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The spectra of Gaudin quantum integrable models is defined by
solving the Richardson algebraic equations. Under the narrow-
band assumption, the solution of the Richardson equations is pre-
sented in terms of a distribution of zeros of the scaled Laguerre
polynomial in a rational case and the scaled Jacobi polynomial
in a general case (rational, trigonometric, and hyperbolic). The
asymptotic limit of the distribution of zeros for Laguerre and Ja-
cobi polynomials is studied, and the spectral density for Gaudin
models is calculated.

1. Introduction

In 1957, N.N. Bogolyubov with students [1] proved the
integrability of the BCS Hamiltonian in the thermody-
namic limit. In 1963, R.W. Richardson [2] proved the
integrability of the BCS pairing Hamiltonian for a finite
number of particles. Later on, M.Gaudin [3, 4] developed
the appropriate mathematical theory and proposed a lot
of integrable models which are of interest for a number
of physical problems.

In this paper, we discuss a spectrum of integrable
Gaudin models which is defined by the Richardson equa-
tions
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Here, the variables w;, [ = 1,..., N, are eigenvalues
of the Hamiltonian without interaction, the variables
Wq, @ = 1,..., M, are eigenvalues of the Hamiltonian
with interaction, and G is an interaction constant of the
Hamiltonian. (For details see, e.g., [5]).

A structure of the paper is as follows. In Section 1, we
obtain a solution of the Richardson equations under “the
narrow-band assumption” in the rational case in terms of
a distribution of zeros of the scaled Laguerre polynomial.
Section 2 presents a solution of the Richardson equations
under “the narrow-band assumption” in the general (ra-
tional, trigonometric, and hyperbolic) case in terms of a
distribution of zeros of the scaled Jacobi polynomial.
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2. Solution of the Richardson Equations and
Zeros of the Laguerre Polynomials

2.1. The Richardson equations and the
Laguerre polynomials

Let us study a solution of the Richardson equations in
the rational case under the assumption

w=0, 1=1,2,...,N,

which we call “the narrow-band assumption”.
Theorem 2.1. [If, in the Richardson equations for the
rational case,
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the conditions
=0, [=1,2,...,N,

are satisfied, then the Richardson equations have the so-

lution
Wo, a=1,2....M,

where w,, are zeros of the generalized Laguerre polyno-
mial

We
L (M%)
Here,
N+1 1
=+, G=-5(N+1)G

PROOF. Let the Richardson equations in the rational
case,

M 1 N 1 1
2 —+t )y ———— = =0,
5:%;,&@ Wa — wg l:Z1ul —wo G

satisfy the conditions

w=0, 1=1,2,...,N.
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Then these equations attain the form
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2 AR —)
%#a Wa—wp  wa G

According to last equalities, the polynomial

M

f(2) =[] (= —ws)

B=1
is a solution of the differential equation
d’*f z df M
el (2 N) -
sz (V) g tgl =

A unique polynomial solution of this equation is the
scaled Laguerre polynomial

y(z) = Ly~ (%) :

It is convenient to introduce new parameters A, B, and
g in the following way:

N +1 1 g
A=—— B=MG=-——=(N+1)G=-=.
41 SN+ 1)
Then the polynomial

z
pur(a) = 137" (M 35)

satisfies the differential equation

d®p

dz? (BZ_AM_l)dpM+ BpM—O

z
t

In what follows, we will study a distribution of zeros
of the polynomial

M
=C[[(z-a)
j=1

at the limit M — oo with parameters A, B, and g be-
ing constants. The parameter B defines just a scale of
the variable z, and there is no problem to take it into
account. Therefore, we set further B = 1 in order to
simplify the calculations.

2.2. Basic facts on the Laguerre polynomials

We recall that the Laguerre polynomial of the n-th order,

e =3 () S

k=0
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is a polynomial solution of the second-order linear dif-
ferential equation

2y (2) + (@ +1 = 2)y'(2) + ny(z) = 0.

Since Lgf‘)(z) is also a polynomial of the order n in the
variable «, it is an analytical function in this variable.
Let us recall some facts on zeros of the Laguerre poly-
nomials (G. Szegd [6]). If —1 < «, then all n zeros
of L (z) are simple and located on the real half-line
[0,400). If = —k € {—1,-2,...,—n}, then we have a
zero of the k—th order at z = 0 and the other (n — k)
simple zeros which are located on the half-line (0, 400).
If & < —n, then all n zeros are simple; if n is even, these
zeros are all complex pairwise conjugated, if n is odd,
these zeros are all complex pairwise conjugated but one.
At o = —n — 1, the Laguerre polynomial is proportional
to a partial sum for the function e?,

n

Y

k=0

L(—ﬂ 1)

and can be used for the polynomial approximations for
the exponential function e*

e* = lim (—1)"L; " !(2).

n—oo

Let us scale the independent variable, z — nz, and
introduce two power series in the scaled variable,

To(2) = (=1)"Ly," ! (n2),
En(z) = e — (=1)"L; " (nz).
Let Z, = Z(T,,) and W,, = W(E,,) denote the sets of

zeros of the polynomial T;,(z) and the remainder term
E,(z), respectively.

Theorem 2.2. (G. Szegé [7]) As n — oo, the zeros
Z, of the polynomial T, (2) cluster on the curve SoN B,
and the zeros W, of the transformed remainder term
E,(2) cluster on the curve So\B, where the curve

So={z:|ze'7%| =1}
is called the Szegd curve and
B={z:]z| <1}

is an open disc.
For recent publications on the Szego curve, see [§].
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2.3. The limit zero distribution of scaled
Laguerre polynomials

Here, we study the zero distribution of scaled Laguerre
polynomials.

Theorem 2.3. Let us consider a sequence of scaled
Laguerre polynomials,

pu(z) = L) (nz),
and a sequence Of their zero measures,
1
M = E Z dz.
p"(Z):O

Then, as n — oo and under the condition

. Qp
lim —=A4
n—oo N

there exists a limit measure
p= lim g,
n—oo

and a support of this measure I' which is a simple ana-
lytic arc, symmetric with respect to R. These quantities
are described in terms of the parameters

fiZA/41~§-2:|:2\/14—|—17

and the polynomial

D(z) = (z = &4)(z — €-).

More precisely,

1)if A>0, then&_, &y eR and T =[(_,&4] CR;

2)if A < —1, then & = £, and T is given by the
equation

Re/ : lt)(t)dt:()
£

which, when computed explicitly, yields
24eVPE) [ - /D(2) — (A + 2)]A1? iy
A(A+1) [AA+ /D) - s(A+2)]Al

3)if A= —1,thené_ =&, =1, and T is the Szegd
curve defined by the equation

‘ze =1, |z| <1,

which is a closed curve around the origin passing through
1 and a point in (—o0,0).
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In all cases above, the zero distribution measure p is
absolutely continuous with respect to the linear Lebesgue
measure on I' and

4) if A€ (—1,0) and there exists the limit

lim [dist(a,, Z)]Y™ =0,

n—oo
then the zeros of Lo (nz) accumulate on T' = {0} U
[E_,¢&1], and the asymptotic zero distribution measure

8

— &) — 1)

2rx

xr
du(z) = —Adg + \/( X[gﬂ@r]d‘r;

5)if A€ (—1,0) and there exists the limit

lim [dist(an, Z)]Y" =e™", 0<r < oo,
then the zeros of Lim(nz) accumulate on T' = T U

[€—,&+] and the asymptotic zero distribution measure is

V(e =€) —a)

2mx

dp, = dv,(s) +

X[e- .14,

dv,.(s) = L,i“DS(S)ds7

sel
2mi "

zel,.

Rg/ . d

The case r = 0 represents the typical one in the sense
that if a sequence {c,} is chosen randomly, then, with
probability one, the following equality is valid:

lim [dist(a, Z)]'" = 1.
So, the zeros cluster on T'g U [E_, & ]inthetypicalcase.
The case 0 < r < 0o is more special, since the members
of the sequence {a,} should be very close to integers.
In this theorem, results 1)-3) are due to A. Martinez-
Finkelshtein, P. Martinez-Gonzalez, R. Orive [9] and
results 4), 5) are due to A.B.J. Kuijlaars, K.T-R.
McLaughlin [10,11].
Since these results were obtained by different tech-
niques, it is reasonable to present their proof in a single
manner [12].
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The proof of the theorem is the result of the following
lemmas.
Lemma 2.3.1. The Cauchy transform

o [ dul(t)

i) = [ 4

of the limit zero distribution measure u(z) for the La-
= Lgf")(nz) looks as

guerre polynomials py(2)

) 1 A JE-AZ_4z
=59, 2

=G - 2),

Zi:A+2:|:2\/A+1.

PROOF. We derive an expression for the Cauchy trans-
form of the limit zero distribution p(z) directly from the
differential equation for the Laguerre polynomials.

The polynomial

pn( ) L(An) nz

H zZ—aj)

is a solution of the differential equation

Z n Y\ _
Zpi() + (A= 24 - ) h(2) + mpalz) =0

The zero distribution measure is

Z 5(z

pn(z) 0

Ly, (2

and the Cauchy transform for the zero distribution mea-
sure is

i (2) = [ el

z—1

The expression of the Cauchy transform for the zero dis-
tribution measure in terms of the logarithmic derivative
of the polynomial is

:li 1 :/dﬂpn(t)
n z—ay z—1

J=1

1 p,(2)
n pn(z

= fip, (2).

~—
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The differential equation for the Cauchy transform of the
zero distribution measure looks as

Z(W+ﬂzn(z)> + (A—z+71l) fip, (2) +1=0.

Now let us consider the limit n — oo under assump-
tion that A is constant, |, (2)], |/, ()| are uniformly
bounded. Then, for the quantity
= [i(2),

lim fi,, (2)

n—oo

we obtain the algebraic quadratic equation

2i%(2) + (A = 2)f(z) + 1= 0.
Therefore,
i(z) = z—Ai\/(2'2;2_|r)(z—z_)7

24 =A+2+2VA+1.

Since
lim V=22 =1, lim zi(z) =1,
Z—00 z zZ—00

the expression for [i(z) has to have negative sign against

the square root.
O

Lemma 2.3.2. The limit zero distribution measure
looks as

1 D(¥)
du(t) = —=2dt, tel
ue) = ——
PROOF. The limit zero distribution measure pu(t) de-

fines, by means of the Cauchy-type integral, a piecewise
analytic function

i/du( )dt
211 t

r

f(z) = z € C\I.

This function fi(z) is analytic on the complex plane ev-
erywhere except for the integration contour,

fi(z) € A(C\I).

In terms of the piecewise analytic function fi(z), the limit
zero distribution measure p(t) is defined by means of the
Sokhotskii—Plemelj formulae,

p(t) = i (2) — i~ (2),
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where it (z) and i~ (z) are values of the function fi(z)
on two sides of the integration contour I'.
In the case under consideration,

D(z)=(z—€)(z—€), €x=A+2+2/A+ 1L

If the contour I" consists of a single arc or a finite number
of separate arcs, then

100,

m t

du(t) = tel.
(|

Lemma 2.3.3. If A < —1, then £ = &4 and T is
given by the equation

Re/ 7‘€(t)dt =0
£

which, when computed explicitly, yields

24eVPE) [ —/D(z) — (A +2)]A*2 ‘ _
4A+1) [A(A+/D(z)) — 2(A+2)]A1
PRrROOF. The integral is equal

/Z VD® { 42— (A+2)z+ AVDE
t
¢

(—z)4 eV P

y (5_>A A4(A+1)
&) [z=(A+2) = /DA [

where

D(z) = (z =& )(z = &)

The curve is defined by the equation

Re/ 7'13(t)dt =0
£

which is equivalent to the equation

‘ [A2 — (A+2)z+ A/D(2))* (g)A
(—2)AeVDPEG) &t

X

866

" 4(A+1) ‘ _
[ = (A +2) — /D(2)]4+2

With regard for the equalities
[(€-/&)l =1,

we obtain finally

’ [A(A+ \/D(2)) — z2(A+ 2)}A 4(A+1) _1
e— VD) - (A+ 24 Lag/De |

d

Lemma 2.3.4. If A= —1,thené{_ =& =1 and T
is the Szegd curve defined by the equation

=1, 2l <

)

’26

which is a closed curve around the origin passing through
1 and a point in (—o0,0).
PrOOF. The Szegd curve is the curve of the previous
lemma, taken at the limit A — —1.

O

The results of consideration in the interval A € (—1,0)
depend essentially on the way, which the sequence {a;,}
tends to an integer with.

Lemma 2.3.5. If A € (—1,0) and there exists the
limit

lim [dist (e, Z)]*/"™ =0,
then the zeros of L& (nz) accumulate on T' = {0} U

[€_,&4], and the asymptotic zero distribution measure
18

V(e —&) (& —a)

2wx

du(z) = —Ado + Xje_e41d.

If A € (—1,0) and there exists the limit

lim [dist(a,, Z)]Y" =e™", 0<7r < oo,
n—oo
then the zeros of Lim(nz) accumulate on T' = T')y U

[E_,¢&1], and the asymptotic zero distribution measure

8

Ve —E)(E —x)

2rx

dpty = dvy(s) + Xle- .£4147,

sel,,

dv,(s) = L_i”Ds(s)d&

27
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zel,.

e Z@ s=r,
Rg/ . d

The case r = 0 is the typical one. If a sequence {ay, } is
chosen randomly, then, with probability one, the equality

lim [dist(cu,, Z)]/" = 1

n—oo

is valid. In this case, the zeros cluster on To U [§_,&4].
The case 0 < r < oo is much more special. In this

case, the sequence {a, } should approzimate some integer

very closely.

PROOF. Multiple zeros of the polynomial y(z) = L (2)

occur only at the point z = 0. Indeed, if zy # 0 at some

point, we assume y(zo) = y'(z20) = 0. Then, according

to the differential equation

2y (2) + (a+1 = 2)y'(2) + ny(z) =0,

we have y®(z) = 0, k = 0,1,2,...
y(z) =0.

If a =—k e {-1,-2,...,—n}, then the polynomial
L,(la)(z) has a zero of the order k at the point z = 0. All
the other (n — k) zeros are simple and are located on the
half-line (0, +00). It is obvious due to the relation

, and, therefore,

— k)
L) = (2
If the real parameter « tends from above to the integer
—k, then k simple zeros of the L (z) approach the point
z = 0 in the directions (+1)/%. If the real parameter
decreases further below the integer —k, then k simple
zeros of the Lﬁ{’)(z) emerge from the point z = 0 in the
directions (—1)Y/*. It is similar to the behavior of the
hypergeometric function (see [13]).
Now let us consider a sequence of rational numbers
{a,}. If the sequence {a,} converges to an integer in
such a way that there exists the limit

lim [dist (v, Z)]*/™ = 0,

then zeros of L™ (nz) accumulate on I' = {0} U [{_, {4,

and the asymptotic zero distribution measure is

a5y VEEOE =)

2rx

du(z) = Xie_ £4)d2-

If the sequence {a,,} converges to an integer in the way

lim [dist(ay, Z)]Y/" =77,

n—oo

0<r<oo,

ISSN 2071-019/. Ukr. J. Phys. 2009. Vol. 5/, No. 8-9

then, using the asymptotics for the scaled Laguerre poly-
nomial L™ (nz), we prove easily that its zeros accumu-
late on the curve

I=T,Ult, & zel,,

]

and the appropriate asymptotic zero distribution mea-
sure is

dp, = dvp(s) + Smar Xje_¢.d,
1 D
dv,(s) = —& sel.
21

We skip details of these calculations.

2.4. Asymptotic solution of the Richardson
equations in rational case

Applying the results of the Theorem for the zero distri-
bution of the scaled Laguerre polynomials to solutions
of the Richardson equations in rational case, we should
take into account that, first of all, N > M > 0 and,
therefore, A < —1. This means that the zero distri-
bution measure of the Richardson equations is of the
form

zeT,

and is defined on the curve I which is given by the equa-
tion

Re/z Y D(t)dtzo
t bl

or, which is the same, by the equation

4eVDE) [z — D(z) (A2
(A+1) A(A++/D(z)) —z(A+2)]4 ’
where
D(z)=(z—&4)(z—€), €x=A+2+2/AF 1
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3. Solution of the Richardson Equations and
Zeros of the Jacobi Polynomials

3.1. The Richardson equations and the Jacobi
polynomzals

Let us consider the Richardson equations in the general
case,

M
2 Z g coth[g(we —wg)]

1
choth o —Uj)] + vl
B=1,p#a

where ¢ = 0 corresponds to rational case, ¢ = ¢ corre-
sponds to trigonometric case, and ¢ = 1 corresponds to
hyperbolic case. We study a solution of the Richardson
equations under “the narrow-band assumption”,

u; =const., [=1,2,...,N.

Theorem 3.1. If, in the Richardson equations

M
1
2 Z g coth[g(we —wg)] choth _UJ)H‘Ga

B=1,B#c
the conditions
u; = (1/2¢)In2, j=1,2,...,N,

are satisfied, then the Richardson equations have the so-
lution

we = (1/2¢) In(zo +1), a=1,2,...,M,

where x, are zeros of a Jacobi polynomial,

PA}(N+1),7(L+1)(J:O¢) -0

Here,

1 N
L=———+M-1.
2qG 2+

PRrROOF. For the Richardson equations in general case,

2 Z g coth g(we —wg)+
=1,f#a

+Z coth(u—w)—l—O
q l a G — Y

=1

let us introduce new variables

To =exp(2qwa) — 1, a=1,2,...

868

¢ =exp(2qu), 1=1,2,...,N,

and present these equations as

M L
2y oy
f=1fta Cl_x T tl
where
1 N
— — — + M —1.
2qG 2 +
If we assume
G=2, 1=12,...,N,
then the equations attain the form
N L
2 Z 1 g1 Y
=154 " ~ a Ta

As a result of the last equalities, the polynomial

M

f(z) = ] (& —2p),

B=1

x3 = exp(2quwg) — 1

satisfies the differential equation

2f df

(1-2%) T8 +[(N = L)+ (N + Lya) T+
+M(M-N-L-1)f=0.

The Jacobi polynomial
y(x) = P{"(x)
satisfies the differential equation

4y dy
2

(1-—=z )@Jr[(bfa)f(aerJr?) ]d +
+n(n+a+b+1)y=0.

Comparing these equations, we get

=—(N+1), b=—(L+1), n=M,

and, therefore,

flz) = PA}(N+1)’_(L+1) (z).

O
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3.2. Basic facts on the Jacobi polynomials

The Jacobi polynomial ps )(z) is a polynomial of the
n-th order in the variable z,

P =2 3 () (M) e

which is a solution of the second-order linear differential
equation,

(1=2)' )+ [B—a—(a+B+2)zy(2)+

+n(n+a+ B+ 1)y(z) =0,

and P{*? )(z) is also a polynomial in the variables «, .
Now we recall some facts on zeros of the Jacobi poly-
nomials [6]. Let o and § be arbitrary real numbers,

and n > 1. The polynomial P,Ea’ﬁ )(z) can have a multi-
ple zero at z =1 if a = —-1,-2,--- ,—n, at z = —1 if
B=-1,—-2,--- ,—nor at z = oo (which means a degree

reduction) if n + a+ 3 = —1,-2,--- , —n. We exclude
these zeros from the further consideration. All other ze-
ros are different with +1,—1,00 and with themselves.
Let us define values Nj(a, ), N2(a, ) and Ns(«, )
as the numbers of zeros of the Jacobi polynomials on
the segments of the real line (—1,+1), (—o0,—1), and
(+1, +00), respectively. Then

Nl(a>ﬁ) =

2{%} if(—l)"(n:a) <n2—5) >0,
Q[M} +lif(—1)n<n;:a> <n+ﬂ> <0,

NQ(avﬁ) =

2|:X2(a2ﬁ)+1:|if(2n+a+ﬂ> <n+5> >0,

n

o [Xaled)] 4 gy (20t Ay (nH0Y
2 n ’

N3(057ﬂ) =

9 {Xg(aéﬁ)Jrl} i
n n

2n+a+ (3 n+a>>0
Q[XB(;@] +1if<2n+a+ﬁ> <n+a) “o
n

n

ISSN 2071-019/. Ukr. J. Phys. 2009. Vol. 5/, No. 8-9

Here,
Xaa8) = E{ 52+ a5+ 11~ J] ~18]+ 1) |
Xafa, ) = B{3(-n+a+ 411+ lal - 9+ 1)}

Xafo, ) = B{3(-n+a+ 41|~ lal + 13+ 1)}

and E{u} is the Klein symbol,

0 if u<O0,
E{u} =1¢ [u] if w> 0 and v is noninteger,
u—1if u=1,2,---.

Therefore, the Jacobi polynomial pld (z) has
Ni(a, B)+ No(a, B) + N3(a, B) real zeros, all other zeros
are complex-valued.

3.3. The limit zero distribution of the scaled
Jacobi polynomials

Here, we study the zero distribution of the scaled Jacobi
polynomials.

Theorem 3.2. Let us consider, at the limit n — oo,
a sequence of Jacobi polynomials,

pn(Z) — pscn,ﬁn(z)’
and a sequence of their zero measures,
1
Hn = E Z 527
P (2)=0

under condition

lim ﬁ—n = B.

n—oo M

lim 2 =A,

n—oo N

Then there exists a weak limit measure

po=lm fi,,
n—oo
and the support of this measure is a simple analytic arc
' symmetric with respect to R.
1) If the parameters A, B satisfy one of the three con-
ditions, A > 0, B >0, or A >0, A+ B < =2, or
B>0, A+ B< -2, thenT =[(_,{+] CR, where

B?— A2+ 4,/(A+1)(B+1)(A+B+1)

G = (A+B+2)2 ’
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2) If the parameters A, B satisfy one of the three con-
ditions, A< -1, B< —-1orA< -1, A+ B> —1, or
B < -1, A4+ B> —1, then T is a set of z € C, defined
by the equation

[ R(t)
Re/t271dt=0,
¢

Re z > Re (g,

R(z) = /(2 = C)(z = (4)

In both cases, the measure of zeros is

_A+BH2 Ri(z)

dp(z) Tz &

zel.

21

3) If the parameters A, B satisfy one of the three con-
ditions, -1 < A< 0, or - 1< B<0or—-2<A+B<
—1, and the condition

lim [dist(ov,, Z)]Y™ = e,

n—oo

0<r < +oo,

holds for some 0 < r < 400, then the support of the
measure s

[C—: C-‘r] U F,.,

where 'y is a set of z € C defined by the equation

/ R(t) . T
o 1dt =

R
¢ A+B+2
S+

Re z > Re (4,

R(z) = V/(z = ¢)(2 = ¢4)-
For each r € [0,00), the measure is

A+B+2 Ry(2)
durlz) = — 12 %

and, for r = oo, the measure is

A+B+2 R.(2)
; 1—22

This theorem is due to A. Martinez-Finkelshtein,
R. Orive [14], A.B.J. Kuijlaars, A. Martinez-Finkelshtein
[15], and A.B.J. Kuijlaars, A. Martinez-Finkelshtein,
R. Orive [16]. Like the previous section, the proof of
the theorem can be presented as a result of similar lem-
mas.

Lemma 3.2.1. The Cauchy transform

i) = [ 440

diso(2) = —Ad + Xi¢_,cy] d2-

211

z—1

870

of the limit zero distribution measure u(z) for the Jacobi
polynomials py(z) = P,Eba"”@")(nz) looks as

A B

M) = =50 Tt

g VE— =)
_ 1
RV Ey e

xpﬁ—A?i4¢mﬁqu+1xA+B+1ﬂ.

PROOF. We derive an expression for the Cauchy trans-
form of the limit zero distribution p(z) directly from the
differential equation for the Jacobi polynomials.

The polynomial

pu(2) = P 7 (nz) = C T (2 = aj)
j=1

is a solution of the differential equation

+@ﬁ4>,

z
pTL

z—1

An
22 -1

i)+ ( plz) =0,

where A\, = n(n + a, + B, + 1). The zero distribution
measure is

1
Pn(2)=0

and its Cauchy transform is

i, (2) = [ Leell)

z—1t

The expression of the Cauchy transform for the zero dis-
tribution measure in terms of the logarithmic derivative

of the polynomial is
dpp,, () _
= / ﬁ = fip, (2)-

1pn(2) _ lzn: 1

npn(z) n z—a;

j=1

The differential equation for the Cauchy transform of the
zero distribution measure looks as

i (z an +1 L+ 1N\ i, (2
) s (4 (L Bt 1) )

z+1 n
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AL
n?z2 -1
Now let us consider the limit n — oo under the as-

sumptions: |[fp, ()], |f, ()| are uniformly bounded,

P

7:%:144_34_14_7’
n n n

where A and B are constants. Then, for the quantity

lim g, (2) = i(2),

n— oo

we obtain the algebraic quadratic equation

A B A+B+1
~92 ~ _aTroTr
0+ (2 + 2 ) i) - AP o
Therefore,

A B

P =50 —1) " 2+
A+B+2

+ —
2(22 _ 1) \/(Z Z+)(Z z )a
_ 1 2 42

Zi_m+B+mJB A+

i%ﬂA+U@HJxA+B+D]
Since

lim CEEDCEER =1, lim za(z) =1,

Z—00 z z—00

the expression for [i(z) has to have positive sign against
the square root.
|

The proof of the other lemmas is similar to that for
rational case, and we skip them out.

3.4. Asymptotic solution of the Richardson
equations in general case

Applying the results of the theorem for the asymp-
totic zero distribution of the scaled Jacobi polynomials
PA™B™ (2) to solutions of the Richardson equations in
general case, we should remember that, in fact, we con-
sider the scaled Jacobi polynomials of the form

PA}(NH)’_(LH)(,Z)

b

ISSN 2071-019/. Ukr. J. Phys. 2009. Vol. 5/, No. 8-9

1 N
S V|
2qG 2 + ’

under the asymptotic condition

N
_1 _
M,N,G™" — oo, A}linoo— A,
L 1 A 1
lim —=-— 2 41=B, lm — =g.
MM T 2g9 2 T C M GM Y

For rational (¢ = 0) and hyperbolic (¢ = 1) cases, the
indices A and B are real. For trigonometric case (¢ = 1),
the index A is real, but the index B is complex-valued;
this case deserves a special consideration, and we do not
study it here.

Since N > M > 0, A < —1. The sign of B in rational
and hyperbolic cases may be arbitrary.

4. Discussion

The constructed analytical solutions of the Richardson
equations are in good agreement with the results of com-
puter calculations obtained earlier [17]. Although our
assumption on the parameters u; (all u; are equal) and
the assumption in [17] (all w; are distributed uniformly
along a given interval of the real line) are different, the
curves of the support for spectral measures are very sim-
ilar in both cases. In Fig. 2 of work [17], the reader can
even see the Szego curve.

Applications of solutions of the Richardson equations
to various integrable quantum systems deserve a special
discussion and will be postponed to the other publica-
tion.
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CIIEKTPU KBAHTOBUX IHTEI'POBHUX MOJEJIEN
I'OAEHA TA PO3IIOAIJI HYJIIB ITOJIIHOMIB

€. /1. Binokxonoc
PezwowMme

CrekTpy KBaHTOBUX IHTErpoBHUX Mozeseil ['oena BusHavaoThCsa
po3B’si3koM asirebpaidnux piBusab Piuapacona. Ilpu npumymen-
Hi By3bKOI 30HM PO3B’SI30K piBHsIHb PidapjicoHa mpejcTaB/ieHO B
TepMiHaxX PO3MOJiIY HyJiB MacmTaboBaHOro mnoJinoma Jlareppa B
paIjioHaJIbHOMY BHIIQJKY 1 MacurraboBaHoro mosinoMa $Ikobi B 3a-
rajbHOMY BHIAJIKY (paljioHaJIbHOMY, TPUTOHOMETPUIHOMY i rimep-
Gonignomy). JlocaiazKeHO aCUMITOTHYHY MEXY [OJLIy HYyJIB IO-
ginomiB Jlareppa i Zlkob6i Ta po3paxoBaHO CHEKTPAJIbHY T'YCTUHY
st mozeseit T'onena.
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