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It is shown that the results by Bogolyubov on the reduction of
a multidimensional dynamical system on its integral manifold are
the base of the center manifold theory which, together with normal
forms, is a powerful tool of the bifurcation analysis of multidimen-
sional nonlinear models.

1. In 1945, the monograph by M.M. Bogolyubov “On
Some Statistical Methods in Mathematical Physics” [1]
was published. This monograph contains, along with the
results obtained by M.M. Bogolyubov in the stochastic
theory of perturbations, the theory of random processes,
etc., a strictly mathematically substantiated (on both fi-
nite and infinite time intervals) method of averaging in
the nonlinear mechanics, as well as the main aspects of
the integral manifold theory constructed by M.M. Bo-
golyubov.

The fundamental meaning of results presented in this
monograph follows from the fact that it was included into
the list of the best mathematical works published over
the world for 1900–1950. The list composed by about
50 famous mathematicians of the contemporaneity was
published in 1994 [2].

In the foreword to his monograph, M.M. Bogolyubov
wrote, in particular:

“It is worth noting that the construction of at least
a local theory of the existence of integral manifolds,
which would generalize the Poincaré local theory, can
be of independent interest irrespective of the problem of
substantiation of the principle of averaging. Indeed, a
qualitative study of solutions is significantly simplified,
if these solutions lie on a manifold with a less dimen-

sion than that of the initial phase space, especially if
such a manifold turns out to be one-dimensional or two-
dimensional.”

Thus, as early as in the 1940s, M.M. Bogolyubov in-
dicated the role of integral manifolds of minimal dimen-
sionalities in relation to their use, in particular, in a
qualitative bifurcation analysis of multidimensional non-
linear models. The point is that simple bifurcations
are manifested on manifolds of minimal dimensionali-
ties (on which the reduction of the input multidimen-
sional system is realized), if we take them as new phase
spaces. These bifurcations are well studied in the qual-
itative theory of ordinary differential equations and are
widely applied in physics, the mechanics of solids, ther-
modynamics, statistical physics, the theory of lasers,
etc.

For example, the physicians use widely bifurcations,
at which the stable mode bifurcates into a stable mode.
As an example of such a bifurcation, I mention a simple
pitchfork bifurcation of codimension 1 which is modeled
by the equation

ẋ = µx− x3, x ∈ R, µ ∈ R. (1)

The analysis of this equation leads to the following con-
clusion (Figure). For any value of the parameter µ, Eq.
(1) has the stationary point x = 0. The eigenvalue for
this point coincides with the parameter µ. Therefore,
the point x = 0 is stable at µ < 0 and unstable at µ > 0.
But, for µ > 0, there exist else two stationary points:
x1 =

√
µ and x2 = −√µ are two branches of a parabola:

µ = x2, into which the point x = 0 bifurcates. Both
these points have the eigenvalue equal to −2µ. Thus,
both branches of the parabola are stable.
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The representation of any characteristic property of
solutions as a function of the bifurcation parameter
forms a bifurcation diagram in the extended phase space.
In this case, it has the form of a pitchfork.

This bifurcation underlies some theories which explain
the spontaneous symmetry breaking. Namely, the stable
fixed point x = 0 at µ < 0 corresponds to a symmetric
state, for example, in the absence of magnetization in
a ferromagnetic, whereas the fixed points x1,2 = ±√µ
generated at µ > 0 correspond to the state with the
spontaneous symmetry breaking.

In the mechanics of solids, this bifurcation is used in
the qualitative analysis of the dynamics of the “modified”
Duffing equation ẍ+αẋ−x+x3 = 0 (with the negative
coefficient of stiffness) which is a one-mode model of the
motion of a beam in a stationary rigid body without
external force [10].

In thermodynamics, the pitchfork bifurcation was
used by Landau in his scenario of phase transitions of
the second kind in ferromagnetics [3].

In statistical physics, it is frequently assumed for phe-
nomenological reasons that the temporal course of the
order parameter q is governed by the equation

q̇ = −∂F (q, T )
∂q

, (2)

where T is the temperature. In the case where the free
energy F (q, T ) is set by the Ginzburg–Landau potential

F (q, T ) = F (0, T ) +
µ

2
q2 +

1
4
q4,

Eq. (2) yields

q̇ = −µq − q3.

Equations of type (1) have a striking analogy with the
equation for a laser [4]

Ḃ = GB − C(B+B)B + F̃ (3)

which differs from (1) by that Eq. (1) has no fluctuation
terms F̃ , and the variable x is real, whereas B in (3) is
a complex-valued amplitude. As was mentioned in [4],
Eq. (3) is, in turn, typical of the equations describing
the effects of self-organization.
2. M.M. Bogolyubov constructed the theory of inte-

gral manifolds by the example of a system in the stan-
dard form

ẋ = εX(t, x), ε > 0, (4)

where x and X are n-vectors. This system of equations
is involved in numerous problems of the nonlinear theory
of oscillations.

As for the right-hand part of system (4), it is assumed
that the vector-function X(t, x) belongs to the class C1

in some Dρ-neighborhood of a one-parameter family of
the averaged system corresponding to (4).

By the example of a system of form (4), M.M. Bo-
golyubov introduced, for the first time, the definition of
integral manifold [1, p. 25].
Definition. Let every t in the interval (−∞,∞) cor-

respond to some set St of points x which can be repre-
sented analytically in a parametric form by an equation
of the form x = f(t, u1, . . . , uS), where f satisfies the
Lipschitz condition relative to the parameters u1, . . . ,
uS in the whole domain of their variation.
Then we say that St is an integral manifold of system

(4), if, for every solution x = x(t) of this system, the
relation x(t) ∈ St valid at some time moment t = t0
yields its validity for any real t > t0.

M.M. Bogolyubov proved a theorem [1, Theorem III]
which establishes the conditions for system (4), under
which there exists a one-parameter integral manifold
possessing the property to attract, in the course of the
time, “close” integral curves in some neighborhood of
a one-parameter family of periodic solutions of the t-
averaged system corresponding to (4). In this case, the
dynamics of the input system is controlled by the dy-
namics of an equation which is a result of the reduction
of the input system onto its one-parameter integral man-
ifold.

The basic idea of the proof of the theorem consists
in the following. In some Dρ-neighborhood of a one-
parameter family of periodic solutions of the averaged
system corresponding to (4), let us introduce the change
x → {ϕ, h} (ϕ is the angular variable, and h is an (n−1)-
vector directed along a normal to ϕ) which reduces the
input system (4) to the form

ϕ̇ = ω + P (t, ϕ, h, ε),

ḣ = Hh + Q(t, ϕ, h, ε)
(5)
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with the separated variables ϕ and h, where H is a con-
stant matrix, whose all eigenvalues have negative real
parts.

By the obtained system, the mapping S is constructed
on some class Cρ(η) of ρ-bounded and η-Lipschitz vector-
functions h = f(t, ϕ, ε).

The conditions imposed on the input system ensure
the fulfilment of conditions for the contraction mapping
principle for S. It is proved that the fixed point of a con-
traction mapping S sets the required integral manifold.
It is proved also that the dynamics of the input system
is controlled by the dynamics defined by the scalar equa-
tion

ϕ̇ = ω + P (t, ϕ, f(t, ϕ, ε), ε) (6)

which is a result of the reduction of system (5) onto its in-
tegral manifold set by the vector-function h = f(t, ϕ, ε).
3. By advancing the idea of the development of the

theory of local integral manifolds, M.M. Bogolyubov em-
phasized the expediency of the construction of local in-
tegral manifolds with minimum dimensionalities (one or
two).

In 1954, by the example of an n-dimensional system
of nonlinear differential equations of the form

ẋ = X(x) + εX(t, x), ε > 0, (7)

M.M. Bogolyubov posed the problem on the existence
of two-dimensional local integral manifolds in a neigh-
borhood of a static (and also periodic) solution of the
nonperturbed system

ẋ = X(x) (8)

corresponding to (7). The results obtained in this direc-
tion were published in [5,6].

In 1964, the article by V.A. Pliss [7] which is consid-
ered to be a pioneer study on the center manifold theory
was published in the journal Izv. Akad. Nauk SSSR.
This article cited work [6].

The necessity of the analysis of bifurcation problems,
which appear more and more often in the qualitative
studies of applied problems, caused the further intense
development of the method of center manifolds [8–12].

For the sake of simplicity, we present the essence of
the center manifold method according to [8].

Let

ẋ = F (x, c), x ∈ Rn, c ∈ Rc, F (x, c) ∈ Rn (9)

be a k-parameter family of dynamical systems.

Let x = x0 be a stationary point of system (9) at
c = c0. Then the linearization of (9) in a neighborhood of
this point gives the relation ẋi = Fi,j(x0, c0)δxj + terms
of higher orders.

The linear vector space V of displacements δx from x0

can be divided into three linear vector subspaces:

V = VS + VC + VU . (10)

Here, the stable subspace VS is formed by eigenvectors
of the matrix Fi,j , whose corresponding eigenvalues have
negative real parts; the unstable subspace VU is formed
by eigenvectors of the matrix Fi,j , whose corresponding
eigenvalues have positive real parts; and the center sub-
space VC is formed by eigenvectors of the matrix Fi,j ,
whose corresponding eigenvalues have zero real parts or
are zero. Just the last subspace is critical, because it
is related to bifurcations of system (9), and it can be
locally extended to a manifold called the center (local)
manifold.

We say that some manifold M is the center manifold
of a stationary point of the given dynamical system, if
it is invariant relative to this system and includes its
stationary point, and if its tangent space at this point is
a critical eigensubspace.

If δx is an arbitrary displacement from x0, then, in
a neighborhood of (x0; c0), the equations describing the
dynamical system can be represented in a simpler form
as

δx = δvS + δvC + δvU , (11)

δv̇S = GSδvS ,

δv̇C = GC(δvC , c),

δv̇U = GUδvU ,

(10′)

where GS is an (s×s)-matrix (s = dim VS); GU is a (u×
u)-matrix (u = dim Vu), and the operator GC(δvC , c) is
nonlinear.

It is seen from Eqs. (10′) that the equation describ-
ing the dynamical system can be linearized far from the
center manifold. The terms of higher orders must be
preserved only on the center manifold with dimension-
ality c < n. All bifurcations of the dynamical system
in a neighborhood of c0 are determined by the operator
GC(δvC , c). The indicated decrease in the dimensional-
ity simplifies significantly the study of bifurcations re-
lated to dynamical systems (9). Thus, it is possible to
state that the study of bifurcations of an input dynami-
cal system is reduced to the study of only such bifurca-
tions which can appear on the center manifold [8].
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It is easy to see that the last assertion is an analog
of the thought of M.M. Bogolyubov on the application
of the reduction of the initial problem concerning the
qualitative study of a multidimensional nonlinear system
onto its integral manifold.
4. In 1994, the article by D.V. Anosov “On the con-

tribution of N.N. Bogolyubov to the theory of dynami-
cal systems” was published in the journal Uspekhi Mat.
Nauk [13], in which the fundamental role of ideas by
M.M. Bogolyubov in the construction of the center man-
ifold theory was indicated. In particular, D.V. Anosov
wrote: “N.N. Bogolyubov emphasized the pragmatic
meaning of integral (invariant) manifolds: they allow one
as if to divide the dimension of the initial problem. This
idea is the main one also in the center manifold theory”.

“. . . As for a center manifold, the first, devoted to it,
article by V.A. Pliss contains the direct reference onto
N.N. Bogolyubov’s works in connection with the use of
an analogous integral equation.”

Thus, I may conclude that the integral manifold the-
ory of Bogolyubov is a basis of the center manifold theory
which, together with normal forms, is considered a pow-
erful tool of the bifurcation analysis of multidimensional
dynamical systems with simple dynamics. In turn, such
dynamical systems model, in many cases, the applied
problems such as those, for example, related to neuron
networks, whose partial cases are dynamical systems on
lattices and cell automata [14, p. 15].
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ПРО РОЛЬ МЕТОДУ IНТЕГРАЛЬНИХ МНОГОВИДIВ
БОГОЛЮБОВА В БIФУРКАЦIЙНОМУ АНАЛIЗI
БАГАТОВИМIРНИХ НЕЛIНIЙНИХ МОДЕЛЕЙ

О.Б. Ликова

Р е з ю м е

Показано, що результати Боголюбова щодо редукцiї багатови-
мiрної динамiчної системи на її iнтегральному многовидi ста-
новлять фундамент теорiї центрального многовиду, яка разом
з нормальними формами є потужним апаратом бiфуркацiйно-
го аналiзу багатовимiрних нелiнiйних моделей.
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