THE METHOD OF *S*-MATRIX IN THE THEORY OF RESONANCE ENERGIES AND WIDTHS FOR QUASISTATIONARY STATES OF AN ELECTRON IN ASYMMETRIC TWO-BARRIER RESONANCE-TUNNEL STRUCTURES

M.V. Tkach, Ju.O. Seti

Yu. Fed'kovych Chernivtsi National University (2, Kotsyubyns'kyi Str., Chernivtsi 58012, Ukraine; e-mail: theorphys@chnu.cv.ua)

Summary

By the methods of transfer- and S-matrices, we executed the analytic and numerical calculations of resonance energies and widths of quasistationary states of an electron in a plane two-barrier resonance-tunnel nanostructure with asymmetric rectangular (with different effective masses in barriers and wells) and δ -like potential barriers. By the example of the nanosystems GaAs/AlAs and In_xAl_{1-x}As/In_xGa_{1-x}As, we show that, as distinct from the exact values of resonance energies and widths in the model of rectangular potential barriers, the model of δ -like barriers which is often used in theoretical studies gives the errors of resonance energies overestimated by tens of times.