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The quark behavior while influenced by a strong stochastic gluon
field is analyzed. An approximate procedure for calculating the ef-
fective Hamiltonian is developed. Considering quarks as the quasi-
particles of a model Hamiltonian with four-fermion interaction, we
study the response to the process of filling up the Fermi sphere with
quarks.

1. Introduction

In the present paper, we analyze the process of filling up
the Fermi sphere with quarks modeling the correspond-
ing Slater determinant in the direct way. The quarks
are considered as quasiparticles of a model Hamiltonian
with four-fermion interaction. In [1], the ground state
of this model Hamiltonian was studied in detail, and the
singularity of a mean energy functional depending on the
current quark mass was found out. In the course of this
study, we need to trace back the alterations of respec-
tive dressing transformations. It will be seen, from what
follows, that this problem is fairly difficult to be treated
with the well-developed machinery of the Green func-
tions [2], in which a system is described by the Hamilto-
nian with additional term controlling the particle num-
ber µ q̄γ4q (µ is the chemical potential of bare quarks).
However, the quark chemical potential conception runs
with some uncertainties in interpreting a baryon chem-
ical potential [3] and quantitatively produces the arbi-
trariness of order 50–100 MeV for the phase diagram.
Furthermore, each kind of quarks requires its particular
chemical potential. Here, we also consider the impact of
filling up the Fermi sphere on the process of quasiparti-
cle formation. Actually, the approach proposed should
be appended by an analysis of the influence of (meson)
bound states. But here we formulate this problem only
doing hope to get a justification of such a position while
completing our consideration. Let us recall that the
conceptual idea of an intricate nature of the QCD vac-

uum [4] having populated by intensive stochastic gluon
fields of nontrivial topological structure forms the ba-
sis to explain the quark behavior. Moreover, studying
the cooled corresponding lattice configurations gives ev-
idence of this component presence [5], and using the in-
stantons in the singular gauge to fit the data turns out
to be very fruitful [6] and allows one to evaluate the en-
semble density and the characteristic size of a saturating
configuration. Both estimates are in fairly good agree-
ment with the corresponding results of the instanton liq-
uid model [7]. Nevertheless, the keen search of various
confining configurations is still going on [8–10] in par-
allel with collecting the convincing evidences that the
construction of a self-consistent ensemble of such con-
figurations is a too complicated problem (see, for exam-
ple, the estimate for the (anti)instanton ensemble done
in [11]). Supposing the high-frequency component of
a stochastic ensemble of gluon fields as the dominat-
ing contribution, we develop, in fact, an effective the-
ory (which usually encodes the predictions of quantum
field theory at low energies), in which all assumptions
done in the way to construct it are not of special im-
portance. What is entirely restrictive to fix the effective
action at a really low energy (i.e. the low cutoff) up
to a few coupling constants, to develop the approximate
procedure to analyze the quark interactions and to in-
troduce the corresponding low-energy effective variables
is the idea to neglect all the contributions coming from
gluon fields generated by the (anti)quarks (quenched ap-
proximation). Actually, this means the removal of the
corresponding cutoff(s) from consideration; but, by the
definition of an effective theory, this operation does not
pose itself. Nowadays we know that the mixing of the
zero modes is the microscopic mechanism of the spon-
teneous breakdown of chiral symmetry in the instanton
liquid model [12]. In this approach, the quarks are con-
sidered in a given gluon background, and the spectrum
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of the respective Dirac operator is calculated in order
to be accompanied then by averaging over the gluon en-
semble. It is believed that the zero modes are effectually
overlapped at low energy, and the eigenvalues of Dirac
operator spread over some range of virtualities. In other
words, investigating the behavior of a single quark in-
fluenced by an external (stochastic) gluon field, one en-
deavours to guess how its Green function in the quark
ensemble looks like. Clearly, it is a very difficult task
to follow starting from the first principles, and many
various approximations are developed and adapted. It
should be noted also that a great care should be taken in
order to obtain the proper thermodynamical limit with
nonzero chiral condensate. A lot of that happens to be
in striking contrast to some aspects to the Nambu–Jona-
Lasinio (NJL) model [13] which is cognate to the instan-
ton liquid model based actually on the similar multi-
fermion interaction. Superficially, the main distinction
consists in the appearence of some non-local formfac-
tors instead of the corresponding coupling constant. As
to the microscopic consideration, the generation of dy-
namical quark mass in the NJL model is caused by the
reconstruction of the Hamiltonian ground state, and the
quarks manifest themselves already as the quasiparticles
[14] although the multifermion attractive force should
be strong enough, roughly speaking. We will emphasize
here that the instanton model and several other models
which are based on treating the stochastic ensemble of a
strong gluon field become practically identical in many
aspects to the NJL model.

2. The Hartree–Fock–Bogolyubov
Approximation

We start with briefly recalling how the quasiparticle con-
cept appears in this approach. Let us consider the quark
(antiquark) ensemble in the background of a strong
stochastic gluon field and suppose this field to be so
strong that we could neglect the gluon interchanging pro-
cesses. The stochastic gluon field is characterized by a
correlation function, and its particular form will be dis-
cussed and fixed below. The Lagrangian density is

LE = q̄(iγµDµ + im)q, (1)

where q and q̄ are the quark and antiquark fields with
covariant derivative Dµ = ∂µ − igAa

µta, Aa
µ is the gluon

field, ta = λa/2 are the generators of the color gauge
group SU(Nc), m is the current quark mass, and µ =
1, 2, 3, 4. We work in the context of the Euclidean field
theory, and γµ mean the Hermitian Dirac matrices (γ+

µ =

γµ, {γµ, γν} = 2 δµν) in the chiral representation. Then
the corresponding Hamiltonian description results from

H = πq̇ − LE , π =
∂LE

∂q̇
= iq+, (2)

and, in particular, for the noninteracting fields, we have

H0 = −q̄(iγ∇+ im)q. (3)

In the Schrödinger representation, the quark field evolu-
tion is determined by the equation for the quark proba-
bility amplitude Ψ as

Ψ̇ = −HΨ, (4)

and the creation and annihilation operators of quarks
and antiquarks a+, a, b+, b have no “time” dependence
and consequently look like

qαi(x) =
∫

dp

(2π)3
1

(2|p4|)1/2
×

×[a(p, s, c)uαi(p, s, c)eipx+

+b+(p, s, c)vαi(p, s, c)e−ipx], (5)

where the summation over index s which stands to de-
scribe two quark spin polarizations and index c which
should play the similar role for a color is implied. Fur-
ther, we take a specific form of the Dirac conjugated
spinor. Fixing a spin polarization can be done, as known,
by imposing an additional constraint on the spinor (see
below). However, there is no direct analogy with the
color polarization, and the particular state should be
fixed by the corresponding complete set of diagonal op-
erators which includes the Casimir operators as well. In
fact, this complete definition of the spinor color state is
unnecessary for us here. All observables are usually ex-
pressed by summing up the polarization states of some
bilinear spinor combinations as the singlet and octet
states, and the singlet component is obviously playing
the specific role. The density of interaction Hamiltonian
can be presented as

VS = q̄(x)taγµAa
µ(t, x)q(x). (6)

The obvious dependence on “time” in this Hamiltonian
is present in the gluon field only. As is mentioned above,
we are planning to work with the stochastic gluon field
implying the random process, for which one may de-
fine only a probability of realizing some gluon configura-
tion. Such a nature of the gluon field urges (and allows)
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us to develop the approximate procedure for describing
the quark field treating (4) as a probabilistic process.
Then the system states are described by the correspond-
ing averages (over a “time”or an ensemble according to
the ergodic hypothesis). However, in quantum theory,
we are faced with one difficulty in this way, because Ψ
is a probability amplitude, and the immediate averag-
ing of 〈Ψ〉 can be insignificant. Studying a mean prob-
ability density 〈 ∗ΨΨ〉 looks more promising and can be
realized by complicating the procedure of continual inte-
gration [15]. Adapting these ideas to the gauge theories,
we should obviously strive to operate with the gauge in-
variant quantities which include an ordered exponential,
at least. Unfortunately, such a program in what con-
cerns the ensemble consideration is still very far to be
realized. However, it is clear that applying the averag-
ing procedure would result in the appearance of a set of
corresponding correlation functions 〈A2〉, 〈A4〉, etc. For
example, the spontaneous breaking of chiral symmetry is
well understood in the instanton liquid model just due to
such a trick [16], [17]. It is interesting to note here that
the correlation function series summed up is expressed in
the highest order of the packing fraction parameter nρ̄4,
where n is the instanton liquid density and ρ̄ is the mean
size of (anti)instanton, with the covariant derivative in
the field of each separate (anti)instanton and includes
also the free Green function. Actually, we believe that,
when calculating the ground state, it might be informa-
tive and reliable to operate with averaging just the prob-
ability amplitude 〈Ψ〉. In the interaction representation,
where Ψ = eH0tΦ, Eq. (4) can be rewritten as

Φ̇ = −V Φ, V = eH0tVSe−H0t. (7)

Now the ’time’ dependence appears in quark operators
as well. After the averaging over the highly oscillating
(short-wavelength) component, we obtain the equation

〈Φ̇(t)〉 = +

∞∫

0

dτ〈V (t)V (t− τ)〉 〈Φ(t)〉 (8)

for the long-wavelength part. (The requirements to vali-
date the factorization of the long-wavelength component
are discussed, for example, in [18].) The integration in-
terval in Eq. (8) is extended to the infinite “time” value
because of the rapid decrease (supposed) of the correla-
tion function, and its sign is strictly fixed. Within these
assumptions, we are also allowed to deal with 〈Φ(t)〉 on
the right-hand side of equation and to have, as a result,
an ordinary differential equation instead of an integro-
differential one. Implementing approximation (8) in the

quantum field theory models, we run into the trouble
at trying to get the most general form of a correlation
function if the characteristic quark and gluon correlation
times are comparable. Fortunately, if the quark fields are
considered to be practically constant on the gluon back-
ground, the problem receives the essential simplification.
The gluon field contribution may be factorized as a cor-
responding correlation function 〈Aa

µ(x)Ab
ν(y)〉 [19], and

it seems that such a conclusion could be applied for the
ground state. Recent lattice measurements of this corre-
lation function provide us with a reasonable arguments
to interpret the result as the gluon “mass” generation
(∼ 300 – 400 MeV) in the momentum region of order
200 MeV [20]. It is curious to notice that the averag-
ing over ensemble (“time”) on the right-hand side of Eq.
(8) is performed in both the correlator and 〈Φ(t)〉. This
means that, by resumming and averaging a certain class
of diagrams in the quantum field theory models, one may
consider high-order correlator contributions in different
ways if the form of the function 〈Φ(t)〉 is specified. In
addition, the correlation functions in models interesting
to us should be translation-invariant, and this implies
that the correlator in Eq. (8) has the form

〈V (t)V (t− τ)〉 = F (τ),

i.e., for example, an one-dimensional process after hav-
ing done the integration in Eq. (8) will be described
by a constant which characterizes the slow process. In
quantum field theory for the problem we are interested
in, the correlator connecting two space points

〈Φ̇(t)〉 =
∫

dxq̄(x, t)taγµq(x, t)

∞∫

0

dτ×

×
∫

dyq̄(y, t− τ)tbγνq(y, t− τ)g2×

×〈Aa
µ(t, x)Ab

ν(t− τ, y)〉〈Φ(t)〉
appears instead of a constant. Assuming the correlation
function is rapidly decreasing with time, we change the
“time” t − τ dependence in the quark fields for t and
perform the inverse transformation to the Schrödinger
representation (but, in principle, it could be done in a
covariant form as well). Then introducing the function
χ = e−H0t〈Φ〉, we have 1 the equation

χ̇ = −Hindχ,

1 Let us notice that this form does not coincide in general with
〈e−H0tΦ〉.
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Hind = −q̄(iγ∇ + im)q − q̄taγµq×

×
∫

dyq̄′tbγνq′
∞∫

0

dτg2〈Aa
µA

′b
ν 〉, (9)

where q = q(x), q̄ = q̄(x), q′ = q(y), q̄′ = q̄(y),
Aa

µ = Aa
µ(t,x), and A

′b
ν = Ab

ν(t − τ, y). In order to
get the final result, we should fix the form of the corre-
lation function. In this paper, we rely on the stochastic
ensemble of (anti)instantons in the singular gauge, and
the instanton solution reads as

Aa
µ(x) =

2
g
4π2iρ2ωabη̄µbν

∫
dq

(2π)4
qνφ(q)eiq(x−z),

φ(q) =
1
q2

(
K2(qρ)− 2

q2ρ2

)
, (10)

where K2 is the modified Bessel function of imaginary
argument, ρ is the instanton size, the matrix ω appoints
the pseudo-particle orientation in the color space, z is
the coordinate of instanton center, and η̄ stands for the ’t
Hooft symbol. In Eq. (9), we imply the correlation func-
tion integrated over the “time”, for which we obtained, in
the highest order in the density n of the (anti)instanton
ensemble,

∞∫

0

dx4〈Aa
µ(x)Ab

ν(y)〉 =
1
2

∞∫

−∞
dx4〈Aa

µ(x)Ab
ν(y)〉 =

=
4(4π2)2

g2

δabnρ4

N2
c − 1

(δµνδαβ − δµαδνβ)×

×
∫

dp

(2π)4
pαpβeip(x−y)φ(−p)φ(p)

1
2
2πδ(p4). (11)

The first equality is valid due to the symmetry properties
of the instanton solution. Then the correlation function
can be presented as

〈Ãa
µAb

ν(p)〉 =
(4π2)2 nρ4

g2

2 δab

N2
c − 1

[I(p) δµν − Jµν(p)]

I(p) = p2φ(−p)φ(p), Jij(p) = pipjφ(−p)φ(p),

J4i = Ji4 = J44 = 0. (12)

In what follows, we suppose that the various stochas-
tic ensembles of gluon fields are characterized by their
profile functions I(p) and Jµν(p) and analyze the con-
tribution of a quadratic correlator only. However, this
deficiency of fixing the gauge implicitly for the truncated
system is compensated, in a sense, by our investigation of
the full spectrum of reasonable correlation functions (in-
cluding the opposite limiting correlators when they are
extrapolated even into the peturbative region). With
such a form of the induced four-fermion interaction, we
are going to search the ground state as the Bogolyubov
probe function with vacuum quantum numbers2 [21]

|σ〉 = T |0〉,

T = Πp,s,c exp{ϕ[a+(p, s, c)b+(−p, s, c)+

+a(p, s, c)b(−p, s, c)]}, (13)

which is defined by minimizing the mean energy

E = 〈σ|H|σ〉. (14)

Here, ϕ = ϕ(p), and |0〉 is the vacuum of the free Hamil-
tonian, i.e. a(p, s, c)|0〉 = 0, b(p, s, c)|0〉 = 0. With the
dressing T transformation, we introduce the creation and
annihilation operators of quasiparticles

A = TaT−1, B+ = Tb+T−1,

we present the operator Eq. (5) as

q(x) =
∫

dp

(2π)3
1

(2|p4|)1/2
×

×[A(p, s, c)U(p, s, c)eipx + B+(, p, s, c)V (p, s, c)e−ipx],
(15)

where the spinors U and V are defined as

U(p, s, c) = cos(ϕ)u(p, s, c)− sin(ϕ)v(−p, s, c),

V (p, s, c) = sin(ϕ)u(−p, s, c) + cos(ϕ) v(p, s, c). (16)

Then the Dirac conjugate spinor takes the form

q̄(x) =
∫

dp

(2π)3
1

(2|p4|)1/2

[
A+(p, s, c)U(p, s, c)e−ipx+

2 In order to avoid any misunderstanding, we recall here that fix-
ing a form of the ground state introduces a primary frame.
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+B(p, s, c)V (p, s, c)eipx
]
, (17)

with U(p, s, c) = U+(p, s, c)γ4 and V (p, s, c) =
V +(p, s, c)γ4. Now we have to specify the choice of
spinors in the Euclidean variables. They obey the Dirac
equations

(p̂− im)u(p, s) = 0, (p̂ + im)v(p, s) = 0, (18)

(with p̂ = p4γ4+pγ) and the additional constraint which
fixes the spinor polarization:

iγ5ŝu(p, s) = u(p, s), iγ5ŝv(p, s) = v(p, s). (19)

Here, γ5 = −γ1γ2γ3γ4, and the four-vector s is normal-
ized to 1 and orthogonal to the four-vector p, i.e. s2 = 1,
(ps) = 0. It could be, for example,

s4 =
(pn)
im

, s = n +
(pn)p

im(p4 − im)
,

where n is an arbitrary unit vector. If the covariant
normalization conditions

ūu = 2im, v̄v = −2im (20)

are satisfied, the spinors are defined with the precision
up to the phase factor. All these conditions allow us to
formulate the following matrix representation:

u(p, s)ū(p, s) =
p̂ + im

2
(1 + iγ5ŝ),

v(p, s)v̄(p, s) =
p̂− im

2
(1 + iγ5ŝ). (21)

Calculating the mean energy (14), we meet spinors with
opposite moments. We introduce the four-vector q =
(p4,−p) in order to simplify notations. Using the pro-
jection operator (see, for example, [22]), we can express
the spinor v(q, s) in terms of the spinor u(p, s):

v(q, s) = α
q̂ − im

−2im

1 + iγ5ŝ

2
u(p, s). (22)

The coefficient α is fixed by the covariant normalization
(20) up to the phase factor as

∗
αα= − 2 m2

(pq) + m2
=

m2

p2
, |α| = m

|p| .

Then the summation over the spinor states results in

∑
s

u(q, s)v̄(p, s) = α
q̂ + im

2im
(p̂− im),

∑
s

v(p, s)ū(q, s) =
∗
α (p̂− im)

q̂ + im

2im
,

∑
s

u(p, s)v̄(q, s) =
∗
α (p̂ + im)

q̂ − im

2im
,

∑
s

v(q, s)ū(p, s) = α
q̂ − im

2im
(p̂ + im). (23)

The polarization, in which the momentum p and the unit
polarization vector n are orthogonal (pn) = 0, turns out
to be the most convenient for handling. In such a sit-
uation, both operators p̂ and q̂ commute with γ5ŝ, and
the polarization directions of a quark and an antiquark
could be taken identical (although, in general case, they
should be two different directions). Then the summa-
tion over the polarization of quarks and antiquarks is
performed separately in the final equations. This allows
us not to control the obligatory constraint to have the
vacuum quantum numbers of the pairs present in the
intermediate calculations. Then, for the spinors with
polarizations summed up, we have

V V = p4γ4+cos(θ)(pγ−im)−
∗
α + α

2im
sin(θ)(p2−impγ),

UU = p4γ4+cos(θ)(pγ+im)+
∗
α + α

2im
sin(θ)(p2+im pγ),

where θ = 2ϕ. In the formulae above, the phase inherent
in the sum

∗
α + α (a spinor is defined up to such a phase)

is still indefinite. The direct analysis of the mean energy
functional demonstrates that the most preferable value
of the phase factor (responsible for the color interaction
of quarks) is the value when the coefficient α appears to
be a real number. For definiteness, we put α = +m/|p|.
The curious fact is that the results of summation are
not equal (V V (m) = UU(−m)), and they coincide in
the chiral limit m = 0 only. That is, particles and an-
tiparticles formally generate the different contributions.
The direct calculations lead to the following result for
the mean energy (14) (see [1]):

〈σ|Hind|σ〉 = −
∫

dp

(2π)3
2Ncp

2
4

|p4| (1− cos θ)−

−G̃

∫
dpdq

(2π)6

{
−(3Ĩ − J̃)

p4q4

|p4||q4| + (4Ĩ − J̃)
pq

|p4||q4|×
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×
(

sin θ − m

p
cos θ

)(
sin θ′ − m

q
cos θ′

)
−

−(2Ĩδij + 2J̃ij − J̃δij)
piqj

|p4||q4|×

×
(

cos θ +
m

p
sin θ

)(
cos θ′ +

m

q
sin θ′

)}
. (24)

Here, we designated p = |p|, q = |q|, Ĩ = Ĩ(p + q),
J̃ij = J̃ij(p+q), J̃ =

∑3
i=1 J̃ii, p2

4+p2 = q2
4 +q2 = −m2,

θ′ = θ(q), G̃ = (4π2)2 nρ4. As a matter of convenience,
we singled out the color factor G′ = 2

N2
c−1 G̃. To obtain

this result, we performed the regularization (subtracting
the free Hamiltonian H0). This results in the presence
of unity (together with − cos θ) in the parentheses of the
first integral. Let us also recall that p2

4 is a negative mag-
nitude in the Euclidean space. Henceforth, we character-
ize the different stochastic ensembles of the gluon fields
by their profile functions I(p) and Jµν(p). The detailed
analysis of the functional of mean energy performed in
[1] demonstrates that it is discontinuous as a function
of the current quark mass. The singularity arises as a
result of contributions proportional to m

p cos θ. At large
momenta, the angle of pairing goes to zero θ → 0, but
a decrease of the denominator ∼ 1/p2 is not sufficient
to compensate p2 present in the volume integration of
the numerator. As a result, the mean energy beyond the
chiral limit goes to minus infinity. The same is valid for
the chiral condensate:

〈σ|q̄q|σ〉 =
i Nc

π2

∞∫

0

dp
p2

|p4| (p sin θ −m cos θ) . (25)

It is interesting to note that, despite the singular char-
acter of the system mean energy and the corresponding
quark condensate found, the meson observables are fi-
nite, quite well identified, and compatible with experi-
mental energy scale, see [23].

3. Filling up the Fermi Sphere by Quark
Quasiparticles

Then the problem of our interest can be formulated in
the following way. We need to construct the state filled
in by quasiparticles (the Slater determinant)

|N〉 =
∏

|P |<PF ;S

A+(P ;S)|σ〉, (26)

which possesses the minimal mean energy over state |N〉.
The polarization indices run here over all permissible val-
ues. The momenta and the polarizations of quasiparti-
cles filling in the Fermi sphere are marked by the capital
letters. The free Hamiltonian written in the quasiparti-
cle operators looks like

H0 = −
∫

dxq̄(x)(iγ∇+ im)q(x) =
∫

dp

(2π)3
|p4|×

× (
cos θA+(p; s)A(p; s) + sin θA+(−p; s)B+(p; s)+

+ sin θB(−p; s)A(p; s)− cos θB(p; s)B+(p; s)
)

. (27)

There are two diagonal matrix elements of the free
Hamiltonian, and now we are going to consider one of
them:

〈N |B(p; s)B+(p; s)|N〉 ∼

∼ 〈σ|A(P ;S)B(p; s)B+(p; s)A+(P ; S)|σ〉.

While presenting the matrix element, we demonstrate,
on the right-hand side, only one partial contribution con-
structed by the operator A of some detached sort. The
others give, as it can easily be seen, a sum (integral) over
states filling the Fermi sphere in. In view of the normal-
ization condition which we assess as 〈σ|A A+|σ〉 = 1 (for
operators with coinciding arguments A, A+), the matrix
element leads to the vacuum contribution similar to one
known from [1],

−
∫

dp

(2π)3
〈N ||p4| cos θB(p; s)B+(p; s)|N〉 =

= −
∫

dp

(2π)3
|p4| cos θ.

We should also remember that B|σ〉 = 0 and A|σ〉 = 0.
The partial contribution to the second matrix element is
equal to

〈σ|A(P ; S)A+(p; s)A(p; s)A+(P ; S)|σ〉 =

= (2π)3δ(p− P )δsS〈σ|A(P ; S)A+(p; s)|σ〉. (28)

Having filled the state, this contribution occurs as
∫

dp

(2π)3
〈N ||p4| cos θA+(p; s) A(p; s)|N〉 =
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=

PF∫
dp

(2π)3
|p4| cos θ.

There are other diagonal matrix elements in the interac-
tion Hamiltonian q̄taγµqq̄′tbγνq′ which we are going to
designate as 1), 2), α), β), γ), δ). For example, 1) is
the matrix element 〈N |BB+B′B′+|N〉, 2) corresponds
to 〈N |BAA′+B′+|N〉, α) looks like 〈N |AA+A′A′+|N〉,
β) is presented by 〈N |AA+B′B′+|N〉, γ) corre-
sponds to 〈N |A+B+B′A′|N〉, and δ) looks like
〈N |BB′+A′+A′|N〉. Contribution 1) to the interaction
term 〈N |q̄taγµqq̄′tbγνq′|N〉 leads to the spinor form

V αi(p, s)taijγ
µ
αβVβj(p, s)V γk(p′, s′)tbklγ

µ
γδVδl(p′, s′).

Bearing in mind the completeness property of the spinor
basis, there appears the unit matrix while summing up
all color polarizations, for example,

∑
c Vi(c)V j(c) = δij .

Therefore, contribution 1) as was mentioned in [1] turns
out to be zero. The partial contribution 2) looks like

〈σ|A(P ; S)B(p; s) A(q; t)A+(p′; s′)B+(q′; t′)×

×A+(P ; S)|σ〉 = (2π)6 [δ(q − p′)δts′〈σ|A(P ;S)×

×A+(P ; S)|σ〉 − δ(q − P )δtS〈σ|A(P ;S)×

×A+(p′; s′)|σ〉] δ(p− q′)δst′ .

One can obtain from this expression that it contributes
to the matrix element 〈N |q̄taγµqq̄′tbγνq′|N〉 (if the nor-
malization condition of one single state is taken into ac-
count) with the result

−V αi(p; s)taijγ
µ
αβUβj(P ; S)Uγk(P ; S)taklγ

ν
γδVδl(p; s)+

+V αi(p; s)taijγ
µ
αβUβj(q; t)Uγk(q; t)taklγ

ν
γδVδl(p; s).

The calculation of matrix elements β), γ), and δ) demon-
strates that they have a similar structure, but their con-
tributions cancel one another.

The matrix element α) deserves the special discus-
sion. Unlike the aforementioned examples, the major
partial contribution here should be searched for the pair
of quasiparticles

〈σ|A(Q; T )A(P ; S)A+(p; s)A(q; t)A+(p′; s′)A(q′; t′)×

×A+(P ; S)A+(Q; T )|σ〉.

When the momenta Q and P coincide, as known (see,
for example, [2]), the next term in the 1/V decomposi-
tion (V is the volume occupied by the system) appears.
But if we are interested in knowing how one quasiparti-
cle modifies the dressing transformation, it is necessary
to consider its matrix element with |1〉 = A+(P ; S)|σ〉.
Omitting the intermediate calculations, we present the
contribution of the scattering term α) as

−Uαi(Q; T )taijγ
µ
αβUβj(P ; S)Uγk(P ;S)taklγ

ν
γδUδl(Q; T )+

+Uαi(P ; S)taijγ
µ
αβUβj(P ; S)Uγk(Q; T )taklγ

ν
γδUδl(Q; T )+

+Uαi(Q; T )taijγ
µ
αβUβj(p; s)Uγk(p; s)taklγ

ν
γδUδl(Q; T )+

+Uαi(Q; T )taijγ
µ
αβUβj(Q; T )Uγk(P ;S)taklγ

ν
γδUδl(P ; S)+

−Uαi(P ; S)taijγ
µ
αβUβj(Q;T )Uγk(Q;T )taklγ

ν
γδUδl(P ; S)+

+Uαi(P ; S)taijγ
µ
αβUβj(p; s)Uγk(p; s)taklγ

ν
γδUδl(P ; S),

(29)

The second and fourth terms give zero contribution for
the same reasons which were given for contribution 1).
The first and fifth terms, up to the re-designations, are
equal to each other. The third and sixth terms presents
the contribution of two states with momenta P and Q.
It is not difficult to understand that, for the ensemble,
we get simply the integral over the Fermi sphere (see be-
low). When one quasiparticle is considered, the matrix
element unlike (29) is proportional to

Uαi(P ;S)taijγ
µ
αβUβj(p; s)Uγk(p; s)taklγ

ν
γδUδl(P ; S). (30)

As a result, for the traces which we are interested in, we
obtain

Tr(V V γµtaU ′U
′
γνta)

Tr(UUγµtaU ′U
′
γνta)

}
= 4

N2
c − 1
2

×

×
{

p4q4gµν ±m2δµν

(
cos θ −

∗
α + α

2
p2

m2
sin θ

)
×

×
(

cos θ′ −
∗
α
′
+ α′

2
q2

m2
sin θ′

)
+ (δ4µδiν + δ4νδiµ)×
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×
[(

cos θ +
∗
α + α

2
sin θ

)
q4pi+

+

(
cos θ′ +

∗
α
′
+ α′

2
sin θ′

)
p4qi

]
+

+(δiµδjν − δijδµν + δiνδjµ) piqj×

×
(

cos θ +
∗
α + α

2
sin θ

)(
cos θ′ +

∗
α
′
+ α′

2
sin θ′

)}
,

(31)

where p = |p|, q = |q| and θ′ = θ(q).

〈Aa
µAb

ν〉(x− y) = δab G̃
2

N2
c − 1

×

×[I(x− y)δµν − Jµν(x− y)]. (32)

Here, the second term is spanned onto the vector of rel-
ative distance.

Now we have to collect together all the results ob-
tained for the one quasiparticle. For the matrix element
of the interaction Hamiltonian, we have

〈1|q̄taγµqq̄′taγνq′|1〉 ∼ N2
c − 1
2

1
4|p4||q4|×

×Tr
[−V (p)V (p)γµU(P )U(P )γν+

V (p)V (p)γµU(q)U(q)γν+

+U(P )U(P )γµU(p)U(p)γν

]
. (33)

The polarization indices are omitted here. It is interest-
ing to notice that the factors spanned onto the tensors
gµν , (δ4µδiν + δ4νδiµ), (δiµδjν − δijδµν + δiνδjµ), (see Eq.
(31)) cancel each other in the first and third terms. They
survive only in the second term which describes the pure
vacuum contribution (considered in [1], see also discus-
sion below). Let us define the partial energy density per
one quark degree of freedom, as

w =
E

2Nc
, E = E/V,

where E is the total energy of the ensemble. Collecting
all contributions together, we have, for the state with
the single quasiparticle,

w1 = |p4| cos θ+2G

∫
dq

(2π)3
pq

|p4||q4|
(

sin θ − m

p
cos θ

)
×

×
(

sin θ′ − m

q
cos θ′

)
(I − J/4) + wvac, (34)

where I = Ĩ(p + q), Jij = Jij(p + q), J =
∑3

i=1 Jii.
The term wvac describes the vacuum contribution and is
shown below. It is convenient to pick out the color index
G = 2G̃

Nc
. The energy of the state develops a minimal

value if the condition

dw1

dθ
= 0

is satisfied. Neglecting the modifications in the vacuum
contribution wvac, we have

−|p4| sin θ + 2G
p

|p4|
(

sin θ − m

p
cos θ

) ∫
dq

(2π)3
q

|q4|×

(
sin θ′ − m

q
cos θ′

)
(I − J/4) = 0, (35)

which is equivalent, with the precision up to the terms
gµν , (δiµδjν − δijδµν + δiνδjµ), to the condition of mini-
mum of the mean vacuum energy dwvac

dθ = 0, see [1]. That
is, in the situation of a single quasiparticle, the dressing
transformation in this approximation is not changed as
compared with the vacuum one.

For the matrix element of the interaction Hamiltonian
for the ensemble of quasiparticles, we have

〈N |q̄taγµqq̄′taγνq′|N〉 ∼ N2
c − 1
2

1
4|p4||q4|×

×Tr
[−V (p)V (p)γµU(P )U(P )γν+

+V (p)V (p)γµU(q)U(qγν + U(P )U(P )γµU(p)U(p)γν+

+2U(P )U(P )γµU(Q)U(Q)γν

]
, (36)

(see Eq. (33) to compare). It is pertinent to men-
tion the coefficient of 2 in front of the last term. We
present the matrix element implying some ordering of
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the momenta, for instance, |Q| < |P |. But, in the ex-
pressions which are averaged over the state |N〉, it is
convenient to present the result by integrating over the
whole Fermi sphere, without taking into account the or-
dering. It is evident then that we should take the con-
tribution by a factor of two smaller than that in the
interaction term, see the formula below. In the last
term similar to the ’vacuum’ matrix element (the sec-
ond term there), the contributions spanned on the ten-
sors gµν , (δiµδjν−δijδµν +δiνδjµ) survive. For simplicity,
we consider, in this paper, only the situation where the
second correlator equals zero Jµν = 0. In addition, we
neglect all the distinctions provoked by the tensors gµν ,
(δiµδjν−δijδµν +δiνδjµ). Collecting all the contributions
together for the mean partial energy up to an insignifi-
cant constant, we have

〈N |w|N〉 =

PF∫
dp

(2π)3
|p4| cos θ + 2G

PF∫
dp

(2π)3
p

|p4|×

×
(

sin θ − m

p
cos θ

) ∫
dq

(2π)3
q

|q4|
(

sin θ′ − m

q
cos θ′

)
I−

−G

PF∫
dp

(2π)3
p

|p4|
(

sin θ − m

p
cos θ

) PF∫
dq

(2π)3
q

|q4|×

×
(

sin θ′ − m

q
cos θ′

)
I +

∫
dp

(2π)3
|p4|(1− cos θ)−

−G

∫
dp

(2π)3
p

|p4|
(

sin θ − m

p
cos θ

)
×

×
∫

dq

(2π)3
q

|q4|
(

sin θ′ − m

q
cos θ′

)
I. (37)

Performing the transposition of integration and
changing the variables as p → q, the interaction
term can be rewritten in the following conventional
form: 2

∫ PF dp
∫

dq − ∫ PF dp
∫ PF dq − ∫

dp
∫

dq =
− ∫

PF
p

∫
PF

dq. Finally, we obtain the following expres-
sion for the partial energy

〈N |w|N〉 =

PF∫
dp

(2π)3
|p4|+

∫

PF

dp

(2π)3
|p4| (1− cos θ)−

−G

∫

PF

dp

(2π)3
p

|p4|
(

sin θ − m

p
cos θ

)
×

×
∫

PF

dq

(2π)3
q

|q4|
(

sin θ′ − m

q
cos θ′

)
I. (38)

It has quite interesting interpretation. Compared to
the vacuum mean energy3, see [1],

wvac = 〈σ|w|σ〉 =
∫

dp

(2π)3
|p4|(1− cos θ)−

−G

∫
dp

(2π)3
p

|p4|
(

sin θ − m

p
cos θ

)
×

×
∫

dq

(2π)3
q

|q4|
(

sin θ′ − m

q
cos θ′

)
I.

It is easy to see that, in the considered symmetric case
where we neglect all contributions generated by the ten-
sors gµν , (δiµδjν − δijδµν + δiνδjµ) for the state with the
filled Fermi sphere, the angles of pairing could be de-
fined by the condition of functional minimum (38) only
for the momenta larger than the Fermi momentum PF

(see [24] for comparison). The quarks forming the Fermi
sphere look like the free (non-interacting) ones, see the
first term.

Now let us calculate the quark chemical potential
which, by definition, is an energy necessary for adding
(removing) one quasiparticle to (from) a system µ = ∂E

∂N ,
where N = 2NcV

∫ PF dp
(2π)3 = Nc

3π2 V P 3
F is the total num-

ber of particles in the volume V (see [25]). Redefining
the chemical potential as µ = 2π2

PF2

∂w
∂PF

, we consider the
model with a correlation function behaving itself as the
δ-function in the coordinate space. It is easy to see that
we come to the Nambu–Jona-Lasinio model [13] in this
approach. The regularization is required to obtain an in-
telligent result in this model. We adjust the NJL model
for the parameter set given by [26] and limit the integra-
tion interval over the momentum in Eq. (37) with the
quantity |p| < Λ (Λ = 631 MeV). Then functional (38)
can be written in the form (inessential terms contribut-
ing to the constant values are omitted)

w = w0 +

Λ∫

PF

dp

(2π)3

[
|p4| (1− cos θ)−G

p

|p4| ×

×
(

sin θ − m

p
cos θ

) Λ∫

PF

dq

(2π)3
q

|q4|
(

sin θ′ − m

q
cos θ′

)
 ,

3 Just this expression is in the last line of Eq. (37).
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Fig. 1. Dynamical quark mass (|Mq |) as a function of the Fermi
momentum for the NJL model. The solid line corresponds to the
current quark mass m = 5.5 MeV. The dashed one shows the
behavior in the chiral limit

(39)

where w0 =
∫ PF dp

(2π)3 |p4| is the contribution coming
from the free quarks, m = 5.5 MeV. The equation to
calculate the equilibrium angle θ reads as

(p2 + m2) sin θ −Mq (p cos θ + m sin θ) = 0, (40)

where

Mq = 2G

Λ∫

PF

dp

(2π)3
p

|p4|
(

sin θ − m

p
cos θ

)
. (41)

It allows us to obtain the well-known self-consistent gap
equation for the dynamical quark mass. For the param-
eters used, the dynamical quark mass at zero Fermi mo-
mentum is Mq = −335 MeV. For the quark condensate,

〈N |q̄q|N〉 =
iNc

π2

Λ∫

PF

dp
p2

|p4| (p sin θ −m cos θ), (42)

and 〈σ|q̄q|σ〉 = −i(247 MeV)3. The constant character-
izing the four-fermion interaction strength was taken as
GΛ2/(2π2) = 1.34. In Fig. 1, the dynamical quark mass
as a function of the Fermi momentum is depicted. For
comparison, the data are presented for the current quark
mass m = 5.5 MeV (the solid line), and the dashed line

Fig. 2. Quark chemical potential as a function of the Fermi mo-
mentum for the NJL model. The solid line corresponds to the
current quark mass m = 5.5 MeV and the dashed one shows the
behavior in the chiral limit

corresponds to the calculation in the chiral limit. For the
NJL model, in particular, the quark chemical potential
equals

µ = |PF
4 | cos θF + Mq

PF sin θF −m cos θF

|PF
4 |

. (43)

When the Fermi momentum reaches zero value, the
chemical potential coincides with the dynamical quark
mass µ(0) = |Mq| −Mqm/|Mq| = |Mq| + m. In Fig. 2,
the quark chemical potential is depicted as a function
of the Fermi momentum for the configurations analo-
gous to the ones shown in Fig. 1. The dependence of
the chemical potential on the Fermi momentum could
be interpreted as the effect of a rapid decrease of the
dynamical quark mass with increase in the Fermi mo-
mentum. Then, using Eq. (40), the chemical potential
can be presented as

µ =
MqPF

|PF
4 | sin θF

.

In view of the identity

(|P4|2 −Mqm)2 + M2
q P 2 = [P 2 + (m−Mq)2]|P4|2, (44)

we come to the noteworthy definition of the chemical
potential

µ = [P 2
F + (m−Mq)2]1/2.
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Fig. 3. Dynamical quark mass (|Mq |) as a function of the chemical
potential. The solid line corresponds to the current quark mass
m = 5.5 MeV. The dashed one shows the behavior in the chiral
limit

We recall that the chemical potential for the free
fermion gas increases monotonically with the Fermi mo-
mentum. The curious feature of the NJL model is the ap-
pearance of a state almost degenerate with the vacuum
state, while the process of filling up the Fermi sphere
reaches the momenta close to the dynamical quark mass
value (the similar value is characteristic of the momen-
tum of a quark inside a baryon, see, for example, [3]).
This state density with a factor of 3 (which expresses
the relation between baryonic and quark degrees of free-
dom) absorbed corresponds to a normal nuclear den-
sity (n ∼ 0.12/fm3), and the chiral condensate could
be estimated as |〈q̄q〉1/3| ∼ 100 MeV. In the chiral limit,
the chemical potential near the discussed point is even
smaller than the vacuum one. The full coincidence of
the chemical potentials occurs at the current quark mass
around 2 MeV. In fact, Fig. 2 shows that the u quark
bond looks stronger than that of the d quark. For clarity,
Fig. 3 shows the dynamical quark mass as the function
of chemical potential (Fig. 4 for the quark condensate).
The pressure of the quark ensemble

P = −dE

dV
= −∂E

∂V
+

PF

3V

∂E

∂PF
= −E + µn, (45)

is depicted in Fig. 5 as a function of the Fermi momen-
tum, where n = N/V is the quark density. The quark
pressure at the values of the Fermi momentum close to

Fig. 4. Quark condensate (|〈q̄q〉1/3|) as a function of the chemical
potential. The solid line corresponds to the current quark mass
m = 5.5 MeV. The dashed one shows the behavior in the chiral
limit

the value of dynamical quark mass is approximately de-
generate with the vacuum pressure (slightly lower than
the vacuum one). The vacuum density is of order of 40–
50 MeV/fm3 and corresponds well to the value extracted
from the bag models, see, for example, [3]. Actually,
all the NJL results could be obtained in the mean field
approximation because the trigonometric terms in the
mean energy definition (39) can be rewritten (using Eq.
(44) again) as the functions of the dynamical and current
quark masses in the form

p sin θ −m cos θ

|p4| =
Mq −m

[p2 + (Mq −m)2]1/2
,

|p4| cos θ =
p2 + m(m−Mq)

[p2 + (Mq −m)2]1/2
.

In order to trace back the dependence of all results
on the formfactor form, we consider the model (in a
sense, opposite to the NJL model) with the formfac-
tor behaving itself as a δ-function in the momentum
space I(p) = (2π)3δ(p). This limit is an analog of the
Keldysh model which is well known in the condensed
matter physics [27], and the mean energy functional (38)
develops the following form:

w =

PF∫
dp

(2π)3
|p4|+

∫

PF

dp

(2π)3
|p4|(1− cos θ)−
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Fig. 5. Pressure of the quark ensemble as a function of the Fermi
momentum. The solid line for the current quark mass m = 5.5
MeV. The dashed one shows the behavior in the chiral limit

−G

∫

PF

dp

(2π)3
p2

|p4|2 (sin θ − m

p
cos θ)2. (46)

The chemical potential is defined in this approach as

µ = |PF
4 | cos θF + G

(PF sin θF −m cos θF)2

|PF
4 |2

. (47)

It follows from this definition that, at low Fermi mo-
menta, the chemical potential goes to µ → m + G. In
[1], the constant G was taken of order of the dynamical
quark mass in NJL. As the Fermi momentum increases,
the chemical potential remains approximately constant
and starts to increase, when the Fermi momentum ex-
ceeds G. The vacuum density (PF = 0) turns out to be
singular, and, for the pressure difference, we obtain

P − P (0) =
2 Nc

2π2


P 3

F

3
µ−

PF∫

0

dpp2 cos θ|p4|−

−G

PF∫

0

dp
p4

|p4|2
(

sin θ − m

p
cos θ

)2

 . (48)

This function is slowly monotonically growing till the
Fermi momentum value of G. In summary, we would
like to emphasize our main result which, as we believe,is

quite transparent. Our estimate of the effects respond-
ing to the process of filling up the Fermi sphere demon-
strates the parallels between this quasiparticle picture
and the conventional bag model but with one new essen-
tial element. It is just the presence of instability region
dP/dPF < 0. Then states (26) could be considered as a
natural ’building’ material for baryons. In principle, one
of the ways to construct the corresponding bound state
could follow the Walecka model ideas [28] with utiliz-
ing the information on the behavior of scalar and vector
fields and the respective constants of their interaction
with quarks which have been gained up to now [24].
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ЗАПОВНЕННЯ ФЕРМI-СФЕРИ КВАЗIЧАСТИНКАМИ
КВАРКIВ

С.В. Молодцов, А.Н. Сисакян, Г.М. Зинов’єв

Р е з ю м е

Проаналiзовано поведiнку кваркiв пiд дiєю сильного стохасти-
чного глюонного поля. Розвинуто наближену процедуру для
розрахунку ефективного гамiльтонiана. Розглядаючи квар-
ки як квазiчастинки у модельному гамiльтонiанi з чотири-
фермiонною взаємодiєю, вивчено наслiдки заповнення фермi-
сфери кварками.
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