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On the basis of the Chetaev theorem on stable dynamical trajec-
tories in the presence of dissipative forces, we obtain the gener-
alized condition for stability of Hamilton systems in the form of
the Schrödinger equation. It is shown that the energy of dissi-
pative forces which generate the generalized condition of stability
by Chetaev exactly coincides with the Bohm “quantum potential”.
In the frame of Bohm’s quantum mechanics supplemented by a
generalized Chetaev theorem and on the basis of the principle of
least action for dissipative forces, we show that the square of the
amplitude of a wave function satisfying the Schrödinger equation
is equivalent semantically and syntactically to the probability den-
sity function for the number of trajectories of a particle, relative
to which the velocity and the position of the particle are not hid-
den parameters. The conditions for the correctness of the Bohm–
Chetaev interpretation of quantum mechanics are discussed.

We will consider the question which can be formulated
in the following sufficiently severe and paradoxical, at
first glance, form: “Are the so-called conditions of quan-
tization, which are imposed on the corresponding spec-
trum of a dynamical system and analogous to those in
quantum mechanics, possible generally in classical me-
chanics?”.

It seems to be strange, but the answer to this ques-
tion is basically positive and was given by the Rus-
sian mathematician-mechanician N.G. Chetaev in his
work “On stable trajectories in dynamics” [1, 2] more
than 70 years ago. The main idea of his whole scien-
tific world outlook and works was his personal paradigm

1 Debatable article.

with the profound sense which opens, by the way, his
main work [2]: “The stability, being a basically general
phenomenon, should be apparently revealed in the ba-
sic laws of the nature”. Here, N.G. Chetaev advanced,
maybe for the first time, the thesis on the basic impor-
tance of theoretically stable motions and their relation to
real motions in mechanics and explained it in the follow-
ing way. As known, the Hamilton theory of holonomic
mechanical systems undergone the action of forces which
admit a force (potential) function well justified itself in
mechanics despite the result by Lyapunov [3] that ar-
bitrary small disturbing forces can theoretically make
similar stable motions to become unstable. But since
the holonomic mechanical systems conserve the stability
rather frequently despite all circumstances, Chetaev ad-
vanced the paradoxical idea of the existence of a particu-
lar type of small disturbing forces which stabilize the real
motions of such systems [2]. Eventually, Chetaev made
conclusion that those arbitrary small disturbing forces
or, to be more exact, “small dissipative forces with a full
dissipation which always exist really in the nature are
the guarantee force barrier making the effect of nonlinear
disturbing forces to be arbitrarily small” [4]. Moreover,
it turned out that “this clear principle of stability of real
motions which brightly manifested itself in many basic
problems of celestial mechanics ... presents unexpectedly
a pattern of almost quantum phenomena” [5].

It is worth noting that a similar viewpoint with differ-
ent degrees of closeness can be found in works by Dirac
[6] and ‘t Hooft [7]. For example, the Dirac general-
ized Hamilton dynamics contains a procedure of quan-
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tization related to the choice of the so-called small in-
tegrable А-spaces. Only in such spaces, the solutions of
the equations of motion and, hence, the stable motions
of a physical system are possible (see Eq. (48) in [6]). On
the other hand, the idea proposed and substantiated by
‘t Hooft consists in that the classical deterministic dy-
namics (on the Planck scale), being supplemented by the
mechanism of dissipation, generates the observed quan-
tum behavior of our world on the laboratory scale. In
particular, he showed that there exists a very impor-
tant class of classical deterministic systems, for which
the condition of positivity of the Hamiltonian is ensured
by the mechanism of dissipation. This leads to the “ob-
vious quantization of orbits which reminds a quantum
structure observed in the real world” [7]. It is obvious
that, on the verbal level, the ‘t Hooft idea is a practically
adequate mirror image of the Chetaev idea, because the
physical essence of both ideas is based on the funda-
mental role of dissipation in the microworld and can be
characterized by a nontrivial, but unambiguous (on the
Planck scale) thesis: no dissipation – no quantization!

In what follows, we present a generalization of the
Chetaev theorem on stable trajectories in dynamics to
the case where the Hamiltonian of a system is emplicity
dependent on the time [8]. With this purpose, we con-
sider a material system, in which q1, . . . , qn and p1,. . . ,
pn are the generalized coordinates and momenta of the
holonomic system in the field of potential forces which
admit a force function of the form U (q1, . . . , qn).

In the general case where the action S is the explicit
function of the time, the total integral of the Hamilton–
Jacobi differential equation corresponding to a given sys-
tem takes the form

S = f (t, q1, . . . , qn;α1, . . . , αn) + A, (1)

where α1, . . . , αn, and А are arbitrary constants, and
the general solution of the mechanical problem is given,
according to the well-known Jacobi theorem, by the for-
mulas

βi = ∂S/∂αi, pi = ∂S/∂qi, i = 1, . . . , n, (2)

where βi are new constants of integration. The possible
motions of the mechanical system are defined by various
values of the constants αi and βi.

We call a motion of the material system, whose sta-
bility will be studied, the unperturbed motion. First,
we consider the stability of such a motion relative to
the variables q i under a perturbation of only the initial
values of these variables (i.e. of values of the constants
αi and βi) without disturbing forces. Omitting the de-
tails of the derivation which are given in [2, 5, 8, 9], we

present the necessary Chetaev stability condition in this
case as follows:

L =
∑

ij

∂

∂qi

(
gij

∂S

∂qj

)
= 0, (3)

where the coefficients g ij depend only on the coordi-
nates.

We now complicate the problem. Let a really moving
material system undergo the action of both the forces
with force function U, theoretically considered above,
and the unknown perturbation (dissipative) forces which
are assumed to be potential and admit the force function
Q. Then the real motion of the material system occurs
in the field of forces with general force function U∗ =
U + Q. In this case, the real motion of the system does
not coincide obviously at all with the theoretical one
(without perturbation).

If we conserve the statement of the problem on the
stability of real nonperturbed motions in the theoretical
field of forces with the function U at a perturbation of
only initial data as above, then the necessary require-
ment of stability in the first approximation, e.g., in form
(3), will not be efficient in the general case, because the
new function S is unknown (as well as Q). However, it
turns out that we can determine such conditions of sta-
bility, which are emplicity independent of the form of the
unknown action functions S and the potential Q. Thus,
we are based on the requirement of stability of form (3),
by assuming the conditions of its existence (correctness,
etc.) for real motions to be satisfied. In relation (3), we
now replace the function S by a new function ψ defined
by the equality

ψ = A exp(ikS), (4)

where k is a constant; and A is a real function of the
generalized coordinates q and the time t.

The introduction of a real wave function, like the de
Broglie “pilot-wave” [10], is extremely necessary from the
physical viewpoint because of the following nontrivial
reason. Since the dynamics of a physical system must
undoubtedly conserve the Hamilton form of the equa-
tions of motion, the main “task” of such a real wave
consists in the exact compensation of the action of dis-
sipative forces, which are generated by the perturbation
energy Q. We will show below that, in this case, such
a procedure makes it possible not only to conserve the
Hamilton form of the dynamics of a physical system,
but allows one to determine the character of an analytic
dependence of the energy Q of disturbing forces on the
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wave function amplitude ψ. Then relation (4) yields

∂S

∂qj
=

1
ik

(
1
ψ

∂ψ

∂qj
− 1

A

∂A

∂qj

)
(5)

and, hence, relation (3) looks like

∑

i,j

∂

∂qi

[
gij

(
1
ψ

∂ψ

∂qj
− 1

A

∂A

∂qj

)]
= 0. (6)

On the other hand, we can write the Hamilton–Jacobi
equations for a perturbed motion in the general case
where the Hamiltonian H depends explicitly on the time,

1
2k2

∑

i,j

gij

(
1
ψ

∂ψ

∂qi
− 1

A

∂A

∂qi

)(
1
ψ

∂ψ

∂qj
− 1

A

∂A

∂qj

)
=

=
∂S

∂t
+ U + Q, (7)

where ∂S/∂t can be determined with the help of (4).
Adding relations (6) and (7), we obtain the necessary
condition of stability (in the first approximation) in the
form

1
2k2ψ

∑

i,j

∂

∂qi

(
gij

∂ψ

∂qj

)
− 1

2k2A

∑

i,j

∂

∂qi

(
gij

∂A

∂qj

)
−

− 1
k2A

∑

i,j

gij
∂A

∂qj

(
1
ψ

∂ψ

∂qi
− 1

A

∂A

∂qi

)
−

− 1
ikAψ

[
A

∂ψ

∂t
− ψ

∂A

∂t

]
− U −Q = 0. (8)

In this place, we need to use a procedure for the compen-
sation of the action of dissipative forces, which are gen-
erated by the perturbation energy Q in order to conserve
the Hamilton form of the dynamics of a physical system
(8). It is obvious that equality (8) will not contain Q, if
the amplitude А is determined from the equation

1
2k2A

∑

i,j

∂

∂qi

(
gij

∂A

∂qj

)
+

i

kA

∑

i,j

gij
∂A

∂qj

∂S

∂qi
−

− 1
ikA

∂A

∂t
+ Q = 0, (9)

which decays into two equations

Q = − 1
2k2A

∑

i,j

∂

∂qi

(
gij

∂A

∂qj

)
, (10)

∂A

∂t
= −

∑

i,j

gij
∂A

∂qj

∂S

∂qi
, (11)

after the separation of the real and imaginary parts.
Here Q is the dissipation energy. Thus, if the properties
of disturbing forces satisfy conditions (10) and (11), then
the necessary condition of stability (8) has the form of a
differential equation of the “Schrödinger” type:

i

k

∂ψ

∂t
= − 1

2k2

∑

i,j

∂

∂qi

(
gij

∂ψ

∂qj

)
+ Uψ, (12)

where q1(t),. . . , qN (t) give the position of the physical
system, whose possible trajectories in the N-dimensional
configuration space q=(q1,. . . ,qN ) are a solution of the
system of the so-called quidance equations [11]

dqj

dt
=

1
m
∇jS, (13)

where S is the phase of the wave function (4).
In other words, we obtained the following result:

Eq. (3), which corresponds to the Chetaev stability
condition, is transformed into an equation of the
“Schrödinger” type (12) with the use of transformation
(4). It is obvious that, in the class of equations of type
(12), the single-valued, finite, and continuous solutions
for the function ψ in the stationary case are admissible
only for the eigenvalues of the total energy E. Hence,
the given stability of real motions takes place only for
these values of the total energy E. It is worth noting that
E. Schrödinger was the first who paid attention (mathe-
maticians knew this for a long time [12]) to such a class of
differential equations, in which the fulfilment of such nat-
ural conditions as the integrability of the squared mod-
ulus of a solution and its finiteness at singular points
of the equation [12] is sufficient for the spectrum dis-
creteness (as distinct from, for example, boundary-value
problems with boundary conditions).

We now present a short analysis of the obtained re-
sults. In our opinion, the plan of Chetaev was as follows.
He knew that, according to one of the theorems of sta-
bility theory [1], only two types of forces- dissipative and
gyroscopic – do not break the stability (if it is present) of
a nondisturbed motion of holonomic mechanical systems.
Therefore, by introducing a dissipative perturbation Q
into the Hamilton–Jacobi equations (7) and by taking si-
multaneously the stability condition (3) into account, he
reasonably expected that, under condition of the conser-
vation of the stability of a mechanical system, it is possi-
ble to get a real functional dependence of the dissipation
energy Q on characteristics of the wave function ψ (4).
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Indeed, having obtained the condition for the stability
of trajectories of a dynamical system in the form of an
equation of the “Schrödinger” type (12), he established
not only the physical sense of the perturbation energy
Q, but he showed also that it is a function of the am-
plitude of the wave function ψ (4) and takes form (10).
It is a very important result. The subsequent content
of the article is, as will be clear in what follows, a di-
rect consequence of this result. It is easy to demonstrate
that namely the conclusion about the dissipative nature
together with the simultaneous determination of a func-
tional dependence of the energy of disturbing forces on
the form [but not on the magnitude (see (10)] of the am-
plitude of the wave function ψ allow one to generalize
an equation of the “Schrödinger” type (12) to the case
where the condition of stability (3) is not fulfilled, i.e.,
L6=0. Let us show this.

Obvious analysis of Eqs. (3), (6)–(8) shows that the
expression

ε =
1
2k

L =
1
2k

∑

i,j

∂

∂qi

(
gij

∂S

∂qj

)
, (14)

with allowance for dimensions is, in general case, a varia-
tion of the particle kinetic energy predetermined accord-
ingly by variations of its momentum.

Now, if we add and simultaneously subtract the com-
plex expression (iε) (see Eq. (14)) and substitute Eq.
(5) in the left-hand side of the Hamilton-Jacobi equa-
tion (7), we get the generalized equation corresponding
to the extended equation (8):

1
2k2ψ

∑

i,j

∂

∂qi

(
gij

∂ψ

∂qj

)
− 1

2k2A

∑

i,j

∂

∂qi

(
gij

∂A

∂qj

)
−

− i

2k

∑

i,j

∂

∂qi

(
gij

∂S

∂qj

)
−

− 1
k2A

∑

i,j

gij
∂A

∂qj

(
1
ψ

∂ψ

∂qi
− 1

A

∂A

∂qi

)
−

− 1
ikAψ

[
A

∂ψ

∂t
− ψ

∂A

∂t

]
− U −Q = 0. (15)

Repeating the ideology of derivation of Eq. (9), Eq.
(15) yields easily an equation of the “Schrödinger” type
which is formally identical to Eq. (12) but already un-
der a more general condition imposed on the disturbing

energy and the wave function amplitude:

Q = − 1
2k2A

∑

i,j

∂

∂qi

(
gij

∂A

∂qj

)
, (16)

∂A

∂t
= −A

2

∑

ij

∂

∂qi

(
gij

∂S

∂qj

)
−

∑

i,j

gij
∂A

∂qj

∂S

∂qi
. (17)

Physical sense of Eq. (17) for the wave function ampli-
tude consists in the fact that with regard for the formu-
las for a classical velocity ~υ =∇S/m and the probability
density P(q, t)=[А(q, t)]2 (the substantiation of this for-
mula will be given below) in the configuration space it
can be easily transformed into the equation of continuity,
which represents the invariability of the total number of
“particles” (phase points) or, in other words, the proba-
bility conservation law.

We now return to our problem of quantization on the
basis of the simplest example. Let us consider a material
point with mass m in the field of conservative forces with
the force function U, which depends, in the general case,
on the time. The problem on the stability of motions of
such a point will be posed in the Cartesian coordinate
system x 1, x 2, and x3. Denoting the momenta along the
axes by p1, p2, and p3, respectively, we obtain that the
kinetic energy

T =
1

2m
(p2

1 + p2
2 + p2

3). (18)

In this case, conditions (16) and (17) for the struc-
ture of disturbing and compensating forces admit the
relations

Q = − ~
2

2m

∆A

A
, k =

1
~
, (19)

∂A

∂t
= − A

2m

∑ ∂2S

∂q2
i

−
∑

i,j

gij
∂A

∂xi

pi

m
, (20)

and the differential equation (12) defining stable motions
takes the form

i~
∂ψ

∂t
= − ~

2

2m
∆ψ + Uψ, (21)

That is, it coincides with the Schrödinger equation well
known in quantum mechanics [13]. In our case, this
equation restricts the choice of the integration constants
(the total energy Е in the stationary case) in the full
Hamilton–Jacobi integral. In what follows, we call Eq.
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(21) the Schrödinger–Chetaev equation, by emphasizing
the specific feature of its origin.

It is of interest to consider the case related to the
inverse substitution of the wave function (4) in the
Schrödinger equation (21), that (что) generates an
equivalent system of equations known as the Bohm–
Madelung system of equations [14–16]:

∂A

∂t
= − 1

2m
[A∆S + 2∇A · ∇S] , (22)

∂S

∂t
= −

[
(∇S)2

2m
+ U − ~2

2m

∆A

A

]
. (23)

It is very important that the last term in Eq. (23),
which is the “quantum” potential of the so-called Bohm
ψ-field [14–17] in the interpretation of Ref. [14], coin-
cides exactly with the dissipation energy Q in (19). At
the same time, Eq. (22) is identical to the condition for
∂А/∂t in (17) and (20).

If we make substitution of the type

P (q, t) = ψψ∗ = [A(q, t)]2, (24)

then Eqs. (22) and (23) can be rewritten in the form

∂P

∂t
= − 1

m
∇(P · ∇S), (25)

∂S

∂t
+

(∇S)2

2m
+ U − ~2

4m

[
∆P

P
− 1

2
(∇P )2

P 2

]
= 0. (26)

Here, Eq. (25) has a clear physical sense: P(q, t) is the
probability density to find a particle in a certain place
of the space, and ∇S/m is, according to (13), the classi-
cal velocity of this particle. In other words, Eq. (25) is
nothing but the equation of continuity which indicates
how the probability density P(q, t) moves according to
the laws of classical mechanics with a classical velocity
~υ =∇S/m at every point. On the other hand, we can
show that P(q, t) is also the probability density function
for the number of particle trajectories, that is substanti-
ated in the following way. We assume that the influence
of disturbing forces generated by the potential Q on a
wave packet at an arbitrary point of the configuration
space is proportional to the density of particle trajec-
tories (ψψ∗=A2) at this point. This implies that the
disturbing forces do not practically perturb the packet,
if the relation
∫

Qψψ∗dV ⇒ min, (27)

where
∫

ψψ∗dV = 1,

is satisfied (here, dV stands for an element of the con-
figuration space volume). This means, in its turn, that
the disturbing forces admit the absolute stability on the
whole set of motions in the configuration space only if
condition (24) is satisfied or, in other words, if the fol-
lowing obvious condition of the equivalent variational
problem (for Q) fulfills:

δ

∫
Qψψ∗dV = δQ = 0. (28)

The variational principle (28) is, in essence, the princi-
ple of least action of a perturbation. Below, we call it
the principle of least action of perturbations by Chetaev
[1,18].

Using the previous notations, we write the following
equality for Q :

Q = −∂S

∂t
−U −T = −∂S

∂t
−U − 1

2

∑

ij

gij
∂S

∂qi

∂S

∂qj
. (29)

On the other hand, if (4) holds true, it is easy to show
that

1
2

∑

ij

gij
∂S

∂qi

∂S

∂qj
= − 1

2k2ψ2

∑

ij

gij
∂ψ

∂qi

∂ψ

∂qj
+

+
1

2k2A2

∑

ij

gij
∂A

∂qi

∂A

∂qj
+ ik

1
2k2A2

∑

ij

gij
∂A

∂qi

∂S

∂qj
. (30)

Then it is necessary to perform the following subse-
quent substitutions. First, we substitute relation (30) in
(29) and then introduce the result in the equation corre-
sponding to the variational principle (28). As a result of
the indicated procedure of substitutions, we obtain the
relation which is exactly equal to the extended equation
(15) [with regard for (3), (14)] of type (8). Hence, the
structural expressions and the necessary condition of sta-
bility which follow from it coincide with (10), (14), and
(12), respectively. This means that, on the basis of the
Chetaev variational principle (28), we get the indepen-
dent confirmation of the fact that the physical nature
of P(q, t) reflects really not only the traditional notion
of the probability density for a particle to be at a cer-
tain place of the space according to the Bohm-Madelung
equation of continuity (25) but plays also the role ade-
quate to that of the probability density of the number
of trajectories of a particle.
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Such semantic content of the probability density func-
tion P(q, t) and simultaneously the exact coincidence
of the “quantum” potential of the Bohm ψ-field [14–17]
in Eq. (23) and the force function of perturbations Q
in (19) lead immediately to surprising, but fundamental
conclusions:
– in the light of the Chetaev theorem on stable trajecto-
ries in dynamics, the reality of the Bohm ψ-field is the
obvious firmly established fact which leads, in its turn,
to a paradoxical, at first glance, conclusion that classical
dynamics and quantum mechanics are, in fact, two mu-
tually complementing procedures of the single Hamilton
theory. In other words, classical dynamics and the con-
ditions of the quantization (stability) are, contrary to
the well-known correspondence principle, two mutually
complementary procedures of a description of the sta-
ble motion of a classical physical system in the field of
potential forces. Moreover, in the framework of this the-
ory, the quantum equation (23) is an ordinary Hamilton-
Jacobi equation and differs from an analogous classical
equation at ~ → 0 (Q→0 [15]) by that its solution is
a priori stable. From this viewpoint, it is natural that
namely this difference is the reason for such known phe-
nomenon as the quantum chaos, which characterizes the
specific features of quantum-mechanical systems chaotic
in the classical limit [19];
– is obvious that, in the light of the Chetaev theorem,
the sense of the Heisenberg uncertainty relations is car-
dinally changed. In this case, the main reason for the
statistical scattering, which is characterized by disper-
sions of coordinates and momenta, is small dissipative
forces. These forces are generated by a perturbation po-
tential or, what is the same, by quantum potential Q. In
this case, it is easy to show that the dispersions of co-
ordinates and momenta are determined by the averaged
quantum potential 〈Q〉. This is visually demonstrated in
the framework of a mathematical representation of the
uncertainty relation in the one-dimensional case in the
following form (see Eq. (6.7.23) in [15])
〈
(∆x)2

〉 〈
(∆px)2

〉
=

〈
(∆x)2

〉 〈Q〉 2m ≥ ~2/4, (31)

where 〈(∆x )2〉 and 〈(∆px)2〉 are the dispersions of coor-
dinates and momenta;
– on the basis of the principle of least action of perturba-
tions (28), it is shown that the function P(q, t) is equiv-
alent semantically and syntactically to the probability
density function of the number of trajectories of a parti-
cle. This result means that the above-given proof [see re-
lations (27)–(30)] for the function P(q, t) jointly with the
new (Chetaev’s) interpretation of the Heisenberg uncer-
tainty relation are the direct unique substantiation of the

very important fact that the Bohm quantum mechanics
supplemented by the Chetaev generalized theorem does
not basically contain the hidden parameters in the form
of the velocity and the coordinate of a particle. In other
words, these parameters characterizing a trajectory of
the particle not only exist, but they are completely de-
termined by a wave solution of the Schrödinger-Chetaev
equation (21) under condition (13) or, to be more ex-
act, by the probability density function of the number
of particle trajectories;
– is obvious that the Bohm-Chetaev interpretation
ofquantum mechanics is a constructive generalization
of the essence of the nonlocal Bohm quantum me-
chanics [14–16], within which it was shown that the
Schrödinger equation together with the Born probabilis-
tic postulate [which is mathematically equivalent to for-
mula (24)] include the adequate description of the whole
experimental-theoretical contents of modern quantum
mechanics. The last means that the Bohm-Chetaev
quantum theory with trajectories is physically equivalent
to the traditional nonrelativistic quantum mechanics.

It is worth noting that all most known alternative
theories of quantum mechanics are nonlocal theories.
In the first turn, this concerns directly the Bohm me-
chanics [14–16], the Girardi-Rimini-Weber model of a
united dynamics of micro- and macroscopic systems [20]
and its relativistic version [21], and a number of the
well-known quantum models which were developed ex-
clusively on the basis of classical notions: the Nelson
stochastic quantum mechanics [22], the Nottale fractal
quantum mechanics [23], the Santamato geometric quan-
tum mechanics [24], the Grössing “thermodynamical”
quantum mechanics [25] and the Wetterich “statistical”
quantum mechanics [26]. It is worth noting that, due
to their nonlocality, these theories, including the Bohm–
Chetaev quantum theory with trajectories, do not con-
tradict the so-called Bell inequalities [27, 28], whose vi-
olation was unambiguously corroborated by numerous
high-precision experiments.

At the same time, it is necessary to remember that
the essential difference of the Bohm-Chetaev quantum
mechanics from the mentioned alternative theories is the
unconditional identity of the probability density function
of the number of trajectories of a particle obtained on
the basis of the principle of least action of perturbations
(28) and the probability density function for a particle
to be in a certain place of the configuration space ob-
tained on the basis of the Bohm–Madelung equation of
continuity (25). This exclusively important fact empha-
sizes naturally the physical identity of the probabilistic
and trajectory interpretations of quantum mechanics.
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We now consider the fundamental differences of the
Bohm quantum mechanics supplemented by the gener-
alized Chetaev theorem from the Bohm quantum me-
chanics itself and from the traditional, i.e. probabilistic,
quantum mechanics.

The obvious analysis of the Schrödinger–Chetaev
equation (21) as the condition of stability of trajecto-
ries of a classical physical system (a particle) in the field
of potental forces puts naturally the extremely profound
fundamental question about the physical nature of re-
ally existent, as was shown above, small disturbing forces
or “small dissipative forces with the full dissipation” by
Chetaev [2] on the first plan. It is obvious that we deal
with perturbation waves of the de Broglie type, whose
action is described by the Bohm ψ-field. Such a conclu-
sion is determined, in the first turn, by that the “em-
bryonic theory of a union of waves and particles” by de
Broglie [10, 29] was constructed just on the basis of the
identity of the Hamilton principle of least action and the
Fermat principle, which reflects very exactly and clearly
the physical essence of the Chetaev theorem on stable
trajectories in dynamics [see (28)]. Moreover, in the
framework of the Bohm mechanics supplemented by the
generalized Chetaev theorem, it is easy to conclude that
the reality or, to be more exact, the observability of de
Broglie wave is ensured, first, by the reality of the Bohm
ψ-field which has the sense of the dissipation energy Q
in (19) and (23) and, second, is the direct consequence
of the absence of hidden parameters. In other words, the
dissipative reality of the quantum potential and the ab-
sence of hidden parameters in the Bohm–Chetaev quan-
tum mechanics are, respectively, the necessary and suf-
ficient conditions for the reality of de Broglie waves.

Thus, we may conclude that the Bohm–Chetaev quan-
tum mechanics as well as the probabilistic quantum me-
chanics, is, on the one hand, a theory without hidden
parameters and, on the other hand, a nonlocal theory.
Hence, due to the indicated reasons, the main essential
difference of these two theories is the fact of the physical
(non)observability of de Broglie waves. If a wave is not
observable physically, then the probabilistic interpreta-
tion of quantum mechanics is valid. On the contrary, if
the experiment will prove the real existence of de Broglie
waves, then, in this case, the Chetaev interpretation of
quantum mechanics is proper.

It is worth noting that the question about the real-
ity of de Broglie waves has a long history and is not
exotic or metaphysical at present. In this aspect, it be-
comes clear with regard for the previous experience that
the execution of new fundamental experiments should
be based on the principle of direct registration of the

real wave function with the help of a supersensitive reg-
istration of the interference of (electromagnetic? [10, 22,
29, 30]) waves of perturbations (trajectories) which ac-
company the diffraction of electrons (or neutrons) from
a low-intensity source, like that in the experiment by
Tonomura et al. [31]. This question becomes especially
actual in connection with new data obtained by Catil-
lon et al. [32] in the experiments on the channeling of
electrons in a thin Si crystal. They obtained the results
testifying to the anomalous scattering which indicate the
possibility of the stable motion of electrons of the zitter-
bewegung type [15,30]. It is obvious that this result, if
it will be reliably confirmed, is simultaneously the direct
indication of the material reality of de Broglie waves [29].

At the same time, there exists another, indirect but
no less so efficient, means to solve the problem related to
the clarification of the proper interpretation of quantum
mechanics. In the first turn, this means is determined by
that the Bohm–Chetaev trajectory dynamics stipulated
by the real existence of dissipative forces and, hence, by
the real existence of de Broglie waves ensures the fun-
damental possibility for an alternative description of the
processes of decay of heavy radioactive nuclei (α-decay,
proton and cluster radioactivities, and spontaneous fis-
sion). Such a description is based on the classical “jump-
ing” above the nuclear potential barrier with the help of
the diffusion induced by noise [33], rather than on the
traditional quantum effect of percolation or tunneling of
a daughter particle through this barrier. The idea of such
a description can be naturally and clearly formalized in
the language of the Bohm quantum mechanics supple-
mented by the generalized Chetaev theorem on stable
trajectories in the classical dynamics in the presence of
dissipative forces, but this is a theme of our subsequent
work.
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ПРО ПРОЦЕДУРУ КВАНТУВАННЯ В КЛАСИЧНIЙ
МЕХАНIЦI I РЕАЛЬНIСТЬ ψ-ПОЛЯ БОМА

В.Д. Русов, Д.С. Власенко, С.Ш. Мавродiєв

Р е з ю м е

На основi теореми Четаєва про стiйкi траєкторiї динамiки у
присутностi дисипативних сил отримано узагальнену умову
стiйкостi гамiльтонових систем у виглядi рiвняння Шредiнге-
ра. Показано, що енергiя дисипативних сил, що породжують
узагальнену умову стiйкостi за Четаєвим, у точностi збiгається
з “квантовим потенцiалом” Бома. У межах квантової механiки
Бома, доповненої узагальненою теоремою Четаєва, i на основi
принципу найменшої дiї дисипативних сил показано, що ква-
драт амплiтуди хвильової функцiї в рiвняннi Шредiнгера се-
мантично i синтаксично еквiвалентний функцiї густини ймо-
вiрностi числа траєкторiй частинки, вiдносно якої швидкiсть i
положення частинки не є прихованими параметрами. Обгово-
рено умови правомiрностi бом–четаєвської iнтерпретацiї кван-
тової механiки.
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