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The spectra of Gaudin quantum integrable models is defined by
solving the Richardson algebraic equations. Under the narrow-
band assumption, the solution of the Richardson equations is pre-
sented in terms of a distribution of zeros of the scaled Laguerre
polynomial in a rational case and the scaled Jacobi polynomial
in a general case (rational, trigonometric, and hyperbolic). The
asymptotic limit of the distribution of zeros for Laguerre and Ja-
cobi polynomials is studied, and the spectral density for Gaudin
models is calculated.

1. Introduction

In 1957, N.N. Bogolyubov with students [1] proved the
integrability of the BCS Hamiltonian in the thermody-
namic limit. In 1963, R.W. Richardson [2] proved the
integrability of the BCS pairing Hamiltonian for a finite
number of particles. Later on, M.Gaudin [3, 4] developed
the appropriate mathematical theory and proposed a lot
of integrable models which are of interest for a number
of physical problems.

In this paper, we discuss a spectrum of integrable
Gaudin models which is defined by the Richardson equa-
tions

2
M∑

β=1,β 6=α

1
ωβ − ωα

=
N∑

l=1

1
ul − ωα

− 1
G

.

Here, the variables ul, l = 1, . . . , N, are eigenvalues
of the Hamiltonian without interaction, the variables
ωα, α = 1, . . . ,M, are eigenvalues of the Hamiltonian
with interaction, and G is an interaction constant of the
Hamiltonian. (For details see, e.g., [5]).

A structure of the paper is as follows. In Section 1, we
obtain a solution of the Richardson equations under “the
narrow-band assumption” in the rational case in terms of
a distribution of zeros of the scaled Laguerre polynomial.
Section 2 presents a solution of the Richardson equations
under “the narrow-band assumption” in the general (ra-
tional, trigonometric, and hyperbolic) case in terms of a
distribution of zeros of the scaled Jacobi polynomial.

2. Solution of the Richardson Equations and
Zeros of the Laguerre Polynomials

2.1. The Richardson equations and the
Laguerre polynomials

Let us study a solution of the Richardson equations in
the rational case under the assumption

ul = 0, l = 1, 2, . . . , N,

which we call “the narrow-band assumption”.
Theorem 2.1. If, in the Richardson equations for the

rational case,

2
M∑

β=1,β 6=α

1
ωβ − ωα

=
N∑

l=1

1
ul − ωα

− 1
G

,

the conditions

ul = 0, l = 1, 2, . . . , N,

are satisfied, then the Richardson equations have the so-
lution

ωα, α = 1, 2, . . . ,M,

where ωα are zeros of the generalized Laguerre polyno-
mial

LAM
M

(
M

ωα

B

)
.

Here,

A = −N + 1
M

, B = MG = − 1
A

(N + 1)G.

Proof. Let the Richardson equations in the rational
case,

2
M∑

β=1,β 6=α

1
ωα − ωβ

+
N∑

l=1

1
ul − ωα

− 1
G

= 0,

satisfy the conditions

ul = 0, l = 1, 2, . . . , N.
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Then these equations attain the form

2
M∑

β=1,β 6=α

1
ωα − ωβ

− N

ωα
− 1

G
= 0.

According to last equalities, the polynomial

f(z) =
M∏

β=1

(z − ωβ)

is a solution of the differential equation

z
d2f

dz2
−

( z

G
+ N

) df

dz
+

M

G
f = 0.

A unique polynomial solution of this equation is the
scaled Laguerre polynomial

y(z) = L
−(N+1)
M

( z

G

)
.

It is convenient to introduce new parameters A, B, and
g in the following way:

A = −N + 1
M

, B = MG = − 1
A

(N + 1)G = − g

A
.

Then the polynomial

pM (z) = LAM
M

(
M

z

B

)

satisfies the differential equation

z d2pM

dz2 − (
M
B z −AM − 1

)
dpM

dz + M2

B pM = 0.
¤

In what follows, we will study a distribution of zeros
of the polynomial

pM (z) = C

M∏

j=1

(z − aj)

at the limit M → ∞ with parameters A, B, and g be-
ing constants. The parameter B defines just a scale of
the variable x, and there is no problem to take it into
account. Therefore, we set further B = 1 in order to
simplify the calculations.

2.2. Basic facts on the Laguerre polynomials

We recall that the Laguerre polynomial of the n-th order,

L(α)
n (z) =

n∑

k=0

(
n + α
n− k

)
(−z)k

k!
,

is a polynomial solution of the second-order linear dif-
ferential equation

zy′′(z) + (α + 1− z)y′(z) + ny(z) = 0.

Since L
(α)
n (z) is also a polynomial of the order n in the

variable α, it is an analytical function in this variable.
Let us recall some facts on zeros of the Laguerre poly-
nomials (G. Szegö [6]). If −1 < α, then all n zeros
of L

(α)
n (z) are simple and located on the real half-line

[0,+∞). If α = −k ∈ {−1,−2, . . . ,−n}, then we have a
zero of the k−th order at z = 0 and the other (n − k)
simple zeros which are located on the half-line (0,+∞).
If α < −n, then all n zeros are simple; if n is even, these
zeros are all complex pairwise conjugated, if n is odd,
these zeros are all complex pairwise conjugated but one.
At α = −n− 1, the Laguerre polynomial is proportional
to a partial sum for the function ez,

L(−n−1)
n (z) = (−1)n

n∑

k=0

zk

k!
,

and can be used for the polynomial approximations for
the exponential function ez :

ez = lim
n→∞

(−1)nL−n−1
n (z).

Let us scale the independent variable, z → nz, and
introduce two power series in the scaled variable,

Tn(z) = (−1)nL−n−1
n (nz),

En(z) = enz − (−1)nL−n−1
n (nz).

Let Zn = Z(Tn) and Wn = W (En) denote the sets of
zeros of the polynomial Tn(z) and the remainder term
En(z), respectively.
Theorem 2.2. (G. Szegö [7]) As n → ∞, the zeros

Zn of the polynomial Tn(z) cluster on the curve S0 ∩B,
and the zeros Wn of the transformed remainder term
En(z) cluster on the curve S0\B, where the curve

S0 = {z : |ze1−z| = 1}

is called the Szegö curve and

B = {z : |z| < 1}

is an open disc.
For recent publications on the Szegö curve, see [8].
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2.3. The limit zero distribution of scaled
Laguerre polynomials

Here, we study the zero distribution of scaled Laguerre
polynomials.
Theorem 2.3. Let us consider a sequence of scaled

Laguerre polynomials,

pn(z) = L(αn)
n (nz),

and a sequence of their zero measures,

µn =
1
n

∑

pn(z)=0

δz.

Then, as n →∞ and under the condition

lim
n→∞

αn

n
= A

there exists a limit measure

µ = lim
n→∞

µn

and a support of this measure Γ which is a simple ana-
lytic arc, symmetric with respect to R. These quantities
are described in terms of the parameters

ξ± = A + 2± 2
√

A + 1,

and the polynomial

D(z) = (z − ξ+)(z − ξ−).

More precisely,
1) if A > 0, then ξ−, ξ+ ∈ R and Γ = [ξ−, ξ+] ⊂ R;
2) if A < −1, then ξ− = ξ̄+, and Γ is given by the

equation

Re
z∫

ξ−

√
D(t)
t

dt = 0

which, when computed explicitly, yields

∣∣∣z
Ae
√

D(z)

4(A + 1)
[z −

√
D(z)− (A + 2)]A+2

[A(A +
√

D(z))− z(A + 2)]A

∣∣∣ = 1;

3) if A = −1, then ξ− = ξ+ = 1, and Γ is the Szegö
curve defined by the equation
∣∣∣ze1−z

∣∣∣ = 1, |z| ≤ 1,

which is a closed curve around the origin passing through
1 and a point in (−∞, 0).

In all cases above, the zero distribution measure µ is
absolutely continuous with respect to the linear Lebesgue
measure on Γ and

dµ(z) =
1
πi

√
D(z)
z

dz, z ∈ Γ;

4) if A ∈ (−1, 0) and there exists the limit

lim
n→∞

[dist(αn,Z)]1/n = 0,

then the zeros of Lαn
n (nz) accumulate on Γ = {0} ∪

[ξ−, ξ+], and the asymptotic zero distribution measure
is

dµ(x) = −Aδ0 +

√
(x− ξ−)(ξ+ − x)

2πx
χ[ξ−,ξ+]dx;

5) if A ∈ (−1, 0) and there exists the limit

lim
n→∞

[dist(αn,Z)]1/n = e−r, 0 ≤ r < ∞,

then the zeros of Lαn
n (nz) accumulate on Γ = Γr ∪

[ξ−, ξ+] and the asymptotic zero distribution measure is

dµr = dνr(s) +

√
(x− ξ−)(ξ+ − x)

2πx
χ[ξ−,ξ+]dx,

dνr(s) =
1

2πi

√
D(s)
s

ds, s ∈ Γr,

Re
z∫

ξ−

√
D(s)
s

ds = r, z ∈ Γr.

The case r = 0 represents the typical one in the sense
that if a sequence {αn} is chosen randomly, then, with
probability one, the following equality is valid:

lim
n→∞

[dist(αn,Z)]1/n = 1.

So, the zeros cluster on Γ0 ∪ [ξ−, ξ+]inthetypicalcase.
The case 0 < r < ∞ is more special, since the members
of the sequence {αn} should be very close to integers.

In this theorem, results 1)–3) are due to A. Martinez-
Finkelshtein, P. Martinez-Gonzalez, R. Orive [9] and
results 4), 5) are due to A.B.J. Kuijlaars, K.T-R.
McLaughlin [10,11].

Since these results were obtained by different tech-
niques, it is reasonable to present their proof in a single
manner [12].
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The proof of the theorem is the result of the following
lemmas.
Lemma 2.3.1. The Cauchy transform

µ̂(z) =
∫

dµ(t)
z − t

of the limit zero distribution measure µ(z) for the La-
guerre polynomials pn(z) = L

(αn)
n (nz) looks as

µ̂(z) =
1
2
− A

2z
−

√
(z −A)2 − 4z

2z
=

=
1
2
− A

2z
−

√
(z − z+)(z − z−)

2z
,

R(z) =
√

(z −A)2 − 4z =
√

(z − z+)(z − z−),

z± = A + 2± 2
√

A + 1.

Proof. We derive an expression for the Cauchy trans-
form of the limit zero distribution µ(z) directly from the
differential equation for the Laguerre polynomials.

The polynomial

pn(z) = L(An)
n (nz) = C

n∏

j=1

(z − aj)

is a solution of the differential equation

z

n
p′′n(z) +

(
A− z +

1
n

)
p′n(z) + npn(z) = 0.

The zero distribution measure is

µpn(z) =
1
n

∑

pn(z)=0

δ(z),

and the Cauchy transform for the zero distribution mea-
sure is

µ̂pn(z) =
∫

dµpn(t)
z − t

.

The expression of the Cauchy transform for the zero dis-
tribution measure in terms of the logarithmic derivative
of the polynomial is

1
n

p′n(z)
pn(z)

=
1
n

n∑

j=1

1
z − aj

=
∫

dµpn(t)
z − t

= µ̂pn(z).

The differential equation for the Cauchy transform of the
zero distribution measure looks as

z

(
µ̂′pn

(z)
n

+ µ̂2
pn

(z)
)

+
(

A− z +
1
n

)
µ̂pn(z) + 1 = 0.

Now let us consider the limit n → ∞ under assump-
tion that A is constant, |µ̂pn(z)|, |µ̂′pn

(z)| are uniformly
bounded. Then, for the quantity

lim
n→∞

µ̂pn
(z) = µ̂(z),

we obtain the algebraic quadratic equation

zµ̂2(z) + (A− z)µ̂(z) + 1 = 0.

Therefore,

µ̂(z) =
z −A±

√
(z − z+)(z − z−)

2z
,

z± = A + 2± 2
√

A + 1.

Since

lim
z→∞

√
(z − z+)(z − z−)

z
= 1, lim

z→∞
zµ̂(z) = 1,

the expression for µ̂(z) has to have negative sign against
the square root.

¤

Lemma 2.3.2. The limit zero distribution measure
looks as

dµ(t) =
1
πi

D(t)
t

dt, t ∈ Γ.

Proof. The limit zero distribution measure µ(t) de-
fines, by means of the Cauchy-type integral, a piecewise
analytic function

µ̃(z) =
1

2πi

∫

Γ

dµ(t)
t− z

dt, z ∈ C\Γ.

This function µ̃(z) is analytic on the complex plane ev-
erywhere except for the integration contour,

µ̃(z) ∈ A(C\Γ).

In terms of the piecewise analytic function µ̃(z), the limit
zero distribution measure µ(t) is defined by means of the
Sokhotskii–Plemelj formulae,

µ(t) = µ̃+(z)− µ̃−(z),
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where µ̃+(z) and µ̃−(z) are values of the function µ̃(z)
on two sides of the integration contour Γ.

In the case under consideration,

µ̃(z) = − 1
πi

(
1
2
− A

2z
−

√
D(z)
2z

)
,

D(z) = (z − ξ−)(z − ξ+), ξ± = A + 2± 2
√

A + 1.

If the contour Γ consists of a single arc or a finite number
of separate arcs, then

dµ(t) =
1
πi

D(t)
t

dt, t ∈ Γ.

¤

Lemma 2.3.3. If A < −1, then ξ− = ξ̄+ and Γ is
given by the equation

Re
z∫

ξ−

√
D(t)
t

dt = 0

which, when computed explicitly, yields

∣∣∣z
Ae
√

D(z)

4(A + 1)
[z −

√
D(z)− (A + 2)]A+2

[A(A +
√

D(z))− z(A + 2)]A

∣∣∣ = 1.

Proof. The integral is equal

z∫

ξ−

√
D(t)
t

dt = ln

{
[A2 − (A + 2)z + A

√
D(z)]A

(−z)A e
√

D(z)
×

×
(

ξ−
ξ+

)A 4(A + 1)
[z − (A + 2)−

√
D(z)]A+2

}
,

where

D(z) = (z − ξ−)(z − ξ+).

The curve is defined by the equation

Re
z∫

ξ−

√
D(t)
t

dt = 0

which is equivalent to the equation

∣∣∣ [A
2 − (A + 2)z + A

√
D(z)]A

(−z)Ae
√

D(z)

(
ξ−
ξ+

)A

×

× 4(A + 1)
[z − (A + 2)−

√
D(z)]A+2

∣∣∣ = 1.

With regard for the equalities

|(ξ−/ξ+)| = 1,

we obtain finally

∣∣∣ [A(A +
√

D(z))− z(A + 2)]A

[z −
√

D(z)− (A + 2)]A+2

4(A + 1)

zAe
√

D(z)

∣∣∣ = 1.

¤

Lemma 2.3.4. If A = −1, then ξ− = ξ+ = 1 and Γ
is the Szegö curve defined by the equation
∣∣∣ze1−z

∣∣∣ = 1, |z| ≤ 1,

which is a closed curve around the origin passing through
1 and a point in (−∞, 0).
Proof. The Szegö curve is the curve of the previous
lemma, taken at the limit A → −1.

¤

The results of consideration in the interval A ∈ (−1, 0)
depend essentially on the way, which the sequence {αn}
tends to an integer with.
Lemma 2.3.5. If A ∈ (−1, 0) and there exists the

limit

lim
n→∞

[dist(αn,Z)]1/n = 0,

then the zeros of Lαn
n (nz) accumulate on Γ = {0} ∪

[ξ−, ξ+], and the asymptotic zero distribution measure
is

dµ(x) = −Aδ0 +

√
(x− ξ−)(ξ+ − x)

2πx
χ[ξ−,ξ+]dx.

If A ∈ (−1, 0) and there exists the limit

lim
n→∞

[dist(αn,Z)]1/n = e−r, 0 ≤ r < ∞,

then the zeros of Lαn
n (nz) accumulate on Γ = Γr ∪

[ξ−, ξ+], and the asymptotic zero distribution measure
is

dµr = dνr(s) +

√
(x− ξ−)(ξ+ − x)

2πx
χ[ξ−,ξ+]dx,

dνr(s) =
1

2πi

√
D(s)
s

ds, s ∈ Γr,
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Re
z∫

ξ−

√
D(s)
s

ds = r, z ∈ Γr.

The case r = 0 is the typical one. If a sequence {αn} is
chosen randomly, then, with probability one, the equality

lim
n→∞

[dist(αn,Z)]1/n = 1

is valid. In this case, the zeros cluster on Γ0 ∪ [ξ−, ξ+].
The case 0 < r < ∞ is much more special. In this

case, the sequence {αn} should approximate some integer
very closely.
Proof. Multiple zeros of the polynomial y(z) = L

(α)
n (z)

occur only at the point z = 0. Indeed, if z0 6= 0 at some
point, we assume y(z0) = y′(z0) = 0. Then, according
to the differential equation

zy′′(z) + (α + 1− z)y′(z) + ny(z) = 0,

we have y(k)(z) = 0, k = 0, 1, 2, . . . , and, therefore,
y(z) = 0.

If α = −k ∈ {−1,−2, . . . ,−n}, then the polynomial
L

(α)
n (z) has a zero of the order k at the point z = 0. All

the other (n−k) zeros are simple and are located on the
half-line (0,+∞). It is obvious due to the relation

L(−k)
n (z) = (−z)k (n− k)!

n!
L

(k)
n−k(z).

If the real parameter α tends from above to the integer
−k, then k simple zeros of the L

(α)
n (z) approach the point

z = 0 in the directions (+1)1/k. If the real parameter α
decreases further below the integer −k, then k simple
zeros of the L

(α)
n (z) emerge from the point z = 0 in the

directions (−1)1/k. It is similar to the behavior of the
hypergeometric function (see [13]).

Now let us consider a sequence of rational numbers
{αn}. If the sequence {αn} converges to an integer in
such a way that there exists the limit

lim
n→∞

[dist(αn,Z)]1/n = 0,

then zeros of Lαn
n (nz) accumulate on Γ = {0} ∪ [ξ−, ξ+],

and the asymptotic zero distribution measure is

dµ(x) = −Aδ0 +

√
(x− ξ−)(ξ+ − x)

2πx
χ[ξ−,ξ+]dx.

If the sequence {αn} converges to an integer in the way

lim
n→∞

[dist(αn,Z)]1/n = e−r, 0 ≤ r < ∞,

then, using the asymptotics for the scaled Laguerre poly-
nomial Lαn

n (nz), we prove easily that its zeros accumu-
late on the curve

Γ = Γr ∪ [ξ−, ξ+], Re
z∫

ξ−

√
D(s)
s

ds = r, z ∈ Γr,

and the appropriate asymptotic zero distribution mea-
sure is

dµr = dνr(s) +

√
(x− ξ−)(ξ+ − x)

2πx
χ[ξ−,ξ+]dx,

dνr(s) =
1

2πi

√
D(s)
s

ds, s ∈ Γr.

We skip details of these calculations.
¤

2.4. Asymptotic solution of the Richardson
equations in rational case

Applying the results of the Theorem for the zero distri-
bution of the scaled Laguerre polynomials to solutions
of the Richardson equations in rational case, we should
take into account that, first of all, N ≥ M > 0 and,
therefore, A ≤ −1. This means that the zero distri-
bution measure of the Richardson equations is of the
form

dµ(z) =
1
πi

√
D(z)
z

dz, z ∈ Γ,

and is defined on the curve Γ which is given by the equa-
tion

Re
z∫

ξ−

√
D(t)
t

dt = 0,

or, which is the same, by the equation

∣∣∣z
Ae
√

D(z)

4(A + 1)
[z −

√
D(z)− (A + 2)]A+2

[A(A +
√

D(z))− z(A + 2)]A

∣∣∣ = 1,

where

D(z) = (z − ξ+)(z − ξ−), ξ± = A + 2± 2
√

A + 1.
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3. Solution of the Richardson Equations and
Zeros of the Jacobi Polynomials

3.1. The Richardson equations and the Jacobi
polynomials

Let us consider the Richardson equations in the general
case,

2
M∑

β=1,β 6=α

q coth[q(ωα−ωβ)] =
N∑

j=1

q coth[(ωα−uj)]+
1
G

,

where q = 0 corresponds to rational case, q = i corre-
sponds to trigonometric case, and q = 1 corresponds to
hyperbolic case. We study a solution of the Richardson
equations under “the narrow-band assumption”,

ul = const., l = 1, 2, . . . , N.

Theorem 3.1. If, in the Richardson equations

2
M∑

β=1,β 6=α

q coth[q(ωα−ωβ)] =
N∑

j=1

q coth[(ωα−uj)]+
1
G

,

the conditions

uj = (1/2q) ln 2, j = 1, 2, . . . , N,

are satisfied, then the Richardson equations have the so-
lution

ωα = (1/2q) ln(xα + 1), α = 1, 2, . . . , M,

where xα are zeros of a Jacobi polynomial,

P
−(N+1),−(L+1)
M (xα) = 0.

Here,

L =
1

2qG
− N

2
+ M − 1.

Proof. For the Richardson equations in general case,

2
M∑

β=1,β 6=α

q coth q(ωα − ωβ)+

+
N∑

l=1

q coth(ul − ωα)− 1
G

= 0,

let us introduce new variables

xα = exp(2qωα)− 1, α = 1, 2, . . . , M,

ζl = exp(2qul), l = 1, 2, . . . , N,

and present these equations as

2
M∑

β=1,β 6=α

1
xα − xβ

+
N∑

l=1

1
ζl − xα − 1

− L

xα + 1
= 0,

where

L =
1

2qG
− N

2
+ M − 1.

If we assume

ζl = 2, l = 1, 2, . . . , N,

then the equations attain the form

2
M∑

β=1,β 6=α

1
xα − xβ

− N

xα − 1
− L

xα + 1
= 0.

As a result of the last equalities, the polynomial

f(x) =
M∏

β=1

(x− xβ), xβ = exp(2qωβ)− 1

satisfies the differential equation

(1− x2)
d2f

dx2
+ [(N − L) + (N + L)x]

df

dx
+

+M(M −N − L− 1)f = 0.

The Jacobi polynomial

y(x) = P (a,b)
n (x)

satisfies the differential equation

(1− x2)
d2y

dx2
+ [(b− a)− (a + b + 2)x]

dy

dx
+

+n(n + a + b + 1)y = 0.

Comparing these equations, we get

a = −(N + 1), b = −(L + 1), n = M,

and, therefore,

f(x) = P
−(N+1),−(L+1)
M (x) .

¤
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3.2. Basic facts on the Jacobi polynomials

The Jacobi polynomial P
(α,β)
n (z) is a polynomial of the

n-th order in the variable z,

P (α,β)
n (z) = 2−n

n∑

k=0

(
n + α
n− k

)(
n + β

k

)
(z−1)k(z+1)n−k,

which is a solution of the second-order linear differential
equation,

(1− z2)y′′(z) + [β − α− (α + β + 2)z]y′(z)+

+n(n + α + β + 1)y(z) = 0,

and P
(α,β)
n (z) is also a polynomial in the variables α, β.

Now we recall some facts on zeros of the Jacobi poly-
nomials [6]. Let α and β be arbitrary real numbers,
and n ≥ 1. The polynomial P

(α,β)
n (z) can have a multi-

ple zero at z = 1 if α = −1,−2, · · · ,−n, at z = −1 if
β = −1,−2, · · · ,−n or at z = ∞ (which means a degree
reduction) if n + α + β = −1,−2, · · · ,−n. We exclude
these zeros from the further consideration. All other ze-
ros are different with +1,−1,∞ and with themselves.
Let us define values N1(α, β), N2(α, β) and N3(α, β)
as the numbers of zeros of the Jacobi polynomials on
the segments of the real line (−1, +1), (−∞,−1), and
(+1,+∞), respectively. Then

N1(α, β) =

=





2
[

X1(α,β)+1
2

]
if(−1)n

(
n + α

n

)(
n + β

n

)
> 0,

2
[

X1(α,β)
2

]
+ 1if(−1)n

(
n + α

n

)(
n + β

n

)
< 0,

N2(α, β) =

=





2
[

X2(α,β)+1
2

]
if

(
2n + α + β

n

)(
n + β

n

)
> 0,

2
[

X2(α,β)
2

]
+ 1if

(
2n + α + β

n

)(
n + β

n

)
< 0,

N3(α, β) =

=





2
[

X3(α,β)+1
2

]
if

(
2n + α + β

n

)(
n + α

n

)
> 0,

2
[

X3(α,β)
2

]
+ 1if

(
2n + α + β

n

)(
n + α

n

)
< 0.

Here,

X1(α, β) = E

{
1
2
(|2n + α + β + 1| − |α| − |β|+ 1)

}
,

X2(α, β) = E

{
1
2
(−|2n + α + β + 1|+ |α| − |β|+ 1)

}
,

X3(α, β) = E

{
1
2
(−|2n + α + β + 1| − |α|+ |β|+ 1)

}
,

and E{u} is the Klein symbol,

E{u} =





0 if u ≤ 0,
[u] if u > 0 and u is noninteger,
u− 1 if u = 1, 2, · · · .

Therefore, the Jacobi polynomial P
(α,β)
n (z) has

N1(α, β)+N2(α, β)+N3(α, β) real zeros, all other zeros
are complex-valued.

3.3. The limit zero distribution of the scaled
Jacobi polynomials

Here, we study the zero distribution of the scaled Jacobi
polynomials.
Theorem 3.2. Let us consider, at the limit n → ∞,

a sequence of Jacobi polynomials,

pn(z) = Pαn,βn
n (z),

and a sequence of their zero measures,

µn =
1
n

∑

pn(z)=0

δz,

under condition

lim
n→∞

αn

n
= A, lim

n→∞
βn

n
= B.

Then there exists a weak limit measure

µ = lim
n→∞

µn,

and the support of this measure is a simple analytic arc
Γ symmetric with respect to R.
1) If the parameters A,B satisfy one of the three con-

ditions, A > 0, B > 0, or A > 0, A + B < −2, or
B > 0, A + B < −2, then Γ = [ζ−, ζ+] ⊂ R, where

ζ± =
B2 −A2 ± 4

√
(A + 1)(B + 1)(A + B + 1)
(A + B + 2)2

;
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2) If the parameters A,B satisfy one of the three con-
ditions, A < −1, B < −1 or A < −1, A + B > −1, or
B < −1, A + B > −1, then Γ is a set of z ∈ C, defined
by the equation

Re

z∫

ζ−

R(t)
t2 − 1

dt = 0, Re z > Re ζ±,

R(z) =
√

(z − ζ−)(z − ζ+).

In both cases, the measure of zeros is

dµ(z) =
A + B + 2

2πi

R+(z)
1− z2

dz, z ∈ Γ.

3) If the parameters A,B satisfy one of the three con-
ditions, −1 < A < 0, or −1 < B < 0 or −2 < A + B <
−1, and the condition

lim
n→∞

[dist(αn,Z)]1/n = e−r, 0 ≤ r ≤ +∞,

holds for some 0 ≤ r ≤ +∞, then the support of the
measure is

[ζ−, ζ+] ∪ Γr,

where Γr is a set of z ∈ C defined by the equation

Re

z∫

ζ+

R(t)
t2 − 1

dt =
r

A + B + 2
, Re z > Re ζ+,

R(z) =
√

(z − ζ−)(z − ζ+).

For each r ∈ [0,∞), the measure is

dµr(z) =
A + B + 2

2πi

R+(z)
1− z2

dz,

and, for r = ∞, the measure is

dµ∞(z) = −Aδ1 +
A + B + 2

2πi

R+(z)
1− z2

χ[ζ−,ζ+] dz.

This theorem is due to A. Martinez-Finkelshtein,
R. Orive [14], A.B.J. Kuijlaars, A. Martinez-Finkelshtein
[15], and A.B.J. Kuijlaars, A. Martinez-Finkelshtein,
R. Orive [16]. Like the previous section, the proof of
the theorem can be presented as a result of similar lem-
mas.
Lemma 3.2.1. The Cauchy transform

µ̂(z) =
∫

dµ(t)
z − t

of the limit zero distribution measure µ(z) for the Jacobi
polynomials pn(z) = P

(αn,βn)
n (nz) looks as

µ̂(z) = − A

2(z − 1)
− B

2(z + 1)
+

+
A + B + 2
2(z2 − 1)

√
(z − z+)(z − z−),

z± =
1

(A + B + 2)2
×

×
[
B2 −A2 ± 4

√
(A + 1)(B + 1)(A + B + 1)

]
.

Proof. We derive an expression for the Cauchy trans-
form of the limit zero distribution µ(z) directly from the
differential equation for the Jacobi polynomials.

The polynomial

pn(z) = P (αn,βn)
n (nz) = C

n∏

j=1

(z − aj)

is a solution of the differential equation

p′′n(z) +
(

αn + 1
z − 1

+
βn + 1
z + 1

)
p′n(z)− λn

z2 − 1
pn(z) = 0,

where λn = n(n + αn + βn + 1). The zero distribution
measure is

µpn(z) =
1
n

∑

pn(z)=0

δ(z),

and its Cauchy transform is

µ̂pn(z) =
∫

dµpn(t)
z − t

.

The expression of the Cauchy transform for the zero dis-
tribution measure in terms of the logarithmic derivative
of the polynomial is

1
n

p′n(z)
pn(z)

=
1
n

n∑

j=1

1
z − aj

=
∫

dµpn(t)
z − t

= µ̂pn(z).

The differential equation for the Cauchy transform of the
zero distribution measure looks as

µ̂′pn
(z)

n
+ µ̂2

pn
(z) +

(
αn + 1
z − 1

+
βn + 1
z + 1

)
µ̂pn(z)

n
−
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−λn

n2

1
z2 − 1

= 0.

Now let us consider the limit n → ∞ under the as-
sumptions: |µ̂pn(z)|, |µ̂′pn

(z)| are uniformly bounded,
αn

n = A, βn

n = B,

λn

n2
=

n + αn + βn + 1
n

= A + B + 1 +
1
n

,

where A and B are constants. Then, for the quantity

lim
n→∞

µ̂pn
(z) = µ̂(z),

we obtain the algebraic quadratic equation

µ̂2(z) +
(

A

z − 1
+

B

z + 1

)
µ̂(z)− A + B + 1

z2 − 1
= 0.

Therefore,

µ̂(z) = − A

2(z − 1)
− B

2(z + 1)
±

±A + B + 2
2(z2 − 1)

√
(z − z+)(z − z−),

z± =
1

(A + B + 2)2
[
B2 −A2±

±4
√

(A + 1)(B + 1)(A + B + 1)
]
.

Since

lim
z→∞

√
(z − z+)(z − z−)

z
= 1, lim

z→∞
zµ̂(z) = 1,

the expression for µ̂(z) has to have positive sign against
the square root.

¤

The proof of the other lemmas is similar to that for
rational case, and we skip them out.

3.4. Asymptotic solution of the Richardson
equations in general case

Applying the results of the theorem for the asymp-
totic zero distribution of the scaled Jacobi polynomials
P

(An,Bn)
n (z) to solutions of the Richardson equations in

general case, we should remember that, in fact, we con-
sider the scaled Jacobi polynomials of the form

P
−(N+1),−(L+1)
M (z),

where

L =
1

2qG
− N

2
+ M − 1,

under the asymptotic condition

M, N, G−1 →∞, lim
M→∞

N

M
= A,

lim
M→∞

L

M
=

1
2qg

− A

2
+ 1 = B, lim

M→∞
1

GM
= g.

For rational (q = 0) and hyperbolic (q = 1) cases, the
indices A and B are real. For trigonometric case (q = i),
the index A is real, but the index B is complex-valued;
this case deserves a special consideration, and we do not
study it here.

Since N ≥ M > 0, A ≤ −1. The sign of B in rational
and hyperbolic cases may be arbitrary.

4. Discussion

The constructed analytical solutions of the Richardson
equations are in good agreement with the results of com-
puter calculations obtained earlier [17]. Although our
assumption on the parameters ul (all ul are equal) and
the assumption in [17] (all ul are distributed uniformly
along a given interval of the real line) are different, the
curves of the support for spectral measures are very sim-
ilar in both cases. In Fig. 2 of work [17], the reader can
even see the Szegö curve.

Applications of solutions of the Richardson equations
to various integrable quantum systems deserve a special
discussion and will be postponed to the other publica-
tion.
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7. G. Szegö, Sitz. Berl. Math. Ges. B 23, 50 (1924).

8. I.E. Pritsker and R.S. Varga, Trans. Amer. Math. Soc.
349, 4085 (1997).

ISSN 2071-0194. Ukr. J. Phys. 2009. Vol. 54, No. 8-9 871



E.D. BELOKOLOS

9. A. Martinez-Finkelshtein, P. Martinez-Gonzalez, and
R. Orive, J. Comput. Appl. Math. 133, 477 (2001).

10. A.B.J. Kuijlaars, and K.T-R. McLaughlin, arXiv:
math.CA/0204248 (2002).

11. A.B.J. Kuijlaars and K.T-R. McLaughlin, Const. Ap-
prox. 20, 497 (2004).

12. E.D. Belokolos, Proc. of Institute for Mathematics, 4,
No. 3, 8 (2007).

13. K. Driver and P. Duren, Constr. Approx. 17, 169 (2001).

14. A. Martinez-Finkelshtein and R. Orive, arXiv:
math.CA/ 0410320 (2004).

15. A.B.J. Kuijlaars and A. Martinez-Finkelshtein, arXiv:
math.CA/0309443 (2004).

16. A.B.J. Kuijlaars, A. Martinez-Finkelshtein, and R. Orive,
Electron. Trans. Number Anal. 19, 1 (2005).

17. L. Amico, A. Di Lorenzo, A. Mastellone, A. Osterloh,
and R. Raimondi, Ann. Phys. 299, 228 (2002).

Received 04.06.09

СПЕКТРИ КВАНТОВИХ IНТЕГРОВНИХ МОДЕЛЕЙ
ГОДЕНА ТА РОЗПОДIЛ НУЛIВ ПОЛIНОМIВ

Є.Д. Бiлоколос

Р е з ю м е

Спектри квантових iнтегровних моделей Годена визначаються
розв’язком алгебраїчних рiвнянь Рiчардсона. При припущен-
нi вузької зони розв’язок рiвнянь Рiчардсона представлено в
термiнах розподiлу нулiв масштабованого полiнома Лагерра в
рацiональному випадку i масштабованого полiнома Якобi в за-
гальному випадку (рацiональному, тригонометричному i гiпер-
болiчному). Дослiджено асимптотичну межу подiлу нулiв по-
лiномiв Лагерра i Якобi та розраховано спектральну густину
для моделей Годена.
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