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We developed a microscopic quantum theory of spin configura-
tions, spin-orientation phase transitions, and spin excitations in
tetragonal antiferromagnetic dielectrics with the Dzyaloshinskii
interaction of the single-ion origin. It is shown that the AFMR
frequencies do not cross in the oblique non-symmetric phase and
repulse one another just to the extent of a value of the Dzyaloshin-
skii constant. Experimental data available for antiferromagnetic
iron fluoride are discussed.

1. Introduction

As is known, the magnetization in ferromagnetic crys-
tals or the magnetic moment of a sublattice in antifer-
romagnetic or ferrimagnetic crystals are formed due to
a spontaneous symmetry breakdown via a phase trans-
formation. In this case, the system passes to a state,
whose symmetry is lower than that of the Hamiltonian.
As a rule, the broken symmetry in magnets is discrete
due to the presence of finite-order anisotropy magnetic
axes in them. But even such an anisotropy does not
give a possibility to establish the exact direction of the
magnetic vector on the whole, as two (or more) of its
directions in space are always equivalent, which results
in the appearance of a domain structure. In order to
describe theoretically the homogeneous (single-domain)
samples and to fix a certain direction of the magnetic
order parameter in them, Bogolyubov proposed the so-
called method of quasiaverages [1]. It consists in the a
priori assumption about the existence of a weak specula-
tive magnetic field that directly breaks the symmetry of
the Hamiltonian of the system (including the anisotropic
one). This Bogolyubov’s assumption actually coincides
with that about a finite and crystal-uniform average spin
s at a site that is found as a self-consistent quantum-

mechanical quantity. In turn, its finiteness specifies the
finite value of the magnetization that forms a bare field
in the Bogolyubov’s approach, whose direction is deter-
mined, as a rule, by the magnetic anisotropy. If the last
is of single-ion (or, to be more precise, spin-orbit (see
[2])) origin, then it turns out that |s| ≡ s ≤ S, where S
is the initial spin of the paramagnetic ion regardless of
the dimension of a system.

This quantum approach (in contrast to the widespread
phenomenological one) became especially popular for
magnetic systems with a large contribution of the spin-
orbit interaction or the strong single-ion anisotropy,
starting from the work by Ostrovskii and the author [3]
presenting the exact solution of a self-consistent (one-
site) problem in the case of systems with S = 1 at
the ion and an arbitrary relation between the magni-
tudes of exchange interaction, single-ion anisotropy, and
external magnetic field. The subsequent studies [4–13]
were devoted to the comprehensive investigation of lin-
ear and nonlinear properties of various magnetic systems
for both zero and finite temperatures, the determination
of the critical fields of phase transitions not only be-
tween different magnetic phases, but also between mag-
netic (Néel) and nonmagnetic (so-called singlet) phases,
and the consideration of real compounds. At the same
time, no exact self-consistent solutions for arbitrary val-
ues of S were obtained. As the majority of magnets still
represent magnetic systems with relatively weak single-
ion anisotropy, we will try to consider a self-consistent
quantum problem for an arbitrary spin on the basis of
perturbation theory.

In order to make our calculations specific, we focus on
a rather representative group of crystals, namely tetrag-
onal antiferromagnetic dielectrics. Among them, there
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are two-sublattice MеF2 crystals (Mе=Mn, Fe, Co, Ni)
with odd (according to Turov [14]) antiferromagnetic
structure rather well investigated by means of static, res-
onance, optical, and magnetooptical methods. In spite
of the presence of an axis of rather high order, С4, the
local symmetry of magnetic ions in these compounds is
relatively low – D2h, which results in a number of spe-
cific peculiarities which distinguish these crystals from
purely uniaxial or biaxial ones. The space symmetry
D14

4h of these antiferrodielectrics admits the presence of
the invariant mX lX−mY lY in their thermodynamic po-
tential which is called the Dzyaloshinskii interaction. In
this case, the axes X and Y are chosen in the basal
plane, the axis Z ‖С4, and the vectors m and l are
the phenomenological vectors of ferro- and antiferromag-
netism of the magnetic structure. It is important that
the Dzyaloshinskii interaction presented in terms of ion
spin operators assumes the form of the operator of single-
ion anisotropy that requires a special attention as will be
shown in what follows. It is also worth noting that the
constant of single-ion anisotropy in NiF2, MnF2, and
FeF2 crystals can be considered small as compared with
that of exchange interaction, which makes the use of per-
turbation theory justified.

The Dzyaloshinskii interaction fundamentally influ-
ences the behavior of a spin subsystem in the external
magnetic field – for example, makes possible a contin-
uous spin-flop transition and changes the field depen-
dence of the resonance frequencies [15–19]. The ob-
served effects were investigated in the framework of the
phenomenological (or quasiclassical) theory [14,20] that,
strictly speaking, is valid only under the condition of the
inter-ion character of the magnetic anisotropy (it can be
caused by both spin-orbit and dipole-dipole interaction).
If the anisotropy is induced by spin-orbit coupling and
thus has a local (or single-ion) character, then the cri-
teria of application of the phenomenological approach
require additional verification.

The present work was carried out on account of
the hundredth anniversary of the birthday of the out-
standing mathematician and physicist-theorist M.M. Bo-
golyubov, whose contribution into a number of fields of
theoretical physics, in particular, the physics of magnetic
phenomena (let us also recall the Bogolyubov–Tyablikov
transformations in the theory of antiferromagnetism) is
impossible to overestimate.

2. Hamiltonian and Single-Ion Problem

Fluorides of transition metals are thought of as uniaxial
antiferrodielectrics [14], whose paramagnetic ions are lo-

cated in the crystal field with rhombic local symmetry.
That is why the model spin-Hamiltonian of such crystals
can be presented in the form

H =
∑
nα

(
H(an)

nα + H(Z)
nα

)
+

+
1
2

∑

nα,mβ

[
JnαmβSnαSmβ + ∆JnαmβSZ

nαSZ
mα+

+JD
nαmβδαβ(SX

nαSX
mβ − SY

nαSY
mβ)

]
, (1)

where

H(Z)
nα = −µBgHSZ

nα

is the operator of Zeeman energy, in which Н denotes
the external field, Snα is the operator of the spin in the
n-th cell of the α-th (α =1, 2) magnetic sublattice, µB

is the Bohr magneton, g is the g-factor of the ion; and

H(an)
nα = D(SZ

nα)2 + Eα[(SX
nα)2 − (SY

nα)2], (2)

stands for the operator of single-ion anisotropy, where
Eα ≡ (−1)αE, which explicitly allows for a specific point
group of the tetragonal lattice of fluorides. It does not in-
clude the terms proportional to higher degrees of spin op-
erators, as the corresponding parameters are too small in
the case of weakly anisotropic systems; in addition, such
terms are absent at all in operators (2) at S =1 or 3/2.
It is also worth noting that almost all the results pre-
sented below (for example, solution of the self-consistent
problem, longitudinal magnetic susceptibility, etc.) are
also valid for purely biaxial crystals, where Eα = E.
Hamiltonian (1) also allows for the anisotropy of the ex-
change interaction ∆Jnαmβ . For the sake of compar-
ison with the conclusions of the quasiclassical theory,
it also takes into account the intra-sublattice exchange
anisotropy with the constant JD

nαmα = (−1)αJD
nm that

formally plays the same role as the Dzyaloshinskii inter-
action constant E but is of interion nature.

It is convenient to perform the further calculations in
proper coordinate systems introduced according to the
transformation



SX
nα

SY
nα

SZ
nα


 = R̂nα




Sξ
nα

Sη
nα

Sζ
nα


 ,

where the matrix of local rotation R̂nα has the form
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R̂nα =




√
2

2 (cos ϕα − sin ϕα) cos ϑα −
√

2
2 (cos ϕα + sin ϕα)

√
2

2 (cos ϕα − sin ϕα) sin ϑα
√

2
2 (cos ϕα + sin ϕα) cos ϑα

√
2

2 (cos ϕα − sin ϕα)
√

2
2 (cos ϕα + sin ϕα) sin ϑα

− sinϑα 0 cos ϑα


 ,

where the angle ϕα is counted off from the [110] axis,
while ϑα – from the [001] one. The independence of ro-
tations on the site leaves the system translation-invariant
and gives a possibility to represent the spin Hamiltonian
(1) in the form

H =
∑
nα

Hnα + V + const, (3)

where we separated the single-ion

Hnα = H(0)
nα + vnα, H(0)

nα = −Hζ
αSζ

nα (4)

and inter-ion V parts (the operator V will be given be-
low). In these expressions, we introduced the following
notations for the term

vnα =

= −D(ϕα; ϑα)(Sζ
nα)2 − E(ϕα; ϑα)[(Sξ

nα)2 − (Sη
nα)2]−

−
[
Fξη(ϕα; ϑα)Sξ

nαSη
nα + Fξζ(ϕα; ϑα)Sξ

nαSζ
nα+

+Fηζ(ϕα; ϑα)Sη
nαSζ

nα + h.c.
]
−Hξ

αSξ
nα −Hη

αSη
nα, (5)

that will be considered as a perturbation in what follows,
as well as

Hζ
α = µBgH cos ϑα − Jsα −∆Jsα cos2 ϑα−

−Isβ cos(ϕα − ϕβ) sin ϑα sin ϑβ−

−(I + ∆I)sβ cos ϑα cos ϑβ + JD
α sα sin 2ϕα sin2 ϑα;

Hξ
α = ∆Jsα sinϑα cos ϑα + (I + ∆I)sβ sinϑα cos ϑβ−

−Isβ cos(ϕα − ϕβ) cos ϑα sin ϑβ+

+JD
α sα sin 2ϕα sin ϑα cos ϑα − µBgH sin ϑα; (6)

Hη
α = Isβ sin(ϕα − ϕβ) sin ϑβ + JD

α sα cos 2ϕα sin ϑα,

where α 6= β, and

D(ϕα;ϑα) =

=
1
2

[
(D − 3Eα sin 2ϕα)− 3(D − Eα sin 2ϕα) cos2 ϑα

]
;

E(ϕα; ϑα) =

=
1
2

[
(D + Eα sin 2ϕα)− (D − Eα sin 2ϕα) cos2 ϑα

]
;

(7)

Fξη(ϕα; ϑα) = Eα cos 2ϕα cos ϑα;

Fηζ(ϕα;ϑα) = Eα cos 2ϕα sin ϑα;

Fξζ(ϕα;ϑα) = −1
2
(D − Eα sin 2ϕα) sin 2ϑα;

and finally,

const = −1
2

∑

nα,mβ

[
Jnαmβsαsβ cos(ϕα − ϕβ)×

× sin ϑα sin ϑβ + (Jnαmβ + ∆Jnαmβ)×

×sαsβ cos ϑα cos ϑβ

]
+

1
2

∑
nα,m

JD
nαmαs2

α sin 2ϕα×

× sin2 ϑα − 1
2
S(S + 1)

∑
nα

(D − Eα sin 2ϕα) sin2ϑα; (8)
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{
I
∆I

}
=

1
2

∑

mβ,α

(1− δαβ)
{

J0αmβ

∆J0αmβ

}
;

{
J
∆J

}
≡ 1

2

∑

mβ,α

δαβ

{
J0αmβ

∆J0αmβ

}
;

JD
α = (−1)αJD; JD =

∑
m

J0αmα.

In the last notations, we used the spin moment sα

at each site of the α-th magnetic sublattice determined
by calculating the quantum-mechanical averages on the
functions of the ground state of the single-ion operator
Hnα (see (4)). They will be searched for with the help
of perturbation theory by operator (5). In the standard
way, we obtain that the solution of the Schrödinger equa-
tion to within the second order has the form [21]

Ψ(S−MS)
nα (S;MS) =


1− 1

2

∑

M ′
S

|vnα(M ′
S ; MS)|2

[εα(MS)− εα(M ′
S)]2


×

×|MS〉nα +
∑

M ′
S

vnα(M ′
S ,MS);

εα(MS)− εα(M ′
S)
|M ′

S〉nα+

+
∑

M ′
S ,M ′′

S

vnα(M ′
S ,M ′′

S )vnα(M ′′
S ; MS);

[εα(MS)− εα(M ′
S)][εα(MS)− εα(M ′′

S )]
×

×|M ′
S〉nα −

∑

M ′
S

vnα(MS ; MS)vnα(M ′
S ; MS)

[εα(MS)− εα(M ′
S)]2

|M ′
S〉nα, (9)

where vnα(M ′
S ;MS) denote the matrix elements of op-

erator (5) on the eigenfunctions |MS〉nα of the opera-
tor Sζ

nα. Moreover, |MS | < S, whereas εα(MS) stand
for the corresponding energies of the zero-order opera-
tor H

(0)
nα (see (4)). In this case, function (9) for MS = S

corresponds to the ground single-ion state. In order to
determine the angles ϕα and ϑα, it is necessary to impose
the conditions of the absence of transverse spin projec-
tions in proper (local) coordinate systems in the ground
state, namely:

〈Ψ∗(0)nα (S; S)|Sξ,η
nα |Ψ(0)

nα(S; S)〉 = 0. (10)

On the other hand, these conditions actually represent
the definitions of the proper coordinate system for each

of the magnetic ions. In the case of the explicit use of
functions (9), equalities (10) yield the equations

vnα(S − 1; S)
[
1− vnα(S − 1; S − 1)

Hζ
α

]
=

=
vnα(S − 2;S)

2Hζ
α

[
vnα(S − 1; S − 2)+

+

√
2S − 1

S
v∗nα(S − 1; S)

]
, (11)

which determines the spin configurations to within
the second order in operator (5). From Eq. (11),
one can also see that the diagonal matrix elements
vnα(MS ;MS) actually determine the third-order correc-
tions and should be omitted in order to maintain the
specified accuracy.

The analysis demonstrates that the first-
approximation equations

vnα(S − 1; S) = 0 (12)

completely coincide with the quasiclassical ones usually
obtained from the minimization of the energy of an anti-
ferrodielectric as a function of the classic magnetization
vectors of sublattices [14,20] in the case where the single-
ion anisotropy can be replaced by the anisotropy field.
The second-order equation is obtained from (11), by us-
ing the first-order expression for vnα(S − 1; S), and has
the form

2Hζ
αvnα(S−1; S) = vnα(S−2; S)vnα(S−1;S−2). (13)

Equations (13) remain incomplete, as they include the
unknown quantities sα. Just their determination from
the self-consistence equations first given in [22] in the
course of investigations of biaxial antiferrodielectrics
completes the solution of the single-ion problem:

sα = 〈Ψ∗(0)nα (S; S)|Sζ
nα|Ψ(0)

nα(S; S)〉 =

= S

[
1− 2S − 1

2
E2(ϕα;ϑα) + F 2

ξη(ϕα; ϑα)

(Hζ
α)2

]
. (14)

It is worth emphasizing that the quantity ∆sα ≡ S− sα

characterizing the reduction of the average spin at a site
is of second order and depends only on the constants of
single-ion anisotropy. In addition, it is easy to ascer-
tain that the relative reduction ∆sα/S ∼ 1/S, i.e. it
coincides with the increase of S, which agrees with the
well-known criterion of applicability of the quasiclassical
approach in the theory of magnetism S À 1 [20].
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3. Spin Configurations and Lability Fields

In the first approximation (where sα = S), Eqs. (12)
that specify the desired spin configurations have the form

−2S − 1
2

(D − Eα sin 2ϕα) sin 2ϑα + (I + ∆I)×

×S sin ϑε cos ϑβ − IS cos(ϕα − ϕβ) cos ϑα sin ϑβ+

+
1
2
(∆IS+JD

α S sin 2ϕα) sin 2ϑα−µBgH sin ϑα = 0; (15)

[(2S − 1)Eα − JD
α S] cos 2ϕα sin ϑα+

+IS sin(ϕα − ϕβ) sin ϑβ = 0, (α 6= β).

Their solutions were analyzed in [15] (see also [14]), and
we do not discuss them. It is only worth noting that the
quantum-mechanical approach results only in the rede-
termination of the values of anisotropic interactions and
automatically excludes the single-ion anisotropy from
the calculations, if the ion spin S =1/2. The solu-
tions of the quasiclassical equations (15) are given by
the following spin configurations: i) collinear – ϕα = 0,
ϑ1 = 0, ϑ2 = π; ii) oblique – ϕα = π/4; ϑ1 6= ϑ2 6= 0;
iii) spin-flop – sin 2ϕα = (−1)α sin 2ϕD, ϑ1 = −ϑ2 ≡
ϑ 6= 0, where

sin 2ϕD =
[(2S − 1)E + JD]√

(IS)2 + [(2S − 1)E + JD]2
;

and iv) ferromagnetic – ϑα = 0.
The lability field Hl of the collinear phase is deter-

mined by the expression

µBgHl =
{

[(∆I + ∆J)S + (2S − 1)D]×

×[(2I + ∆I −∆J)S + (2S − 1)D]
}1/2

, (16)

and the spin-flip filed Hs−f –

µBgHs−f = (I + ∆I + ∆J)S − (2S − 1)D+

+
√

(IS)2 + [(2S − 1)E + JD]2. (17)

An interesting peculiarity of the solutions of system (15)
consists in the fact that the turn plane of the antiferro-
magnetic vector l appears to be the [010] plane, i.e. the

plane “easy” for the spins directed against the field and
thus “hard” for those directed along the external field
(see (2)). The kind of a magnetic phase transformation
from the collinear phase to the oblique one can be found
from the solution of system (15) for small angles:
(

π − ϑ1 − ϑ2

2

)2

= µBg(H−Hl)
{

2[(2S−1)E +JDS]+

+2
[∆JS + (2S − 1)D][(∆I −∆J)S + (2S − 1)D]

µBgHl + (2S − 1)E + JDS

}−1

.

It is worth noting that, in the absence of the single-ion
anisotropy, the last formula is exact; it directly implies
that if (2S−1)E > ∆JS, then there exists a critical value
of (2S − 1)E + JDS that ensures the continuity (or the
second order) of the transition from the collinear phase
to the oblique one. Otherwise ((2S − 1)E < ∆JS), the
transition will always be jump-like, which coincides with
the result obtained in [14] for purely uniaxial antiferrodi-
electrics, for which one should set (2S − 1)E + JDS = 0
in the above-given formulas.

Now let us consider the changes induced by the al-
lowance for quantum corrections in the equations for spin
configurations. For the sake of simplicity, yet without
loss of generality, we assume that ∆I = ∆J = JD = 0
and put down the equation corresponding to a plane turn
(ϕα = π/4) as

2S − 1
2

(D − Eα) sin 2ϑα − Isβ sin(ϑα − ϑβ)+

+µBgH sin ϑα =
2S − 1

2Hζ
α

(D − Eα)Eα sin 2ϑα.

Its analysis demonstrates that the most pronounced vari-
ations take place in the collinear structure. Remaining
antiferromagnetic, it differs from the quasiclassical struc-
ture in that s1 6= s2 now, and

s1 − s2 = χ‖µBgH; χ‖ =
2S(S − 1)

S3

E2

(I − J)3
. (18)

In other words, there appears a longitudinal magnetic
susceptibility in the system that results in the induction
of the ferrimagnetic phase; its lability field is determined
by the expression

µBgHl =
√

Ω2(0; 0) + (2S − 1)2E2 − (2S − 1)E;

Ω(0; 0) = {(2S − 1)D[2IS + (2S − 1)D]−
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−(2S − 1)
(2S − 3)I − (2S − 1)J

I − J
E2}1/2. (19)

As will be seen below, the quantity Ω(0; 0) specifies
the frequency of uniform precession (or the AFMR fre-
quency) in the absence of a field. The comparison of for-
mulas (16) and (19) demonstrates that the corrections
introduce the dependence on the exchange between the
spins belonging to the same magnetic sublattice into the
AFMR frequency and the lability field. It is not difficult
to find the corrections to the field Hs−f , but we shall not
adduce here the corresponding formulas, as they actually
duplicate the quasiclassical ones.

4. Phase Diagrams

The phase diagrams can be easily calculated from the
comparison of the energies of the antiferromagnetic and
weakly ferromagnetic spin configurations at H = 0. The
ground state energy of the system under consideration
can be presented in the form

Egr = const +
∑
α

[e(0)
α −D(ϕα; ϑα)S2] ≡ Ecl + ∆Equan,

(20)

where “const” is specified in (8), D(ϕα;ϑα) – in (7),
whereas

e(0)
α = 〈Ψ∗(0)nα (S; S)|Hnα|Ψ(0)

nα(S;S)〉 =

= Hζ
αsα + 〈Ψ∗(0)nα (S; S)|vnα|Ψ(0)

nα(S; S)〉

is the energy of the ground single-ion level. In such
a representation, the quantity Ecl completely coincides
with the classical energy, i.e. it does not depend on
second-order corrections, while ∆Equan = −∑

α
Hζ

α∆sα,

and thus it is completely determined by the quantum
reduction of the magnetizations of sublattices specified
by expression (14) and depends on the field.

Let us demonstrate that, even in the case of small
single-ion anisotropy, the allowance for ∆sα can result in
qualitative changes in the conclusions of the phenomeno-
logical theory which, as is known [14,20], states that the
stable phase is the collinear antiferromagnetic one with
l ‖ Z under the condition DI > E2 and the symmet-
ric spin-flop (or weakly ferromagnetic) phase with spins
located in the XY plane and the angle 2ϕD between
them for DI < E2. Taking the second-order corrections
into account, energies (20) of different spin configura-
tions take the following form:

i) antiferromagnetic collinear phase –

EAFM
0 = −IS2 − 2S2D − (2S − 1)

E2

I
;

ii) weakly ferromagnetic phase –

EWAF
0 = −IS2 − SD − 2S − 1

4
D2

I
− (2S − 1)2

2
E2

I
;

ϕD =
π

2
−arctg

2S − 1
S

E

I

[
1 +

1
2S

(
D

I
+

2S − 1
S

E2

I2

)]
.

Comparing the presented energies, it is easy to find that
the collinear spin configuration is stable under the con-
dition 2SDI > (2S − 3)E2. The last inequality quali-
tatively agrees with the conclusions of the quasiclassical
theory starting from S = 2. In this case, the antifer-
romagnetic phase for the spins S = 1 and S = 3/2 re-
mains stable if 2DI > −E2, whereas, for S = 3/2, the
term with E2 disappears at all, and it is necessary to
consider the terms of higher orders. Crystals with the
spin S = 3/2 were specially studied in [23], where it
was shown that, in this case, the collinear phase bound-
ary is determined by a fourth-order parabola or, to be
more precise, by the condition DI3 > E4. This re-
sult is explained by different spin “reductions” ∆sα in
each of the structures, so that ∆sAFM

α ∼ (E/I)2, and
∆sWAF

α ∼ (D/I)2, (E/I)4. As is known, at a suffi-
ciently large single-ion anisotropy, the difference between
the results of the quasiclassical and quantum theories be-
comes even more significant (see [3–8]).

It is also worth noting that there exists a possibility of
the formation of one more weakly ferromagnetic phase
– non-symmetric, in which l ‖ m ‖ X (or Y ), where (in
the same way as above) m is the ferromagnetism vector.
Here, the longitudinal moment is also caused by different
spin reductions: ∆s1,2 = (2S − 1)S−1(D ± E)2/I2, i.e.
m ∼ DE/I2, but it is easy to see that the energy of this
phase EWAF

0non−sym = −IS2−SD− (2S − 1)(D2−E2)/4I

is always higher than the energy EWAF
0 of the symmetric

weakly ferromagnetic phase.

5. Spin Wave Spectrum

As far as we know, in spite of the rather extensive data
on AFMR and spin wave spectra in uniaxial and biax-
ial magnetic crystals with two sublattices [14,15,20,24],
calculations of resonance properties of tetragonal anti-
ferrodielectrics with the Dzyaloshinskii interaction are
absent in the literature. At the same time, such informa-
tion seems to be useful, as it enables the interpretation
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of numerous experimental data. The corresponding con-
sideration of spin wave energies will be performed with
the use of the Hubbard operators [3,4,8] Bnα and B+

nα

that allow us to write the operators of spin projections
as

S+
nα =

√
2S(xαBnα + yαB+

nα);

Sζ
nα − sα =

√
2Szα(Bnα + B+

nα); (21)

{
xα

yα

}
=

1√
2S
〈Ψ∗(0)nα (S; S)|S±nα|Ψ(1)

nα(S; S − 1)〉;

zα =
1√
2S
〈Ψ∗(0)nα (S; S)|Sζ

nα|Ψ(1)
nα(S; S − 1)〉,

where Ψ(0)
nα(S; S − 1) is the function of the first excited

state from collection (9). We note that the appearance
of the quantity zα which is finite due to the single-ion
anisotropy in transformations (21) causes the dispersion
of quasiparticles and determines the probability of tran-
sitions corresponding to the second excited state of ions,
which is impossible in the framework of the phenomeno-
logical approach. However, the question about the exci-
tation and properties of these states will not be consid-
ered here.

In representation (21), operator (4) is as follows:

Hnα = εαB+
nαBnα;

εα = e(1)
α − e(0)

α = −(2S − 1)D(ϑα) + Hζ
α−

−2(2S − 1)
F 2(ϑα)

Hζ
α

− (2S − 1)(2S − 3)
2

E2(ϑα)

Hζ
α

. (22)

In these formulas and below, we set ϕα =
π/4. Therefore, expressions (7) are transformed into
D(ϑα) = D(π/4;ϑα); E(ϑα) = E(π/4; ϑα); F (ϑα) =
Fξζ(π/4;ϑα), а Fξη(π/4; ϑα) = Fηζ(π/4; ϑα) = 0.

After passing to the k-representation, the complete
operator of the considered excited spin states of anti-
ferrodielectrics in the harmonic approximation can be
presented in the standard form as

H =
∑

k

{∑
α

[εα + Γα(k)]B+
kαBkα+

+
1
2
[Γα+3(k)BkαB−kα + h.c.]

}
+

+
∑

k

[Γ3(k)B+
k1Bk2 + Γ6(k)Bk1B−k2 + h.c.], (23)

where the parameters of the kinetic interaction between
different sublattices are determined in terms of the pa-
rameters of operator (1) as follows:

Γα(k) =
{

JS(x2
α + y2

α) +
1
2
∆JS(xα + yα)2+

+
(−1)α

2
JDS(xα−yα)2− (−1)α

2
JDS(xα +yα)2 cos2 ϑα+

+[∆JS + (−1)αJDS](xα + yα)zα sin 2ϑα

}
γ1(k);

Γ{
3
6

}(k) =
{

1
2
IS

[
(x1 + y1)(x2 + y2) cos(ϑ1 − ϑ2)±

±(x1 − y1)(x2 − y2)
]

+
1
2
∆IS(x1 + y1)(x2 + y2)×

× sin ϑ1 sin ϑ2 + IS

[
z1(x2 + y2)− (x1 + y1)z2]×

× sin(ϑ1 − ϑ2)−∆IS[z1(x2 + y2) cos ϑ1 sin ϑ2+

+(x1 + y1)z2 sin ϑ1 cosϑ2

]}
γ2(k); (24)

Γα+3(k) =
{

2JSxαyα +
1
2
∆JS(xα + yα)2 sin2 ϑα−

−(−1)αJDS(xα + yα)2 − (−1)αJDS(xα + yα)2 cos2 ϑα+

+[∆J − (−1)αJD]S(xα + yα)zα sin 2ϑα

}
γ1(k),

while γ1(k) and γ2(k) denote the intra- and intersublat-
tice structural factors, respectively. The eigenenergies of
Hamiltonian (23) are calculated in a common way and
have a form

Ω2
±(k;H) =

1
2

∑
α

{[εα+Γα(k)]2 − Γ2
α+3(k)}+
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Fig. 1. Field dependence (in units of I) of AFMR frequencies (а) and exciton absorption lines (b) at E 6= 0: 1 – ∆I = 0.5; (2S− 1)D =
−0.25; (2S − 1)E = 0.2; 2 – ∆I = 1; (2S − 1)D = −0.5; (2S − 1)E = 0.5

+Γ2
3(k)− Γ2

6(k)± T (k);

T 2(k) =
1
4

{∑
α

(−1)α{[εα + Γα(k)]2 − Γ2
α+3(k)}

}2

+

+

{∑
α

{Γ6(k)Γα+3(k)− Γ3(k)[εα + Γα(k)]}
}2

−

−
{∑

α

(−1)α{Γ3(k)Γα+3(k)− Γ6(k)[εα + Γα(k)]}
}2

.

(25)

It is also worth adding that expression (25) remains valid
in the case of an arbitrary spin configuration, though
with the use of the corresponding parameters of the ki-
netic interaction of type (24).

Let us consider explicit expressions for some individ-
ual cases where the general formula (25) is simplified.
For example, in the absence of single-ion anisotropy,
the AFMR frequencies corresponding to spin excitations
with k ≈ 0 in the longitudinal phase are equal to

Ω‖±(0;H) = S

{[√
(∆I −∆J)(2I + ∆I −∆J)±

±µBg
H

S

]2

− J2
D

}1/2

. (26)

From here, it is easy to obtain expression (16) for the
field Hl. If the parameters D, E 6= 0, the most sig-
nificant addition resulting from the quantum approach
consists in the appearance of the resonance intersublat-
tice interaction (Γ3(k) ∼ EH from set (24)) that causes
a nonlinear behavior of the AFMR frequency as a func-
tion of the longitudinal field. Calculating all Γj(k) with
regard for quantum corrections, one can conclude that
the AFMR frequency is described by the expression

Ω‖±(0;H) =
{[√

Ω2(0; 0) + (2S − 1)2E2±

±µBgH

]2

− (2S − 1)2E2

}1/2

, (27)

where Ω(0; 0) denotes the uniform precession frequency
in the absence of a field determined by formula (19);
the field Hl that follows from (27) is also given there.
One can see that Ω(0; 0) depends on the intrasublattice
exchange that, as is known, does not contribute in phe-
nomenology. Formulas (26) in the case of D = E = 0
and (27) in the case of ∆I = ∆J = JD = 0 actu-
ally coincide, though they were obtained within differ-
ent approaches. In the region of the non-symmetric
oblique phase, formula (25) practically cannot be sim-
plified in either case. The form of the dependences
Ω±(0;H) for some sets of parameters and arbitrary fields
H ‖ Z is given in Fig. 1. For the sake of comparison,
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Fig. 2. Field dependence (in units of I) of AFMR frequencies at
E = 0 in the case where the spin flop occurs via two second-order
phase transitions: 1 – ∆I = 0.5; (2S − 1)D = −0.25; 2 – ∆I = 1;
(2S − 1)D = −0.5

Fig. 2 presents the AFMR frequency for the case of
E = JD = 0. It is worth noting that the point H = Hl

corresponds to the equality Ω‖−(0;Hl) = 0; after that,
the both non-zero AFMR frequencies do not cross, and
Ω‖−(0;H) < Ω‖+(0;H). The end of the turn (H = Hs−f)
corresponds to the “adhesion” of the spin sublattices; in
this case, Ω−(0;Hs−f) = 0.

Let us consider the AFMR frequency in the case of
a symmetric spin configuration (setting D = E = 0 for
the sake of simplicity). Then

H =
∑

k

{
[ε⊥ + Γ⊥γ1(k)]

∑
α

B+
kαBkα+

+
{∑

α

[Γ⊥1 − i(−1)ακ]γ1(k)BkαB−kα + (Γ⊥2 − iκ)×

×γ2(k)B+
k1Bk2 + Γ⊥3 γ2(k)Bk1B−k3 + h.c.

}}
; (28)

ε⊥ = (I0 − J)S; I0 =
√

I2 + J2
D; κ = IJDS/I0;

Γ⊥ = JS +
1
2
(∆JS + JDS sin 2ϕD) sin2 ϑ;

Γ⊥1 = Γ⊥ − JS − JDS sin 2ϕD;

Fig. 3. Optically active (k = 0) eigenenergies of Hamiltonian (27)

Γ⊥2 = IS(cos2 ϕD − sin2 ϕD cos2 ϑ) +
1
2
∆IS sin2 ϑ;

Γ⊥3 = IS(sin2 ϕD sin2 ϑ) +
1
2
∆IS sin2 ϑ;

cos ϑ =
H

Hs−f
,

where the field Hs−f of the spin-flip transition is given in
(17). The AFMR frequencies that correspond to Hamil-
tonian (27) can be presented in the form

Ω⊥±(0;H) =
{

1
2
(Ω̃2

+ + Ω̃2
−)±

±
[
1
4
(Ω̃2

+ − Ω̃2
−)2 + 4κ2(ε⊥ + Γ⊥ +

∑

j

Γ⊥j )×

×(ε⊥ + Γ⊥ − Γ⊥1 − Γ⊥2 + Γ⊥3 )
]1/2}1/2

. (29)

In the obtained expression (29), we used the notations

Ω̃2
+ = 2J2

DS2

(
1 +

I + ∆I −∆J

I0

) (
1− H2

H2
s−f

)
;

Ω̃2
− = 2I0S

{[
µBgH − 2

(
J2

D

I0
+ ∆J

)
S

]
cos2 ϑ−

−(∆I −∆J + I − I0)S
}

for the frequencies of operator (28) at κ = 0 which
are depicted in Fig. 3 by dashed lines. From for-
mula (29), it is easy to find that Ω⊥−(0;H) = 0 only if
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Ω̃2
− = 4I2S2 cos2 ϑ, hence H = Hs−f . Thus, Ω⊥− < 0 (see

solid lines in Fig. 3) in the whole range of existence of
the symmetric spin configuration demonstrating its ab-
solute instability in tetragonal antiferrodielectrics with
the Dzyaloshinskii interaction. This fact was noted in
[25], though without calculation of the AFMR frequen-
cies. Finally, it is worth saying that, with the help of the
substitutions ∆IS → −(2S−1)D and JDS → (2S−1)E,
the expressions for Ω⊥±(0;H) can be transformed to those
describing the AFMR in NiF2 crystal in a longitudinal
field, which, as far as we know, have not been presented
in the literature.

6. Comparison with Experiment and
Conclusions

Based on the considered approach and the obtained re-
sults, let us try to discuss the known experimental data
concerning FeF2 antiferromagnetic dielectric in the field
H||Z||C4 [16, 17, 19, 26, 27]. We recall that it is a tetrag-
onal easy-axis antiferrodielectric that can be described
by Hamiltonian (1), whereas the AFMR frequencies can
be given by expression (27). In correspondence with
measurements [16,26], here Ω(0; 0) =52.7 cm −1, IS =
(60÷62) cm−1, D =(6÷9) cm−1, and g =(2.2÷2.25).
Moreover, the Dzyaloshinskii interaction E does not
manifest itself in low fields, which agrees with the data
on the EPR spectra of Fe2+ ZnF2 ions [25], which also
results in the inequality E ¿ D.

With these values without regard for the constant E,
the critical flop field is determined from the equality
µBgHl = Ω(0; 0), or Hl = 44 T. The allowance for the
value E ≈0.1D ≈(0.6÷1) cm−1 [16, 17, 26] results in
the reduction of this field by (2.0÷2.5) T. Thus, in a
field somewhat higher than 40 T, there must take place
a first-order transition to the oblique phase (a second-
order transition requires the fulfillment of the condition
E > Ecr ≈2.5 cm−1). It seems that such a picture is
confirmed by work [27] that dealt with measurements of
the magnetization of FeF2 in longitudinal fields H ≤ 45
T and testified to its rather significant jump in a field
of the order of 40 T. On the other hand, optical data
[19] demonstrate that, in much smaller fields (∼ 25 T),
there also take place changes in the magnetic subsys-
tem of this magnet. If we make an assumption about
a second-order transition, then the estimates according
to formulas (19) and (27) require the fulfillment of the
inequality E > D, which is impossible to coordinate
with magnetostatic and resonance experiments [16, 17,
26]. In particular, such a high value of the Dzyaloshin-
skii interaction constant would result in much larger χ‖

than the observed one (see (18)). The nature of the
relatively considerable jump of the magnetization in a
field > 40 T also becomes obscure. In addition, it is
worth noting that the Zeeman splitting of exciton ab-
sorption lines in FeF2 also does not agree with their ex-
pected behavior demonstrated in Fig. 1,b. All these
considerations testify to the fact that even the devel-
oped quantum theory cannot provide a consistent de-
scription of the set of experimental data and eliminate
the arising contradictions. For today, there are no mea-
surements of the field dependences of AFMR frequen-
cies that would simplify the determination of the lability
fields of a certain phase and the order of phase transfor-
mations. We hope that such experiments are easy to
perform.

Summing up, it is worth saying that one of the most
significant results of the quantum approach consists in
an increase of the number of equations used for the deter-
mination of spin configurations. In contrast to the phe-
nomenological approach that is usually reduced to the
solution of the Landau–Lifshits equation (or equations
in the case of many-sublattice systems) in a certain ap-
proximation, the quantum theory additionally includes
the equation for the average spin s in the proper coor-
dinate system. Of basic importance is the fact that this
equation appears to be different depending on the value
of the initial spin S at a site. The solution of the corre-
sponding system of equations substantially changes the
quasiclassical results (for example, by that it includes
the so-called singlet phases, the relation between the an-
gles and magnetization, etc.). As was mentioned, such
problems have been analyzed till now only in the case
where S = 1.

On the whole, the problem of the description of mag-
nets with a large contribution of the spin-orbit interac-
tion, or strong single-ion anisotropy, and an arbitrary
value of S remains urgent. The application of the quan-
tum theory, which is the only right way for such systems,
is restricted by several examples mainly concerning the
CoF2 crystal, where S = 3/2 [23, 27]. In this case, a
satisfactory agreement between theory and experiment
can be reached only with regard for the magnetostric-
tion that results in the breaking of smooth turns of spin
vectors, by transforming second-order transitions into
first-order ones. There is no doubt that the contribu-
tion of the elastic coupling in magnetic crystals with rel-
atively weak single-ion anisotropy (among which, one
considers FeF2 with S = 5/2) also can be consider-
able. The latter necessarily decreases the longitudinal
susceptibility making the effective value of quantities
of the E type lower than the initial one. However,
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the quantum approach with regard for magnetostric-
tion effects is only at the beginning of its development
(see, e.g., [9]), and it is too early to make final con-
clusions about the description of the available experi-
ments.

The work is performed in the framework of the Tar-
get Program of Basic Research of the Physics and As-
tronomy Department of National Academy of Sciences
of Ukraine.
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КВАНТОВА ТЕОРIЯ МАГНIТНИХ ДIЕЛЕКТРИКIВ
IЗ СЛАБКОЮ ОДНОIОННОЮ АНIЗОТРОПIЄЮ

В.М. Локтєв

Р е з ю м е

Розвинуто мiкроскопiчну квантову теорiю спiнових конфiгу-
рацiй, спiн-орiєнтацiйних фазових переходiв та спiнових збу-
джень у тетрагональних антиферомагнiтних дiелектриках з
взаємодiєю Дзялошинського, що має одноiонне походження.
Показано, що в кутовiй несиметричнiй фазi не вiдбувається
перетинання частот АФМР, якi вiдштовхуються саме в мiру
величини константи Дзялошинського. Обговорено наявнi екс-
периментальнi данi по антиферомагнiтному фториду залiза.
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