave vector κκκ, the dispersion
equation for the perturbation frequency becomes of the
fourth order – instead of the second one – and its new
roots, being considered in a wide range of κκκ, contain an
imaginary component that corresponds to new instabili-
ties in such a system. Since κκκ is not supposed to vary in
a narrow range with respect to k0, the analysis is carried
out, provided a complete account of linear dispersion.

The account of the zeroth harmonic in the form of
an additional evolution equation was carried out in a
number of works and by various methods: the Hamilto-
nian [13], multiscale [14–16], and variational [7, 17, 18]
ones, with the total linear dispersion being considered

only in work [13]. However, in those works, in order to
obtain analytical estimations in the range |κκκ| ¿ |k0|,
(i) the corresponding dispersion equation of the fourth
order for the perturbation frequency was simplified to
the quadratic one [13], (ii) two of four roots in the inter-
val |κκκ| ¿ |k0| were a priori assumed to be real-valued
[7, 14] (or of “no interest” [17]), (iii) a simplified time
dependence for the zeroth harmonic was adopted in the
range |κκκ| ¿ |k0|, so that the dispersion equation be-
came quadratic [4,15], (iv) the case of infinite depth was
analyzed only [16]. Anyway, no other instabilities but
a long-wave one were considered. The equation of the
fourth order, provided that only the parabolic disper-
sion is taken into account, was obtained in the frame-
work of the variational method in work [18], where the
author indicated that two roots associated with the ze-
roth harmonic are complex. In work [19], an equation
of the fourth order for the perturbation frequency was
obtained in the case of one-dimensional perturbations,
making use of the multiscale method in the parabolic ap-
proximation for the linear dispersion, and, besides an or-
dinary MI at κ ¿ k0, an instability band at κ ≈ k0 was
found, when the total linear dispersion in the equations
for the first and zeroth harmonics was made allowance
for. Since the account of the total linear dispersion seems
not conventional, when the consideration is carried out
in the coordinate space, in work [21], the author used
the Hamiltonian approach developed by Zakharov. In
this approach, such an account is made in a natural way
in terms of the function ω(κκκ) at the transformation into
the Fourier plane.

The efficiency of the Hamiltonian approach consists in
that the similarity between the waves of different origins
is described in it by a formally identical expansion of
the Hamiltonian into an integro-power series in the non-
linearities of canonical variables, in terms of which the
wave field of a specific nonlinear medium is succeeded to
be presented. As soon as the coefficients of this expan-
sion are calculated for the given type of nonlinear waves
in one problem, they become the passport characteristic
of those waves and can be applied to other problems.
This idea was formulated and implemented by Zakharov
in works [3, 5], with nonlinear waves in plasma and on
the deep liquid surface being taken as examples. The
case of finite-depth liquid was considered in work [13],
where the equations of motion for harmonics were de-
rived as Hamilton equations, by varying the Hamilto-
nian, from which higher harmonics were eliminated be-
forehand. Concerning the MI problem of Stokes waves in
a liquid layer, in work [13], there was obtained an equa-
tion of the fourth order for the frequency of a harmonic
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perturbation by linearizing the system of two equations
for the zeroth and first harmonics near the Stokes solu-
tion. This equation, however, was reduced in work [13]
to the quadratic one, in order to make analytical esti-
mations possible. It allowed the instability increment to
be calculated analytically for two roots in the interval
|κκκ| ¿ |k0|. In work [21], it was demonstrated numer-
ically that, in the case where the wave vectors of the
perturbation and the first harmonic are directed identi-
cally, the dispersion equation, which was derived in work
[13] and reproduced in work [21], has two more, complex
roots at κ ∼ k0, in accordance with the results of work
[20].

In this work, in the two-dimensional geometry and in
the case where the perturbation is directed at a certain
angle to the wave vector of the first harmonic, new roots
have been separated analytically in the range |κκκ| = |k0|,
and the instability increment has been calculated numer-
ically in a wider, in comparison with that of the work
[13], interval of perturbation wave vectors (the internal
surfaces in Fig. 5). The first numerical tabulations for
the case of two-dimensional perturbations were carried
out in work [22].

2. Hamiltonian, Its Formal Expansion into
Integro-Power Series, and Equations of
Motion in the Fourier Representation

In the Hamiltonian approach to the description of po-
tential surface nonlinear waves [3, 5], the equations of
motion for the “normal complex coordinate” a(k, t) are
written down in the form of the Hamilton equation

∂a(k, t)
∂t

= −i
δH

δa(k, t)

and its conjugate variant. Here, k is the horizontal
wave vector k = (kx, ky), and H is the wave Hamil-
tonian, which is a functional of a(k) and a(k). For
waves on the surface of the ideal liquid, the deviation
η(x, t) from the equilibrium surface is expressed in terms
of a(k, t)-quantities as the two-dimensional normalized
Fourier transform

η(x, t) =
1
2π

∫ (
ω(k)
2g

)1/2

(a(k, t) + a(−k, t)) eikxdk,

ω(k) =
√

g|k| tanh(|k|h), (10)

where g is the free fall acceleration, h is the liquid depth,
and x = (x, y) is the two-dimensional vector of horizon-
tal coordinates.

The Hamiltonian expanded into an integro-power se-
ries in the variables a(k) and a(k) looks like [13]

H =

∞∫

−∞
ω(k) a(k) a(k) dk+

+

∞∫

−∞

∞∫

−∞

∞∫

−∞
(a(k) a(k1) a(k2) + a(k) a(k1) a(k2))×

×V (k, k1, k2) δ(k − k1 − k2) dk dk1 dk2+

+
1
3

∞∫

−∞

∞∫

−∞

∞∫

−∞
(a(k) a(k1) a(k2) + a(k) a(k1) a(k2))×

×U(k, k1, k2) δ(k + k1 + k2) dk dk1 dk2+

+
1
2

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞
a(k) a(k1) a(k2) a(k3)×

×W (k, k1, k2, k3) δ(k + k1 − k2 − k3) dk dk1 dk2 dk3.

(11)

Here, the terms of the fourth order, which are of
the forms a(k)a(k1)a(k2)a(k3), a(k)a(k1)a(k2)a(k3),
a(k)a(k1)a(k2)a(k3), a(k)a(k1)a(k2)a(k3), as well as
the terms with higher a-powers, are not included, be-
cause they do not manifest themselves in the considered
order of accuracy.

The common physical character of the approach con-
sists in the universality of expansion (11) and the for-
mulas that follow from it (the equations of motion, in-
stability increments, statistical characteristics, and so
on) for different media. The importance of expansion
(11) for the description of different wave phenomena in
a specific physical medium is defined by the formulas for
the expansion coefficients V (k, k1, k2), U(k, k1,k2), and
W (k, k1,k2,k3). For waves on the surface of a liquid of
infinite or finite depth, they were calculated in works
[3, 5] and [13], respectively, when the approach itself was
formulated. Here, only those coefficients are given, the
explicit form of which is necessary for what follows:

V (k, k1, k2) = −V0(−k, k1, k2)−
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−V0(−k, k2, k1) + V0(k1, k2,−k ),

U(k, k1, k2) = V0(k, k1, k2)+

+V0(k, k2, k1 ) + V0(k1, k2, k),

V0(k, k1, k2) = −N (k)N (k1)M(k2)E(3)(k,k1),

E(3) = − 1
4π

((k · k1) + q(k)q(k1)) , (12)

W (k, k1, k2, k3) =

= W0(−k,−k1, k2, k3) + W0(k2, k3,−k, −k1)−

−W0(−k, k2,−k1, k3)−W0(−k1,k2,−k, k3)−

−W0(−k, k3, −k1, k2)−W0(−k1, k3,−k, k2),

W0(k, k1, k2,k3) =

= −2N (k)N (k1)M(k2)M(k3)E(4)(k, k1, k2,k3),

E(4) = − 1
32π2

{
2|k|2q(k1) + 2|k1|2q(k)− q(k)q(k1)×

×(q(k + k2) + q(k1 + k2) + q(k + k3) + q(k1 + k3))
}

N (k) =
(

ω(k)
2q(k)

)1/2

, M(k) =
(

q(k)
2ω(k)

)1/2

,

q(k) = |k| tanh(|k|h).

The expressions for all coefficients with regard for the
results of discussion [23] on their symmetry properties,
which preserve the Hamiltonian character of the theory
at the reduction of Hamiltonian (11), are presented in
the most compact form in works [24, 25], (in particular,
formula (12) was taken from work [24]).

By varying Hamiltonian (11), we obtain the equation
of motion for a(k, t):

∂

∂t
a(k, t) + i

[
ω(k) a(k)+

+

∞∫

−∞
V (k, k − ξ, ξ)a(ξ) a(k − ξ) dξ+

+2

∞∫

−∞
V (k + ξ, k, ξ)a(ξ) a(k + ξ) dξ+

+

∞∫

−∞
U(−k − ξ, k, ξ) a(ξ) a(−k − ξ) dξ+

+

∞∫

−∞

∞∫

−∞
W (ξ + ζ − k, k, ξ, ζ)×

×a(ξ) a(ζ) a(ξ + ζ − k) dξdζ

]
= 0. (13)

3. Equations of Motion for Fourier Amplitudes
of the First and Zeroth Harmonics

Consider, as in work [13], a wave packet with the central
wave vector k0. In this case, the Fourier amplitude of the
first harmonic is concentrated around the wave vector
k0:

a1 = a1(k, t) δ(k − k0). (14)

Nonlinear terms in the equations of motion give rise to
the appearance – in the next order of the formal small-
ness parameter ε – of the zeroth and second harmonics:

a = εa1 + ε2(b + a2). (15)

Substituting expression (15) into Eq. (13) and combining
the coefficients of the terms with k = ±2k0, we obtain
the equations of motion for components of the second
harmonic, a2. Those equations are used to express the
second harmonic in terms of the first one. The latter ex-
pression together with formula (15) is substituted into
Hamiltonian (11), which becomes free of a2 now. In
work [13], by varying the Hamiltonian obtained with re-
spect to a1 and b, two coupled equations of motion for
the Fourier amplitudes of the first and zeroth harmonics
were obtained:

∂

∂t
a1(k) + iω(k) a1(k)+

ISSN 2071-0194. Ukr. J. Phys. 2009. Vol. 54, No. 8-9 899



Yu.V. SEDLETSKY

+i

∞∫

−∞
a1(ξ)

[
f(k0 − ξ) b(k − ξ) + f(ξ − k0) b(ξ − k)

]×

×dξ+ iλ

∞∫

−∞

∞∫

−∞
a1(ζ) a1(ξ) a1(ζ +ξ−k) dξ dζ = 0, (16)

∂

∂t
b(k) + i ω(k) b(k) + i f (k)

∞∫

−∞
a1(ξ) a1(k + ξ) dξ = 0,

(17)

where the notations

f(k) = 2V (k, k0, k0), (18)

λ = W (k0, k0, k0, k0)−

−2
(

V 2(2 k0, k0, k0)
ω(2k0)− 2 ω(k0)

+
U2(−2 k0, k0, k0)
ω(2 k0) + 2ω(k0)

)
(19)

are used. In work [21], those results were reproduced in
a somewhat different way. Namely, after the substitu-
tion of expression (15) into formula (13), the combined
coefficients of k = k0, k = 0, and k = ±2k0 present the
equations of motion for the first, a1, zeroth, b, and sec-
ond, a2, harmonics, respectively (a2 should be excluded
from the equation for a1(k)). It is worth noting that, in
work [21], the first and third arguments in the analog of
formula (18) for f(k) are arranged in the inverse order
in comparison with the original work [13]:

f(k) = 2V (k0, k0, k). (20)

4. Modulation Instability

The discovery of the IST method for the NSE, including
the periodic initial condition, as well as the development
of direct methods for the NSE solution, allow the MI to
be considered not only at its linear – in a small pertur-
bation – stage, but also in the course of its subsequent
development [9,10]. The Stokes wave evolution was stud-
ied as a development in time of the plane-wave solution
(4) of NSE (3) with a small harmonic additive given at
the initial moment in the form

u(x, 0) = 1 + ε cos(px). (21)

The stability and the character of a long-term evolu-
tion of distribution (21) are governed by the modulation
coefficient p. Such researches are of interest, because
they explicitly demonstrate various evolution scenarios
which depend on the initial condition parameters and
could bring us closer to the understanding of the physi-
cal mechanism underlying the generation and the devel-
opment of the so-called “freak or killer waves” really ex-
isting in the open ocean. However, the satellite-assisted
observations testify that such waves do not contain too
many oscillations [26], for the description of their en-
velope making use of a single NSE to be eligible. At
the same time, they are not isolated waves described
by the Korteweg–de Vries (KdV) equation. Their some-
what intermediate character and the fact that they exist
at large depths characteristic of the NSE, as well as at
finite and even small depths which are characteristic of
the isolated KdV waves [this fact is confirmed by the
witnesses of huge waves that destroyed coastal construc-
tions in Katsiveli (Ukraine) some years ago] suggest that
the Zakharov equation, which describes a general wave
field, should be used as the evolution one, rather than
the NSE or the KdV equation. In this case, it is possible
to retain the coupled first (taking the influence of the
second harmonic into account) and zeroth harmonics in
the expansions, the evolution of which can be described
separately by the NSE and the KdV equation, respec-
tively, only approximately.

The system of equations of motion (16), (17) has
Stokes form (5) after the inverse Fourier transformation
of the first harmonic a(k) is made. Its solution looks like

a(k) = A0 e−i (ω(k0)+λA2
0) tδ(k − k0), b(k) = 0, (22)

where, taking formulas (10), (5), and (1) into account,
the physical amplitude A0 is connected with the quantity
A0 by the relation

A2
0 =

2π2

σ

ω0

k0
A2

0, σ = tanh k0h, (23)

and

qA2
0 = −λA2

0. (24)

The calculation of λ by formula (19) gives [27–29]

λ =
k3
0

32π2

9σ4 − 10σ2 + 9
σ3

(25)

for waves on the surface of a finite-depth liquid. Hence,
we have the following nonlinear correction to the fre-
quency before the zeroth harmonic excitation was taken
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into account:

qA2
0 = − 9σ4 − 10σ2 + 9

16σ4
ω0k

2
0A

2
0. (26)

The specification of λ after the account of the zeroth har-
monic excitation is made is given below by expressions
(29) and (35). In the limiting case of infinite depth (the
absence of the zeroth harmonic), corresponding expres-
sion (24) for qA2

0, as well as expression (26), transforms
into the Stokes result (7).

Following work [13], let us introduce the perturbation

a(k) = e−i t (ω(k0)+λA2
0)

(
A0 δ(k − k0) + ε α(k)×

×e−iΩ tδ(k−k0−κκκ)+ ε α(k) ei Ω t δ(k−k0 +κκκ)
)

, (27)

b(k) = ε β(k) e−i Ω t δ(k − κκκ) + ε β(k) ei Ω t δ(k + κκκ),

where α(k) and β(k) are real-valued quantities. Here,
the vector κκκ, which forms an angle with k0, is the quan-
tity, by which the wave vectors of the excited first and
zeroth harmonics differ from their unexcited counter-
parts k0 and 0. Let the wave vector k0 of the carrier
wave be directed along the x-axis in the horizontal co-
ordinate system (x, y): k0 = (k0, 0), and let the vector
κκκ have both horizontal coordinates: κκκ = (κ, χ). Then,
the wave vectors of the perturbed first and zeroth har-
monics have the coordinates k0 ± κκκ = (k0 ± κ,±χ) and
0± κκκ = (±κ,±χ). Note that not only the first but also
the zeroth harmonics are excited. Since, in what follows,
κκκ is considered to be not necessarily small in compari-
son with k0, we should make a comment. The addition
of considerable deviations of κκκ from k0 and 0 in the ar-
guments of the first, a(k), and zeroth, b(k), harmonics
is carried out only under their small perturbations, the
development of which is considered at the initial linear
stage only, with a single purpose to determine the possi-
bility of their growth. Therefore, in our opinion, it does
not contradict the assumption on the concentration of
arguments of the first, a(k), and zeroth, b(k), harmon-
ics. Nevertheless, we should emphasize that only |κκκ|
satisfying the condition |κκκ| ¿ |k0| were studied in work
[13]. Arbitrary |κκκ| were considered in the fundamental
works [3, 5], where the expression for instability incre-
ment was derived (it was used as the basis for numerical
calculations in works [27, 30–32]), but for the perturba-
tion in a single region only (near the wave vector of the
first harmonic). The peculiarity of this work is studying

the MI under a broadband perturbation in two regions
(for the wave vectors of the first and zeroth harmonics).

Let us analyze the possibility for the perturbation fre-
quency Ω to have an imaginary part at certain κκκ depend-
ing on the normalized liquid depth |k0|h, which means
the instability of the unperturbed wave with respect to
a perturbation wave with such κκκ. After substituting ex-
pression (27) into the linearized equations of motion (16)
and (17), we obtain the following system of homogeneous
equations for α(k0 + κκκ), α(k0 − κκκ), β(κκκ), and β(−κκκ):
(
Ω + ω(k0 − κκκ)− ω(k0) + λA2

0

)
α(k0 − κκκ)+

+λA2
0α(k0 + κκκ) +A0 [f(−κκκ)β(−κκκ) + f(κκκ)β(κκκ)] = 0,

(
Ω− ω(k0 + κκκ) + ω(k0)− λA2

0

)
αk0 + κκκ)−

−λA2
0α(k0 − κκκ)−A0 [f(−κκκ)β(−κκκ) + f(κκκ)β(κκκ)] = 0,

(Ω + ω(κκκ)) β(−κκκ) +A0f(−κκκ)×

× [α(k0 − κκκ) + α(k0 + κκκ)] = 0,

(Ω− ω(κκκ)) β(κκκ)−A0 f(κκκ) [α(k0 − κκκ) + α(k0 + κκκ)] = 0.

Zeroing the corresponding determinant gives a necessary
equation for the perturbation frequency Ω,

(Ω− δ)2 = ∆
(
∆− 2λ(Ω)A2

0

)
(28)

where

λ(Ω) = −λ + λ(0)(Ω), (29)

λ(0)(Ω) =
f2(−κκκ)
ω(κκκ) + Ω

+
f2(κκκ)

ω(κκκ)− Ω
(30)

∆ =
1
2

(ω(k0 + κκκ) + ω(k0 − κκκ))− ω(k0), (31)

δ =
1
2

(ω(k0 + κκκ)− ω(k0 − κκκ)) . (32)

The subscript in λ(0)(Ω) indicates that it is a contribu-
tion of the zeroth harmonic to the nonlinear interaction.
In the expanded form, expression (28) looks like

(Ω + ω(k0 − κκκ)− ω(k0)) (Ω− ω(k0 + κκκ) + ω(k0)) =
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= −2λ(Ω)A2
0 ∆ (33)

and coincides with that from work [13]. In formulas (28)
and (33), the transition to the physical amplitude A0 by
formula (23) can be made.

Let us calculate quantity (30). In order to obtain,
according to formula (20), f(κκκ) = 2V (k0, k0, κκκ), let us
simplify the coefficient V (k1, k2,k3) (12) of k0 = (k0, 0)
and κκκ = (κ, χ). We have

V (k0, k0,κκκ) =

= −V0(−k0, k0, κκκ)− V0(−k0, κκκ, k0) + V0(k0,κκκ,−k0),

where

V0(−k0, k0, κκκ) =
1

8
√

2π

√
ω(κκκ)
k0σ

(−k2
0 + k2

0σ
)
,

V0(−k0, κκκ, k0) =
1

8
√

2π

ω0√
k0σω(κκκ)

×

× (−k0κ + k0|κκκ| tanh |κκκ|h) ,

V0( k0, κκκ,− k0) =

=
1

8
√

2π

ω0√
k0σω(κκκ)

(k0κ + k0|κκκ| tanh |κκκ|h) .

Whence,

f(κκκ) =
k

3/2
0 ω

1/2
0

4
√

2π
√

σ


2

κ

k0

√
ω0

ω(κκκ)
+ (1− σ2)

√
ω(κκκ)
ω0


 .

(34)

Note that, in the case of two-dimensional perturbations,
the transverse component χ of the vector κκκ = (κ, χ) ap-
pears only in ω(κκκ), whereas the numerator of the first
term includes only the longitudinal component κ, as it
occurs in the one-dimensional case. Substituting expres-
sion (34) into formula (30), we obtain the second term
in formula (29):

λ(0)(Ω) =
k3
0

16π2σ
×

×
(

κ2

ω2(κκκ)− Ω2

(
2
ω0

k0
+ (1− σ2)

Ω
κ

)2

+

+(1− σ2)2
)

. (35)

Our task is to analyze all four roots of Eq. (33). The
dispersion equations of high orders [33] were mainly
solved numerically, when studying the interaction of
nonlinear waves. Under condition of small non-linearity,
some factorization is possible in two cases. In both of
them, the crucial role is played by only two of those four
roots. Therefore, if the remaining two roots are replaced
in the first iteration by their approximate values, the in-
teraction between the “main” roots can be described by
quadratic equations. Such an approach gives only ana-
lytical estimations, and it will be verified by a straight-
forward numerical solution of the fourth-order equation
(33) in a wide range of κκκ = (κ, χ) for specific values of
k0h and k0A0.

4.1. Instability of the first harmonics associated
with its transformation into the second
one. Comparison with available results

One can see from Eq. (28) that two of four roots Ω have
an imaginary parts. The perturbation with such a fre-
quency Ω is unstable, if the right-hand side of Eq. (28)
becomes negative. The boundaries of this instability re-
gion in the plane (κ, χ) are found by zeroing each of the
multipliers on the right-hand side of Eq. (28).

1. ∆ = 0. (36)

This curve is known in the theory of instability of
infinitesimal amplitude waves as the figure-of-eight of
Phillips [34] or the resonance curve

ω(k0 + κκκ) + ω(k0 − κκκ)− 2ω(k0) = 0. (37)

2. ∆ = 2λ(δ)A2
0 . (38)

where

λ(δ) =
k3
0

16π2σ

(
ν +

κ2

ω2(κκκ)− δ2

(
2
ω0

k0
+ (1− σ2)

δ

κ

)2
)

,

ν = − 9σ4 − 10σ2 + 9
2σ2

+ (1− σ2)2.

The region of instability is confined by curves (37) and
(38). In Figs. 1 and 2, this region is shown in the co-
ordinates defined by the longitudinal, p = κ/k0, and
transversal, q = χ/k0, components of the normalized
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Fig. 1. Instability region according to Eqs. (37) and (38) at k0h =
2 and 10. k0A0 = 0.2

vector κκκ = (κ, χ) for several k0h-values [curves (37) and
(38) are designated as P and BF, respectively].

In the limiting case (κ, χ) ¿ k0, we have

δ → cgκ, cg =
∂ω

∂κ

∣∣∣∣∣
κ=k0,χ=0

=
1
2

(
1 +

1− σ2

σ
k0h

)
ω0

k0
,

∆ → 1
2
(ακ2 + βχ2),

α ≡ ∂2ω

∂κ2

∣∣∣∣∣
κ=k0,χ=0

=

= −1
4

(
1− 2

1− σ2

σ
k0h +

(
3σ2 + 1

) (
1− σ2

)

σ2
k2
0h

2

)
ω0

k2
0

,

β ≡ ∂2ω

∂χ2

∣∣∣∣∣
κ=k0,χ=0

=
cg

k0
,

ω2(κκκ) = gh
(
κ2 + χ2

) ≡ k0h
(
κ2 + χ2

) ω2
0

k2
0

,

where cg is the group velocity of linear waves. Hence,
in this case, the left border (37) of the instability region
becomes a straight line

χ =
√
−α

β
κ, (39)

whereas, for the right border (38),

λ(δ)|κ,χ¿k0 =
k3
0

16π2σ
×

P

P

BF

BF

kh=1.363

kh=0.38

0

0.1

0.2

0.3

0.4

q

0.2 0.4 0.6 0.8 1 1.2 1.4p

Fig. 2. The same as in Fig. 1, but at k0h = 1.363 and k0h = 0.38.
Dotted lines are approximations by formulas (39), (38), and (40)

×
(

ν +
κ2

gh (κ2 + χ2)− c2
gκ

2

(
2
ω0

k0
+ (1− σ2)cg

)2
)

.

(40)

As is seen from the comparison of expressions (38) and
(40) with formulas (39) and (30) in work [6], in the one-
dimensional case (χ = 0) and for small κ, border (40)
of the instability region transforms into the right end of
the interval of κ-instability obtained for the first time
by Benjamin and Feir for this case [6] (it also follows
from the Zakharov general formula for the instability
region, provided small |κκκ| [3, 5]). Moreover, this case
of small κ corresponds to the NSE approximation [4],
so that expression (40) is identical, to within a constant
factor, to the nonlinear coefficient q (48) in NSE (2).
At k0h = 1.363, expression (40) changes its sign from
the negative, at k0h > 1.363, to positive one. Since
∂2ω
∂κ2 |κ=k0,χ=0 < 0, equality (38) is impossible, if k0h <
1.363. Hence, two lines, which confine the instability
region, converge at the point (κ = 0, χ = 0), so that
instability BF is absent in the one-dimensional case if
k0h ≤ 1.363 for any perturbation wave vector κ [6,7,14].
In the NSE approach [4], such a situation corresponds
to the absence of soliton solutions for NSE (2), qω′′ < 0.

In the two-dimensional case and for small κ, χ ¿ k0,
we obtained the results for the instability region that are
identical to those of works [14,15,17]. The corresponding
region is shown in Fig. 2 for specific values k0h = 1.363
and 0.38. In the range of small κ and χ, the instability
region is described by the simplified formulas (39), (38),
and (40) shown by dotted asymptotes. These lines were
presented in work [14]; here, they are given as test ones.

If k0h = 0.38, curves (38),(40) coincide with the
straight line (39), and the instability region degenerates
into the latter. This conclusion on the disappearance of
the instability at k0h = 0.38 [14, 15, 17] corresponds in

ISSN 2071-0194. Ukr. J. Phys. 2009. Vol. 54, No. 8-9 903



Yu.V. SEDLETSKY

Fig. 2 to the convergence of its two borders into a single
straight asymptote in the range of small |κκκ|.

From the simplified formulas (38), (40), and (39), it
also follows that, if k0h < 1.363 in the range of small κ,
and χ 6= 0, curves (38),(40) lie below the straight line
(39) (in this connection, see work [35]).

In the case where κ and χ are not small, the borders
of the instability region (36) and (38) are depicted in
Figs. 1 and 2 by solid curves. Another intersection point
(κ, χ) of curves (36) and (38) was found for the first
time. It is a solution of the system of equations λ = 0
and ∆ = 0. At arbitrary κ and χ, the curves concerned
are only qualitatively similar to those obtained in works
[27] (the finite depth) and [30, 31] (the infinite depth) –
a quantitative agreement is attained only at small κ and
χ – which used the general expression for the instability
region obtained, as was indicated above, without pertur-
bation with the center at the zeroth harmonic (only at
the fundamental one) in works [3, 5]. Given the zeroth
harmonic (the finite depth), the equation of motion for
it has to be taken into account explicitly, as was done
in work [13]. In this case, we obtain a dispersion equa-
tion of the fourth order (33) which contains both the
influence of the zeroth harmonic on the known instabil-
ity region at small |κκκ| and the emergence of additional
instability section.

4.2. Additional region of the first harmonic
instability associated with its
transformation into the second
and zeroth harmonics

To make analytical estimations of the possibility that
some roots of Eq. (33) have an imaginary part at κ ' k0,
let us divide it by Ω − ω(k0 + κκκ) + ω(k0) and multiply
by Ω − ω(κκκ). Now, let us change over to the physical
amplitude by formula (23). As a result, Eq. (33) reads

(Ω + ω(k0 − κκκ)− ω0) (Ω− ω(κκκ)) =

=−
(
ν (Ω− ω(κκκ))− κ2

ω(κκκ) + Ω

(
2
ω0

k0
+ (1− σ2)

Ω
κ

)2
)
×

× (ω(k0 + κκκ) + ω(k0 − κκκ)− 2ω0)
(Ω− ω(k0 + κκκ) + ω0)

ω0

8σ2
k2
0A

2
0. (41)

Since the quantity k2
0A

2
0 is small, two of four roots of

Eq. (41) are close to the corresponding values obtained,
if the right-hand side equals zero. Since ω(0) = 0, those
two roots are equal to ω0 ≡ ω(k0) at the point (κ =

k0, χ = 0). Therefore, in the first iteration in the range
of small χ, let us approximately substitute Ω by ω0 and
κ by k0 on the right-hand side of Eq. (41):

(Ω + ω(k0 − κκκ)− ω0) (Ω− ω(κκκ)) =

= −
(
3− σ2

)2

8σ2

ω3
0 (ω(k0 + κκκ) + ω(k0 − κκκ)− 2ω0)
(ω(k0 + κκκ)− 2ω0) (ω(κκκ) + ω0)

k2
0A

2
0.

(42)

Now, on the basis of Eq. (42), let us analyze whether
those two roots can have a small imaginary part in the
region (κ ' k0, χ ' 0) in the next approximation. Let us
change over to frequencies normalized by ω0 and denote
them by a hat. Equation (42) looks like
(
Ω̂ + ω̂(k0 − κκκ)− 1

)(
Ω̂− ω̂(κκκ)

)
=

= −
(
3− σ2

)2

8σ2

(ω̂(k0 + κκκ) + ω̂(k0 − κκκ)− 2)
(ω̂(k0 + κκκ)− 2) (ω̂(κκκ) + 1)

k2
0A

2
0. (43)

At κ = k0 and χ = 0, we obtain

(
Ω̂− 1

)2

= −
(
3− σ2

)2

16σ2
k2
0A

2
0,

i.e. a perturbation leads to the instability with the in-
crement

ImΩ̂ =
3− σ2

4σ
k0A0. (44)

In this case, Re Ω̂ = 1. In Fig. 5 obtained by direct
numerical calculations by formula (33), value (44) cor-
responds to the vertex of the internal surface which is
really located at (κ ' k0, χ = 0).

In the region κ = k0 and χ ' 0, the instability incre-
ment is

ImΩ̂ =
{
−1

4
(1− ω̂(k0 − κκκ)− ω̂(κκκ))2+

+

(
3− σ2

)2

8σ2

ω̂(k0 + κκκ) + ω̂(k0 − κκκ)− 2
(ω̂(k0 + κκκ)− 2) (ω̂(κκκ) + 1)

k2
0A

2
0

}1/2

. (45)

In Fig. 3, the plots of the function Im Ω̂ depending on two
variables, κ and χ, calculated by formula (45) are shown
for k0h = 10 and 2 and k0A0 = 0.2. They are depicted
as the curves of the Im Ω̂-dependence on the transversal
component q = χ/k0 of the wave vector κκκ for several
values of its longitudinal component, p = κ/k0. The
additional two-dimensional regions of instability ((43)
for the same values of parameters are shown in Fig. 4.
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Fig. 3. Instability increment Im Ω̂ (formula (45)) as a function of
q for several p-values at k0h = 10 and 2. k0A0 = 0.2

4.3. Common numerical description of both
instability regions

In the case of arbitrary κκκ and the non-linearity k0A0,
Eq. (28) must be solved numerically. The fourth-order
equation obtained in work [13] was not solved numeri-
cally, but, in order to obtain analytical estimations for
the instability increment, it was reduced to a quadratic
one in κκκ-regions weakly different from the resonance sur-
face (37) (∆ = 0). The results of such numerical calcu-
lations are shown in Fig. 5. The normalized instability
increment Ω̂ = Ω

ω0
is shown in the plane of two nor-

malized components, p = κ
k0

and q = χ
k0
, of the vector

κκκ. One can distinctly see the external and internal re-
gions of instability described in subsections 4.1 and 4.2,
respectively, with some approximations. The external
instability region at small |κκκ| in the vicinity of the coor-
dinate origin is known as the Benjamin–Feir long-wave
instability. Both regions are described by the dispersion
law (33) obtained by Zakharov in his pioneer work [13]
and analytically studied there in the case of small |κκκ|.
The possibility for the existence of an additional insta-
bility region in the one-dimensional case was pointed out
for the first time in work [20], where the corresponding
dispersion law was obtained in the framework of the mul-
tiscale method. First numerical tabulations in the case of
two-dimensional perturbations were made in work [22].

The additional (internal) instability region broadens
out at the reduction of k0h and, as the results of cal-
culations testify, reaches the known (external) region at
k0h = 0.38 irrespective of the k0A0-value (usually, owing
to the weak non-linearity of the theory, k0A0-values sub-
stantially smaller than unity were considered). However,
we do not present this effect in Fig. 5 at k0h = 0.38, be-
cause, as is seen from the condition that A2 is small
in comparison with A in expression (46), Stokes ex-
pansions into harmonic series are valid provided that

kh=10

kh=2

0

0.02

0.04

0.06

0.08

0.1

0.12

q

0.8 0.85 0.9 0.95 1 1.05p

Fig. 4. Instability region (according to Eq. (43)) in the coordinates
set by the longitudinal, p, and transverse, q, components of the
normalized vector κκκ at k0h = 10 and 2. k0A0 = 0.2

(k0h)3 À k0A0; so that, for k0A0 = 0.2 adopted for
Fig. 5, we confine ourselves by the value k0h = 1. The
value k0h = 0.38 was indicated in works [14,15,17], when
studying the instability in the range of small |κκκ|, as such,
at which the region degenerates into a straight line, i.e.
the instability disappears. From our results – see the
tendency at a depth reduction in Fig. 5 (see also Fig. 2
for k0h = 0.38) – it follows that, if the depth decreases,
the instability disappears only in the range small |κκκ|.

Direct numerical calculations of the instability region
for two-dimensional perturbation wave vectors were car-
ried out in work [11], proceeding from the Euler equa-
tions of motion for an ideal liquid; however, the ad-
ditional instability region described above was not re-
vealed there. This may be connected with the consid-
eration of stationary waves and the corresponding as-
sumption that all harmonics move with the same ve-
locity, whereas in this work, the time evolution of the
zeroth and first harmonics is governed by interdepen-
dent equations of motion, and the velocity of the zeroth
harmonic is not assumed to be equal to that of the first
harmonic.

5. Conclusion

Besides the first harmonic, an essential role in the for-
mation of an additional instability region is played by
the zeroth one. Therefore, the long-term evolution of
the considered instability can result in the formation of
structures that are intermediate between the soliton-like
envelope of fast oscillations described by the NSE and
the isolated waves without filling, which are characteris-
tic at small depths.
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Fig. 5. Imaginary part of the normalized frequency Ω̂ (see Eq. (33))
as a function of two components of the vector κκκ/k0 = (p, q) for
k0h = 10, 2, 1.363, and 1 (from top to bottom). k0A0 = 0.2

APPENDIX

Here, the amplitudes of the zeroth, B, and second, A2, harmonics
expressed in terms of the first harmonic amplitude A [4, 12] are
given.

A2(x, t) =
3− σ2

8σ3
k0A2(x, t), σ = tanh k0h (46)

B(x, t) =
σ2 − 1

4σ
k0|A|2(x, t)− σk0

ω2
0

∂Ψ

∂t
,

∂Ψ

∂t
= −cg

∂Ψ

∂x
,

∂Ψ

∂x
=

ω2
0

4σ2

(
2ω0

k0
+

(
1− σ2

)
cg

)

c2g − gh
|A|2(x, t), (47)

q =
ω0k2

0

16σ2

{
− 9σ4 − 10σ2 + 9

σ2
+ 2(1− σ2)2+

+
1

gh− c2g

(
2

ω0

k0
+ (1− σ2)cg

)2}
. (48)
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НЕСТАБIЛЬНIСТЬ ОСНОВНОЇ ГАРМОНIКИ
СТОКСОВИХ ХВИЛЬ ДО ДВОВИМIРНИХ
ЗБУРЕНЬ В ПРИСУТНОСТI
НУЛЬОВОЇ ГАРМОНIКИ

Ю.В.Седлецький

Р е з ю м е

Ранiше отриманi в одновимiрному випадку (Письма в ЖЭТФ
86, 574 (2007)) результати про додаткову, недовгохвильову
область нестабiльностi слабонелiнiйних хвиль на поверхнi ша-
ру рiдини обмеженої глибини h поширено на випадок дво-
вимiрних збурень. Опис проведено у рамках гамiльтонiвсько-
го пiдходу Захарова для зв’язаної системи фур’є-амплiтуд
першої гармонiки з хвильовим вектором k0 i неосцилюючої
компоненти хвилi (нульової гармонiки). При аналiзi лiнiйної
(не)стабiльностi слабконелiнiйного стоксового розв’язку такої
системи дисперсiйне рiвняння 4-го порядку (отримане ранiше
Захаровим i вивчене аналiтично в областi малих хвильових ве-
кторiв хвилi збурювання) дає, поряд з ранiше вiдомою, дода-
ткову область нестабiльностi при незанадто великих кутах θ
мiж основною i збурюючою хвилями, на вiдмiну вiд звичай-
но одержуваного в довгохвильовiй областi квадратного рiвнян-
ня, що дає тiльки звичайну нестабiльнiсть Бенджамена–Фейра.
У той час як область звичайної нестабiльностi звужується зi
зменшенням глибини й зникає при k0h = 1, 363 для θ = 0, а
при k0h = 0, 38 для всiх θ, додаткова область нестабiльностi
розширюється iз зменшенням глибини.
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