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The melting of an ultrathin lubricant film confined between two
atomically flat solid surfaces has been studied. The phase diagram
with the domains of sliding, dry, and intermittent (stick-slip) fric-
tions has been constructed, by taking the additive noises of stress,
strain, and temperature into account. The time series of stresses
have been constructed for the parameters of all the modes within
the Stratonovich calculus. In the case where the temperature noise
intensity exceeds much more the intensities of stress and strain
noises, the self-similar mode is established during the melting of a
lubricant. The multifractality of the stress time series is shown to
be provided by the power-law shape of the distribution function
and by the presence of correlations in the system.

1. Introduction

Interest to sliding friction problems is caused by a large
importance of their application in various scientific and
engineering branches [1]. For last years, the intensive
researches of atomically smooth surfaces separated by
an ultrathin lubricant layer have been carried out. An
anomalous behavior is inherent to such systems which
may manifest itself in that there may exist several ki-
netic modes of friction. The transitions between these
modes can be interpreted as phase transformations [2].
In this case, a liquid lubricant demonstrates the proper-
ties of a solid one [3]. A characteristic feature of such fric-
tion systems is an intermittent (stick-slip) motion typ-
ical of dry friction [4, 5]. Such a regime is observed,
if the lubricant film thickness is narrower than that of
three molecular layers, and it is explained as a peri-
odic hardening induced by the squeezing action of the
walls. The lubricant melts in the course of shearing, if
the shear stresses o that arise in the layer exceeds the
critical value o. (the yield point) owing to the “shear
melting” effect. Since the interest in such systems is en-
hanced, a number of models have been proposed to de-
scribe the indicated regularities. In particular, there are
the deterministic mechanistic [4], stochastic mechanis-
tic [6], thermodynamic [7], and rheological [8] models.
In the framework of the latter model, the influence of
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additive noncorrelated noises of key parameters [9, 10],
as well as correlated temperature fluctuations [11], on
the melting has been studied. The features of the hys-
teretic behavior of a lubricant [12, 13] and its melting
owing to the dissipative heating [14] have been consid-
ered.

It is worth noting that metallic monolayers deposited
onto a mica surface can be used as lubricants in such
systems [15]. In this case, a fractal morphology of the
surface is formed in the boundary friction mode, as was
shown in work [16]. Works [17-19] present the experi-
mental data and theoretical models which evidence for
a self-similar character of the stick-slip mode under dry
friction. In particular, making use of a pin-on-disk tri-
bometer for testing smooth friction surfaces of steel and
aluminum, it was demonstrated [17] that the probabil-
ity distribution of friction force jumps has a power-law
character with the power exponent in the interval 2.2—
5.4, whereas the power-law spectral density obeys the
dependence 1/~ where « falls in the interval from 1
to 2.6. The self-similar mode stimulated by temperature
fluctuations was found in work [10] in the framework of
rheological model and on the basis of a method described
in work [20]. The present work aims at analyzing — in
the framework of a rheological model — the time series
for stresses that arise in the lubricant. The origin of
multifractal behavior of the time series in the course of
boundary friction has been revealed.

2. Basic Equations

In work [8], a system of kinetic equations was obtained
on the basis of the rheological description of a viscoelas-
tic medium characterized by a certain heat conductiv-
ity. This system determines a self-consistent behavior of
shear stresses o and strains ¢, as well as the temperature
T, in an ultrathin lubricant film in the process of fric-
tion between atomically smooth solid surfaces. In this
approach, the main assumption was that the relaxation
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equation for o looks like
Te0 = —0 + Ge, (1)

where the first term on the right-hand side describes
the Debye relaxation in the time interval 7, = n,/G,
which is determined by the effective viscosity 7, and
the nonrelaxed shear modulus G=G(w)|y—o00o (w is the
circular frequency of a periodic external influence). By
substituting de/0t for €/7,, Eq. (1) is reduced to the
Maxwell relation describing a viscoelastic medium which
is widely used in the boundary friction theory [1]:

do o Oe
ot ro+Gat' @)
In the stationary case, & = 0, and Eq. (1) gives rise to
the Hooke law o = Ge.

The relaxation behavior of a viscoelastic lubricant in
the process of friction is described also by the Kelvin—
Voigt equation [21]

e=—¢/1.+0a/n, (3)

where 7. is the strain relaxation time, and 7 is the shear
viscosity. The second term on the right-hand side de-
scribes a viscous liquid flow under the action of the stress
shear component. In the stationary case, ¢ = 0, and we
have an expression similar to the Hooke law, 0 = G.¢,
where G.=n/7.=G(w)|u—o is the relaxed value of the
shear modulus. Since Eq. (1) cannot be formally re-
duced to the Kelvin—Voigt equation (3) [21,22], we sup-
posed that the effective viscosity 1,=7,G does not equal
to the actual value of 7. In addition, the simplest ap-
proximation for the temperature dependences should be
adopted: G.(T), G(T), n,(T) = const, and

"o

=TT -1 (4)
where 7y is the characteristic value of shear viscosity 7
at T = 2T,. It stems from the fact that the parameters
G, G, and 1, depend very weakly on the temperature,
whereas the actual viscosity 7 diverges, when the tem-
perature decreases to its critical value T, [23, 24]. The
system of equations (1), (3), and (4) composes a new
rheological model. The rheological properties of lubri-
cant films are studied experimentally, which allows the
phase diagram to be constructed [3].

According to the synergetic concept [25, 26], the sys-
tem of equations (1) and (3), which include the order
parameter o, the conjugate field e, and the control pa-
rameter T, should be appended by a kinetic equation for

1140

the temperature. Such an equation can be derived from
the basic relations of elasticity theory [22]. We proceed
from the expression that couples the time derivatives of
the entropy S and the internal energy U with the equi-
librium elastic stress oq:

dS AU de

— = — — O —. 5
at — at 5)
This is no more than the second principle of thermo-
dynamics written down in the case of the mechanical
loading of a solid (in the equilibrium, the heat variation
is 6Q = TdS). In the nonequilibrium case where the
medium is heated non-uniformly, this relation looks like
dU de

—di = — —0—. 6

VAT T T (©)
Here, the heat flux is determined by the Onsager relation
q-= _KVT7 (7)

where x is the heat conduction, and the total stress
0 = 0. + 0, includes also the viscous component o .
Subtracting Eq. (6) from Eq. (5), taking into account
the expression

s as (8U> T

95 QU de (85) de

at ouN\dT ). @t ToU et \oe ), dt
_pevdl 10U de oo de (8)
T dt T Oedt T dt’

and supposing that the lubricant layer and the atom-
ically smooth friction surfaces have different tempera-
tures — T and T, respectively — we obtain [§]

%(Te —T)+o.é+ T%";é. (9)
In this equation, p is the lubricant density, ¢, is its spe-
cific heat capacity, and [ is the thickness of a lubricant
layer or the distance between friction surfaces. Here, we
also used the approximations (k/1%)(T., —T) ~ —div q
and OU/0e = 0o — TO0e/OT. The first term on the
right-hand side of Eq. (9) describes the heat transfer
from the lubricant layer to the friction surfaces, the sec-
ond one makes allowance for the dissipative heating of
the viscous liquid that flows under the stress action [27],
and the third one stands for a heat source associated
with the reversible mechanocalorific effect, for which we
have T'(00e/0T)é ~ 0c€ in the linear approximation.
As a result, the heat conductivity equation looks like

peeT =

peyT = %(Te —T)+o¢€. (10)
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Now, the system of Egs. (1), (3), and (10) is complete
and is characterized by three degrees of freedom, which
allows one to describe a non-trivial behavior of a thin
lubricant film at its melting [25].

The reduction of Egs. (1), (3), and (10) to the di-
mensionless form allows one to decrease the number of
constants under consideration. We now introduce the
following measurement units for the variables o, €, and
T:

0T, 1/2
US:(PCUOC) e =T

, 11
TT Go (11)

where Gy = 19 /7 is the characteristic value of the shear
modulus, and T = plc, /k is the heat conduction du-
ration. Then, after the substitution of the derivative ¢
from formula (3) into Eq. (10), Egs. (1), (3), and (10)
acquire the form

o0 = —0 + ge + \/I,&1(t), (12)
T = —e + (T — Do + /1.&(1), (13)
7-TT = (Te - T) —oe+ 02 + \/Ef3(t)7 (14>

where the constant ¢ = G/Gy < 1. The equations ob-
tained formally coincide with the Lorenz synergetic sys-
tem [28], in which the shear stresses play the role of or-
der parameter, the conjugate field is reduced to a shear
strain, and the temperature is a control parameter. Such
a system is known to be used for the description of both
thermodynamic [25] and kinetic [26] phase transforma-
tions.

In Egs. (12)—(14), the d-correlated Gaussian stochastic
sources &;(t) with the intensities I,,, I, and Ir, measured
in the units of 02, 272, and (T.x/1)°, respectively, were
introduced in order to take the influence of key param-
eter fluctuations into account [9]. The moments of the
functions &;(t) are defined as follows!:

(&) =0, (&G(t)&;(t")) = 20;;0(t — ).

In work [8], the lubricant melting was interpreted as a
result of the spontaneous emergence of shear stresses,
when the friction surfaces became heated above the crit-
ical temperature T,y = 1 + g—'. The primary origin of
the self-organization process is a positive feedback of T

and o with ¢ [see Eq. (13)] related to the temperature

(15)

I The factor of 2 was chosen in order to make the corresponding
Fokker—Planck equation (FPE) look simpler.
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dependence of the shear viscosity (4), which results in
the divergence of the latter. On the other hand, the
negative feedback of o and € with T in Eq. (14) plays an
important role, because it provides the system stability.

In accordance with such an approach, the lubricant
is a very viscous liquid which behaves as an amorphous
solid; it has a large effective viscosity, being still charac-
terized by a certain fluidity threshold [3, 21]. Tts solid-
like state corresponds to shear stresses o = 0, because
Eq. (12) drops out of consideration at that (& = 0).
Equation (13) which contains viscous stresses can be
reduced to the Debye law describing the fast relax-
ation of a shear strain in the microscopic time interval
7. ~ ajc ~ 10712 s, where a ~ 1 nm is the lattice con-
stant or the intermolecular distance, and ¢ ~ 10% m/s
is the speed of sound. In this case, the heat equation
(14) acquires the simplest form for the temperature re-
laxation to T, because the terms that correspond to the
dissipative heating and the mechanocalorific effect in a
viscous liquid disappear from it.

At nonzero stress values o, Eqgs. (12)—(14) describe
the properties indicated above as for the lubricant in a
liquid-like state. Such a behavior strongly differs from
that of bulk lubricants and requires a detailed explana-
tion. According to Eq. (13), the appearance of viscous
stresses o, results in a plastic flow of the liquid-like lu-
bricant with the velocity V' = [0e/0t. In particular, in
the case of surface force apparatus [29, 30], the effective
amplitude of deformation € = zpax /! in Egs. (12)—(14) is
determined through the ratio between the deformation
amplitude (deviation) xmax and the lubricant thickness
I. The effective shear velocity ¢ = cw = V/l =¢/7, is a
product of the strain € and the oscillation frequency w.

In work [7], the plastic flow was demonstrated to be re-
alized in a lubricant layer, provided that elastic stresses
are available in the latter. In this case, the shear stresses
reduce the shear modulus of the lubricant [31]. In ac-
cordance with the results of work [32], the increase of
viscous stresses

(16)

Oy — —(—

A

in the boundary friction mode is accompanied by an in-
crease of the viscous friction force:

_ Nett VA

FV )
l

(17)

where 7og is the effective viscosity which does not co-
incide with the actual viscosity and can be found only
experimentally [32], and A is the contact area. Combin-
ing Egs. (16) and (17), we obtain an expression for the
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velocity in terms of stresses:

oyl

V= .
Neft

(18)

Hence, the growth of shear stresses gives rise to an in-
crease of the relative velocity of motion of contacting
surfaces, and the lubricant melts.

Moreover, according to the results of work [5], in the
absence of a shear deformation, the heat-induced root-
mean-square deviation of molecules (atoms) is deter-
mined by the equality <u2> = T/(Ga). The average
deviation, which the shearing is responsible for, is de-
termined from the relation (u?) = ¢%a?/G?. The to-
tal root-mean-square deviation is equal to the sum of
those expressions, provided that thermal fluctuations
and stresses are not interconnected. This means that
the lubricant melting originates from both heating and
the influence of stresses created by the solid surfaces in
the course of friction. The latter conclusion agrees with
the consideration of an unstable solid-like state in the
framework of a model, where the shear dynamic melting
occurs in the absence of thermal fluctuations. There-
fore, the strain fluctuations associated with stresses and
thermal fluctuations have to be analyzed separately. We
assume that the lubricant film becomes more liquid-like
and the friction force decreases with the temperature
growth due to a reduction of the activation energy of
molecular jumps.

3. Dynamic Phase Diagram

To analyze the system further, we will operate in the
framework of a method described in work [20]. Using
the adiabatic approximation 7, > 7., 7r [8,10], we may
put 7.¢ ~ 0 and 777 ~ 0 in Egs. (13) and (14). Then,
these equations give rise to the dependences

et) = +e(t), T(t)=T+Te(t), (19)
e=o(T. —1+0%) d(o), é=V/I1. + Iro? d(o),
T = (T. +20%) d(0), T = /Iy + I.o? d(o), (20)

where d(o) = (1+0?)~1. Here, the deterministic compo-
nents can be reduced to the equalities obtained in work
[8]. At the same time, the fluctuation components orig-
inate from the known property of dispersion additivity
for Gaussian random variables [33]. Hence, the syner-
getic principle of subordination [25, 26] transforms the
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additive noises of strain ¢ and temperature T into mul-
tiplicative ones. As a result, expressions (12), (19), and
(20) lead to the Langevin equation [9, 10, 14]

& = f(0) + V/I(®) €(1),

where the time t is measured in stress relaxation time
units 7.

The generalized force f(o) and the effective noise in-
tensity I(o) are given by the equalities [9]

flo)=—-0+go [1 -2-T)(1+ 02)71] ,

(21)

(o) =1y + ¢*(I- + I70*) (1 + 0%) 2 (22)

To prevent any misunderstanding, it should be noted
that a direct substitution of Eqgs. (19), and (20) into
Eq. (12) generates a stochastic additive
02+ g (124 i) (1+ %) 7' €, (23)
the squared amplitude of which differs from the effec-
tive noise intensity (22). Moreover, the direct use of the
adiabatic approximation in Egs. (13) and (14) results
in fluctuation terms of the form & = (L.}/2 + I;/za)d(cr)
and T = (I;/2 - L}/Qa)d(a) in dependences (19). The
latter fluctuation term is evidently unphysical, because
the effective temperature noise T disappears completely
at stresses o = \/Ir/I.. A formal reason for such a
contradiction is the fact that the conventional methods
of analysis cannot be applied to the Langevin equation
[33].

For a further consideration, let us multiply Eq. (21)
by dt to obtain the differential Langevin relation

do = f(o)dt + /I(o)dW (1),

where dW (t) = W(t + dt) — W(t) = £(¢)dt is a Wiener
process with the properties [35]

(24)

(dW(t)) =0; ((dW(t))?) = 2dt. (25)

In the general case, a number of FPE forms can corre-
spond to Eq. (24). In works [10, 14|, the FPE in the Ito
form was used, because it has a simpler form. In what
follows, we proceed from the Stratonovich calculus, since
it allows the memory effects, which occur at the melting
of ultrathin lubricant films owing to their small dimen-
sions, to be taken into consideration automatically. The
corresponding FPE, which makes allowance for Eq. (25),
reads

aP(0,t) )

T = —% [f(U)P(Uv t)] +
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+5% \/I(U)(,%VI(U)P(J, t)] .

(26)
In due course, the distribution of solutions of Eq. (24)
becomes stationary, and its explicit form can be found

from Eq. (26), where OP(o,t)/0t = 0 should be put. We
obtain

P(o) = Z7 exp{~U(0)}, (27)

where the effective potential is determined by the equal-
ity
/

flo')
I(J,>do'.

Ulo) = %lnl(o') _ / (28)
0

The extremum points of distribution (27) are defined by
the condition dU/do = dI/do—2f = 0 or, in the explicit
form, by the equation

(1— 9)z*+9(2-T.)z*—g* Irx+2¢* (Ir—1.)=0, (29)
where z = 1+ o2, Expression (29) differs from its coun-
terpart obtained in work [9, 10]. However, if the noise
intensities I and I, in Eq. (29) become two times larger,
the discrepancy disappears. Therefore, the results of the
further analysis, which is based on studying the extrema
of distribution functions (plotting the phase diagram and
the interpretation of stationary states) making use of the
Stratonovich calculus, coincide with those obtained in
the framework of the It6 approach [10]. However, po-
tential (28) cannot be reduced to that obtained earlier
[10], if a simple renormalization of noise intensities is car-
ried out, because those two potentials differ from each
other by their first terms only (the presence of the coef-
ficient of 1/2). Therefore, the time series for stresses are
also different. Since the presented work aims at studying
the features of the stress evolution in time, we use the
Stratonovich calculus.

At a fixed intensity I., the phase diagram looks like
that depicted in Fig. 1,a, and, at a fixed intensity I,
like that depicted in Fig. 1,b. Curves 1’ and 2’ on the
diagrams correspond to the system stability thresholds.
The straight line 1’ is defined by the equality
T.=1+g " +g(Ir —2L) (30)
which follows from Eq. (29) and denotes the existence
threshold for the nonzero stationary solution o¢p = 0.
Below this straight line, the maximum of P(c) is al-
ways realized at ¢ = 0, and there is no maximum
above it. The diagram demonstrates three regions which

ISSN 2071-019/. Ukr. J. Phys. 2009. Vol. 5/, No. 11

400 600 [

Te<>3
30 -

25
20
154

10

Fig. 1. Phase diagrams with the regions of liquid (SF), dry (DF),
and stick-slip (SS) frictions at (a) I = 0 and (b) Ir = 100.
Parameter g = 0.2

correspond to different friction modes. Actually, both
panels are plane cross-sections of the three-dimensional
phase diagram in the T, — I. — I7 coordinates. There-
fore, points 1 to 3 on both diagrams, which were se-
lected for further analysis, were chosen at the inter-
section of both secant planes in such a manner that
they correspond to identical parameters of the sys-
tem.

Figure 2 illustrates non-normalized probability dis-
tributions (27), which correspond to points in Fig. 1.
Point 1 is located in the dry friction region DF' of the
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Fig. 2. Distribution function (27) at I, = 10729, I. = 0, and
I = 100, in the modes denoted by points in Fig. 1: 1 — T =5
(DF), 2 — T. =15 (SS), 3 — Te = 32.5 (SF)

phase diagram; therefore, a single maximum of the dis-
tribution function oy = 0 is observed.

The biphase region SS of the diagram is character-
ized by the coexistence of P(o)-distribution maxima at
the zero and nonzero stress values (point 2). Point 3 is
located in the region, where a single maximum of the
probability distribution at o¢p # 0 is observed, which
corresponds to the liquid friction mode or sliding.

The dependences P(o) in Fig. 2 are plotted in the
log-log scale. The figure shows that the distributions for
curves DF and SS acquire a decaying power-law depen-
dence. This mode corresponds to such values of 0 < 1
and I,,I. < Ip, at which Eq. (27) can be reduced to
the form

P(o) =0 *P(0), (31)
where the function P (o) is defined by the expression

Plo) = Z71g P (1 + 0%)x

-1 -1 g’ -1
xexps Ip g Z(lfg )+

+HT. —1—g Yo +o? (ige_g—lﬂ}. (32)

Self-similar systems are known to be described by a ho-
mogeneous distribution function [34]. Distribution (31)
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is homogeneous in the case where function (32) is con-
stant. At small stress values, the preexponential mul-
tiplier 1 + 02 — 1. Let us analyze the terms in the
exponent which contribute to the distribution. The first
term, owing to the fourth power, makes an insignificant
contribution, when the stresses are low, and, since g < 1,
it is always negative, which means that the distribution
has an exponentially decaying character at high stresses.
The second and third terms also grow at high tempera-
tures, if the stresses increase. Therefore, as is seen from
Fig. 2, the power-law asymptotics P(c) oc ¢! is not ob-
served in mode SF, and the probability becomes a grow-
ing function at small o-values. Thus, the available self-
similar behavior should be expected at temperatures, for
which the second and third terms decrease in the range
o < 1 with the stress growth, i.e. at T, < 1+ g~ 1.

The Stratonovich calculus revealed a first considerable
difference in comparison with the Itd6 approach: the dis-
tribution index is equal to —1 in Eq. (31) and to —2 in
the relevant expression of work [10].

4. Time Series for Stresses

In order to solve Eq. (24) numerically, let us take advan-
tage of the Euler method. However, since this equation
is a Stratonovich stochastic differential equation (SDE)
in our case, the iteration procedure differs from that used
in work [14]. To use an ordinary iteration procedure, a
transformation from the Stratonovich SDE to an equiv-
alent 1to SDE is necessary. Equation (24), together with
Eq. (25), gives rise to the Itd6 SDE in the form [35, 36]

do = [f(a) + \/I(a)ai\/f(o)} dt + /I(o)dW (). (33)

Taking the definition of a discrete analog of the random
force differential dW (t) = v AtW; and Eq. (22) into ac-
count, we obtain the iterative procedure for the solution
of Eq. (33):

2 2y
g?oi[Ir(1—o?) 2I€]>At—|—

Oiy1 = 0i + (f(Ui)+ (1 +02)3

This equation is solved in the time interval ¢ € [0,7].
Provided that the number of iterations N (the number of
points in the time series) is given, the time increment is
determined as At = T/N. The force W is characterized
by the following properties (cf. with Eq. (25)):

(Wi) =0, (W;W;)=0,

(W?) — 2. (35)

ISSN 2071-0194. Ukr. J. Phys. 2009. Vol. 5/, No. 11
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The Box—Muller model [37] allows a stochastic force that
has white-noise properties to be presented adequately:

W, = \/ﬁ?\/anlcos(%rrg),

Here, in accordance with Eqgs. (35), the dispersion p? =
2, and W; is an absolutely random number, the proper-
ties of which are characterized by Egs. (35). Pseudoran-
dom numbers r; and ro have uniform distributions.

Effective potential (28) possesses minima at both pos-
itive and negative stress values o. Therefore, when
Eq. (33) is solved numerically, transitions of the system
between states that correspond to the minima indicated
are possible due to fluctuations. By examining the mo-
tion of the upper surface that moves unidirectionally,
we will analyze the behavior of |o|(¢) in what follows.
Typical realizations of |o|(t) for the modes under con-
sideration are exhibited in Fig. 3.

In the case of dry friction (mode DF’), the dependence
|o|(t) demonstrates long-term sections, where stresses
are close to zero and which are separated by narrow
peaks. In the inset, the same dependence |o|(t) is shown
scaled-up. One can see that the behavior does no change
its character at scaling, i.e. it is self-similar. In the pa-
rameter range of stick-slip friction (mode SS5), stochas-
tic transitions occur between the zero and nonzero stress
values . In the liquid friction mode (SF), stresses fluc-
tuate near a nonzero average value.

rn € (0,1]. (36)

5. Multifractal Fluctuation Analysis of
Self-Similar Time Series

The multifractal fluctuation analysis allows the basic
multifractal characteristics [38] used for the description
of self-similar systems to be calculated numerically. Such
an analysis is carried out in the framework of a method
that was suggested for the first time in work [39]. For
self-similar time series, the essence of the method con-
sists in the numerical calculation of the fluctuation func-
tion F,(s) associated with the scale parameter s by the
scaling relation [39]

F, ~ s, (37)
where h(q) is the generalized Hurst exponent depending
on the parameter ¢, which can accept any real value (it is
worth noting that h(g) at ¢ = 2 corresponds to the clas-
sical Hurst exponent H [40]). Hence, the function h(q) is
calculated as a slope of F,(s) in logarithmic coordinates,
where it should be linear.

It is more convenient to describe the self-similar prop-
erties of time series by making use of a multifractal spec-
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oI
4L 0.12
0.08
r 0.04
3+ 0
| 0 2 4 6 810
2+
1+

Fig. 3. Time series for stresses |o|(t) obtained by iterative proce-
dure (34) at N = 104, ¢t = 100, and At = 0.01. The indicated
modes correspond to the points on the phase diagram (Fig. 1)

trum function f(«) [38,39],

fla) =qla—h(g)] + 1,

where « is the Holder exponent which is calculated by
the formula

(38)

(39)

The form of the indicated dependences characterizes the
time series properties. For instance, a constant value,
h(q) = const, corresponds to a simple monofractal series.
A reduction of the function h(q) with the growth of ¢ is
inherent to more complicated multifractal series which
are characterized by a spectrum of fractal dimensions. In
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Fig. 4. Multifractal characteristics h(g) and f(«) corresponding to
the parameters of the series shown in Fig. 3. The group of curves 1
corresponds to series obtained directly by the iteration procedure
(34), whereas the group of curves 2 to the same “shuffled” series

this case, there is a single value of the Holder exponent
« for monofractal objects, so that the dependence f(«a)
is the delta-function. In the case of multifractal series,
a spectrum of f(«)-values is realized.

Two reasons are adopted to be responsible for the mul-
tifractal properties of time series in the general case.
First, the multifractality can be caused by a wide prob-
ability distribution function for elements in the series.
Second, it can be a result of time correlations between
the series terms. If the series terms are shuffled, so that
they become rearranged in a random order, the multi-
fractal properties will not be violated for the series of
the first type. But, in the second case, such a regroup-
ing of terms will destroy available correlations. Since the
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“origin” of multifractality disappears at that, a strongly
correlated complicated series transforms into a simpler
monofractal one. In the case where both origins of multi-
fractal properties are inherent to a time series, the corre-
sponding “shuffled” series will be characterized by weaker
self-similar properties and, respectively, by a narrower
spectrum of fractal dimensions f(«) than the “original”
one [39]. Therefore, by studying the original and corre-
sponding shuffled time series by the method of work [39],
one can reveal the presence of time correlations and the
origin of self-similar properties.

Taking advantage of the method described above, let
us analyze the time series for stresses |o|(t) depicted in
Fig. 3. For this purpose, let us calculate the depen-
dences h(q) and f(a) for the parameter values N = 10°,
t =5 x 103, and At = 0.052. On the basis of the de-
pendences shown in Fig. 4, it is evident that multifrac-
tal properties manifest themselves most pronouncedly in
the series that corresponds to mode SS. The series that
corresponds to mode SF is characterized by a weak de-
pendence of the parameter h on ¢; however, this series
is also multifractal.

The well-pronounced multifractality for mode SS is
explained by the fact that, in this mode, the distribu-
tion function has a decaying power-law dependence at
small stresses, which corresponds to self-similar systems.
In mode SF, the multifractality is expressed weaker,
because the specified P(o)-feature is not realized. On
the basis of the given description, a conclusion can be
drawn that a pronounced multifractality originates from
the power-law dependence of the distribution function.
To trace whether the power-law form of P(o) is a suffi-
cient condition for the multifractality to exist, it is nec-
essary to “shuffle” the studied time series and to find
the fractal characteristics of the system once more. At
the “shuffling” of the series, the correlations disappeared;
however, since the characteristic values of series terms
do not change at a random rearrangement of the lat-
ter, the form of the distribution function remains in-
tact.

The group of curves 2 in Fig. 4 corresponds to the
analysis of time series after the arrangement of their ele-
ments. One can see that the dependence h(q) is the same
straight line h = 0.5 for the parameters of all series, and

2 Further calculations are not presented for mode DF, since the

method produces a substantial error for series similar to the DF
one exhibited in Fig. 3 (sparse peaks separated by values close
to zero). In particular, the function h(q) becomes growing in
some g-range, which is unphysical. However, even in this case,
one can assert unambiguously that the series for mode DF is
multifractal, because h(q) falls down at large g-values.
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the dependence f(a) is a delta-like function with a small
width. Such features correspond to monofractal series
with the value h = 0.5 being typical of series without
correlations. Thus, for the system under investigation,
the self-similar properties of the corresponding time se-
ries for stresses are associated with a power-law form of
the distribution function, as well as with correlations. If
the power-law form of the dependence P(o) is violated
or the correlations are absent, the multifractality disap-
pears.

6. Conclusions

The melting of an ultrathin lubricant film has been stud-
ied in the framework of a rheological model which is
parametrized by shear stresses and strains, as well as
the temperature. Three modes of the lubricant behavior
have been found, and they are characterized by different
sets of maxima for the distribution functions of stresses.
By analyzing the Langevin equation in the framework
of a numerical simulation approach, the time series for
stresses have been constructed for each mode. The ba-
sic multifractal characteristics have been calculated, and
the origin of self-similar properties has been found to be
associated with correlations in the time series and the
power-law dependence of the distribution function. The
power-law distribution is observed in the case where the
temperature noise intensity is much higher than the in-
tensities of stress and strain noises. The results of our
consideration of the time series at various parameter val-
ues testify that the series are multifractal for all friction
modes. It is probable that the multifractality of the
series that corresponds to mode SF' is caused by the
growing power-law dependence P(c). In this case, since
the realization probability for stresses corresponding to
the power-law form of P(o) is low, a weakly pronounced
multifractality is observed.
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CAMOIIOAIBHA ®A30BA JMHAMIKA
ME>KOBOI'O TEPTA

0.B. Xomenxo, 4.0. Jlawenkxo, B.M. Bopuctox
PeszmowMme

JlocutiizKeHO MIaBIEHHST YIBTPATOHKOI IJIIBKY MACTHIA, 3ATHCHY-
TOI Mi’K JIBOMa aTOMapHO-ITIaJIKUMH TBepAuUMU IoBepxHaMu. [Ipu
BpaxyBaHHI aINTUBHUX IIyMiB HAIIPY2KeHb, JedopmMalriil i remriepa-
Typu nobymoBaHO (a30By giarpaMy 3 06JIACTSMU PIAUHHOIO, Cy-
xoro i nepepusdacroro teprs. /ljs mapaMeTrpiB yciX pexKuMiB y
Mexkax uucsaeHHss CTpaToHOBHYA MOOYIOBAHO YaCOBI Py HAIDY-
JKeHb. Y BUIIaJIKY, KOJIM IHTEHCUBHICTH IIIyMy TeMIlepaTypu Haba-
raTo MEpPEeBUINYE IHTEHCHBHOCTI IIyMiB HaIPyXKeHb 1 gedopmaril,
BCTAHOBJIIOETHCSI CAMOIIOAIOHMI PEXKUM IIPHU IJIaBJIEHHI MacCTHUJIA.
ITokazano, 0 MyabTHGPAKTAILHICTD IaCOBUX PSIIB HAIPY2KEHD
3a6e311e9y€eThCsl CTENIEHEBUM BUTJISAIOM (DYHKIIT PO3IIOIIIY 1 HAsIB-
HICTIO B CUCTEMi KOPEJIAIIi.
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