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Discrete states of a hydrogenic impurity have been calculated for
CdS/β-HgS spherical nanoheterostructures with various radii of a
quantum antidot. The calculations are based on the exact solu-
tions of the Poisson and Schrödinger equations and are carried out
in the framework of the effective mass approximation. The de-
pendence of discrete energy levels on the potential barrier height
has been examined. The average value of electron distance in the
structure concerned has been found and analyzed. The quasista-
tionary states of the impurity have been studied, which allowed
the quasistationary energy levels and the mean lifetime of an elec-
tron in those states to be determined.

1. Introduction

Localized states of charge carriers in various confined
systems have been intensively studied recently. In par-
ticular, the substantial attention is given to studying
quantum dots (QDs). Since the energy spectrum of cur-
rent carriers in them is completely discrete, QDs possess
improved optical parameters. Therefore, they are stud-
ied to be used in diode lasers, amplifiers, and biological
sensors.

A lot of theoretical and experimental researches deal-
ing with QDs have been carried out till now. The pres-
ence of impurities in QDs is also known to be able
to change localized states and, hence, the properties
of QDs themselves considerably. In works [1–5], the
first theoretical researches of impurity states in spher-
ical QDs have been fulfilled, and the exact solutions
of the Schrödinger equation with the Coulomb inter-
action potential between particles have been obtained.
In work [6], it was shown that the account of the
exact solution of the Poisson and Schrödinger equa-
tions for a hydrogenic impurity considerably changes

the spectrum in comparison with the results of works
[1–5].

Recently, the attention of researchers has been drawn
to the so-called quantum antidots (QADs), the internal
part of which is a potential barrier for current carriers,
rather than a potential well, as it occurs in QDs. If the
mean free path of current carriers is longer than QAD di-
mensions, the discrete states are formed in such a struc-
ture in a magnetic field. In particular, in work [7], the
Aharonov–Bohm effect and the Landau levels in QADs
have been studied. In work [8], the quantum states of an
electron in a heterosystem with a good many QADs, the
energy of magnetic subbands, and the electron density
of states have been determined. Discrete states can also
arise in QADs, if the latter contain an impurity.

Taking all that into account, we have obtained the
potential energy of interaction between the impurity ion
and an electron on the basis of the exact solution of the
Poisson equation for a spherical QAD with a positively
charged impurity ion in its center. Using this energy, the
Schrödinger equation for the discrete spectrum of the hy-
drogenic impurity in QAD has been solved exactly. The
average distance of an electron in the nanoheterostruc-
ture has been determined. We have also studied the de-
pendence of quasistationary states on the QAD radius.
Specific calculations have been carried out for a spherical
CdS/β-HgS nanoheterosystem.

2. Hydrogenic Impurity in the Middle of a
Spherical QAD

Let a positively charged ion of the hydrogenic impu-
rity be centered in the middle of a spheri-
cal nanoheterostructure with a potential barrier in the
region r ≤ a. The potential energy stemming from the
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Fig. 1. Potential energy profile

band discontinuity can be given in the form

U(r) =

{
U0, r ≤ a,

0, r > a,
U0 > 0. (1)

The potential energy of interaction between an electron
and the impurity ion, which is considered to be a positive
point-like charge, is obtained on the basis of the solution
of the Poisson equation:

V (r) = e2





− 1
ε1r

+
ε2 − ε1

ε1ε2a
, r ≤ a,

− 1
ε2r

, r > a.

(2)

Summing up expressions (1) and (2), we obtain the total
potential energy of an electron in the QAD as

Π(r) =





−e2

ε1r
+ U∗ (a) , r ≤ a,

−e2

ε2r
, r > a,

(3)

where the effective potential barrier

U∗ (a) =
e2(ε2 − ε1)

ε1ε2a
+ U0 (4)

is introduced. According to expression (4), the effective
potential barrier depends on the heterosystem dimen-
sions and the dielectric permittivities. In Fig. 1, the po-
tential energy of an electron in a QAD with an impurity
is shown schematically. The distance r0 is determined
from the condition Π(r0) = 0.

The operator of total system energy is written down
in the effective mass approximation as

H = −~
2

2
∇ 1

m∗ (r)
∇+ Π(r) , (5)

where

m∗ (r) =
{

m∗
1, r ≤ a,

m∗
2, r > a

(6)

is the effective electron mass in the corresponding crys-
tal. For potential (3), it is evident that, at E < 0, the
spectrum is discrete; in the case E > U∗ (a)−e2/ε1a, the
energy spectrum becomes completely continuous; and if
0 < E < U∗ (a) − e2/ε1a, there exist quasistationary
states.

3. Impurity Discrete Spectrum

The Schrödinger equation with Hamiltonian (5) for a dis-
crete spectrum can be solved exactly. Taking the spher-
ical symmetry of the problem into account, the wave
function can be tried as a product of the radial and an-
gular components:

ψ (r, θ, ϕ) = R (r) Y m
l (θ, ϕ) , (7)

where Y m
l (θ, ϕ) are the spherical functions. In this case,

the radial Schrödinger equation for two regions of the
coordinate r variation can be written down. If r ≤ a,
the radial Schrödinger equation looks like
{
− ~2

2m∗
1

(
d2

dr2
+

2
r

d

dr

)
− e2

ε1r
+ U∗ (a)+

+
~2l(l + 1)

2m∗
1r

2
− E

}
R1 (r) = 0. (8)

By introducing the dimensionless quantities

ξ = α1ar, α2
1a = −8m∗

1 (E − U∗ (a)) /~2,

λ1 = 2m∗
1e

2/
(
ε1~2α1a

)
, R1 (ξ) = ξ−1ρ1 (ξ) ,

we obtain, after simple transformations,

∂2ρ1 (ξ)
∂ξ2

+
[
−1

4
+

λ1

ξ
− l (l + 1)

ξ2

]
ρ1 (ξ) = 0. (9)

This is the Whittaker equation which has two linearly
independent solutions. One of them is unphysical, be-
cause it does not obey the condition to be finite at the
coordinate origin. Therefore, the solution of Eq. (9) in
the interval r ≤ a is the function

ρ1 (ξ) = C1e
−ξ/2ξl+1M (l + 1− λ1, 2l + 2, ξ) , (10)
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where M(a, b, x) is the hypergeometric function of the
1-st kind [9].

If r > a, we introduce dimensionless quantities

(ξ = α2r) , α2
2 = −8m∗

2E/~2,

λ2 = 2m∗
2e

2/
(
ε2~2α2

)
, R2 (ξ) = ξ−1ρ2 (ξ) ,

and obtain another Whittaker equation, very similar to
Eq. (9). The solution of this new equation, which sat-
isfies the conditions of wave function finiteness in the
given area, is the function [9]

ρ2 (ξ) = C2
e−ξ/2ξ−l

Γ ( −l − λ2)

∞∫

0

dt e−ξt t−l−λ2−1(1 + t)−l+λ2−1,

(11)

where Γ(x) is the Euler gamma function [9].
Having the functions ρ1(ξ) and ρ2(ξ) in explicit form

and satisfying the boundary conditions, we can deter-
mine the energy spectrum of the electron in the het-
erosystem.

4. Quasistationary States of Impurity

We will solve the problem of the electron penetration
through a barrier making use of the “irradiation” condi-
tion. That is, we assume that the electron moves so that
its coordinate r increases only (it starts to move from
within the barrier). This condition demands that only
incident waves should be taken into account in the outer
medium (matrix) for calculations. In such a formulation
of the problem, there are no stationary states. However,
the “irradiation” condition chooses definite states, which
will be referred to as quasistationary ones [10], from
the whole spectrum. We assume that the particle pen-
etration began long ago, so that a considerable fraction
of particles are already outside the barrier. Then, the
wave function, which is a solution of the non-stationary
Schrödinger equation, can be presented in the form

ψ (r, t) = ψ (r) exp

(
−i

Ẽ

~
t

)
, (12)

where the quantity Ẽ is complex-valued, and it cannot be
considered therefore as the particle energy. We assume
that

Ẽ = E − i~
2

δ, (13)

where E is the energy of a quasistationary level. Then,
the probability to find every particle within the barrier
(the region r ≤ a) is determined as follows:

W (t) =
∫

r≤a

drψ∗ (r, t)ψ (r, t) = e−δt

∫

r≤a

drψ∗ (r)ψ (r),

(14)

that is,

W (t) = W (0) e−δt. (15)

The quantity δ is the decay constant, ∆E = ~δ/2 is the
quasistationary level width, and τ = 1/δ denotes the
mean lifetime of a particle in the state ψ (r, 0) = ψ (r).

If function (12) is substituted into the non-stationary
Schrödinger equation with Hamiltonian (5), it is possible
to separate the coordinate variables and the time, which
yields the equation

Hψ (r) = Ẽψ (r) . (16)

The wave function, owing to the spherical symmetry,
can be tried in form (7). Thus, we obtained the radial
equation which is to be solved in two regions.

1. Region r ≤ a. Introducing the notations

ξ = α1r; α2
1 = 2m∗

1

(
Ẽ − U∗ (a)

)
/~2,

β1 = −m∗
1e

2/
(
ε1~2α1

)
, R1 (ξ) = ξ−1ρ1 (ξ) ,

we obtain the radial equation as the Coulomb equation:

∂2ρ1 (ξ)
∂ξ2

+
[
1− 2β1

ξ
− l (l + 1)

ξ2

]
ρ1 (ξ) = 0. (17)

Its solution, which satisfies the condition that the wave
function has to be finite, is written down in the form

ρ1 (ξ) = C11
2le−πβ1/2 |Γ (l + 1 + iβ1)|

Γ (2l + 2)
e−iξξl+1×

×M (l + 1− iβ1, 2l + 2, 2iξ) . (18)

2. Region r > a. Introducing the dimensionless quanti-
ties

ξ = α2r, α2
2 = 2m∗

2

(
Ẽ

)
/~2,

β2 = −m∗
2e

2/
(
ε2~2α2

)
, R2 (ξ) = ξ−1ρ2 (ξ) ,
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Fig. 2. Energy of a hydrogenic impurity electron in a spherical
QAD

we obtain another Coulomb equation similar to Eq. (17).
The general solution of the Coulomb equation is
a linear combination of two functions: the regu-
lar Coulomb function Fl (β2, ξ) and the logarithmic
Coulomb function Gl (β2, ξ) [11]. In accordance with
the irradiation condition, we have to select only an
incident wave. The following reasonings are used
at that. The behaviors of functions Fl (β2, ξ) and
Gl (β2, ξ) at large distances (ξ → ∞) are similar to
those of the functions sin (ξ − lπ/2 + βl − β2 ln 2ξ) and
cos (ξ − lπ/2 + βl − β2 ln 2ξ), respectively, where βl =
arg Γ (l + 1 + iβ2). Therefore, by analogy on the basis
of Coulomb functions, we can construct two linearly in-
dependent functions [11]

Q+
l (β3, ξ) = Gl (β3, ξ) + i Fl (β3, ξ) , (19)

Q−l (β2, ξ) = Gl (β2, ξ)− i Fl (β2, ξ) , (20)

which are also the solutions of the radial Coulomb equa-
tion in the given region. Hence, taking the analysis
made above and the irradiation condition into account,
we have to try a solution of the Coulomb equation in the
form

ρ2 (ξ) = C2Q
+
l (β2, ξ) . (21)

The wave functions given by formulas (10), (11), (18),
and (21), as well as the probability density flow, must
be continuous at the heterostructure boundaries. From
these conditions and the normalization one, we can de-
termine discrete states, quasistationary states, and the

Fig. 3. Ground state energy of an impurity electron in a spherical
QAD

mean lifetime of the particle in the given quasistation-
ary state for a QAD with hydrogenic impurity, returning
back to dimensional quantities:

R1 (r)|r=a − R2 (r)|r=a = 0,

1
m∗

1

d

dr
R1 (r)

∣∣∣∣
r=a

− 1
m∗

2

d

dr
R2 (r)

∣∣∣∣
r=a

= 0,

∫
dr |ψ (r, θ, ϕ)|2 = 1.

(22)

5. Calculation Results and Their Analysis

The calculation of the electron energy spectrum was car-
ried out for a spherical nanoheterosystem CdS/β-HgS
with the following parameters: m∗

1 = 0.2, m∗
2 = 0.036,

ε1 = 5.2, ε2 = 11.3, and U0 = 1200 meV.
In Fig. 2, the dependences of the energies of the ground

and excited stationary (E < 0) states on the QAD radius
are depicted. The figure demonstrates that the growth
of the QAD radius gives rise to an increase of the energy
of both S- (solid curves) and P -states (dotted curves).
The analysis testifies that, owing to a large band discon-
tinuity for the given crystals, the electron with negative
energy is located outside the QAD (r ≥ a). As is seen
from formula (3), an increase in the radius leads to a
diminution of the well depth in this region, which results,
in its turn, in the growth of the particle energy. To con-
firm this conclusion, in Fig. 3, we plotted the depen-
dences of the impurity ground state energy in a spherical
QAD on the QAD radius for various U0. Curve 1 corre-
sponds to the ground state of a hydrogenic impurity in
the CdS/β-HgS heterosystem, curve 2 to U0 = 80 meV,
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Fig. 4. Dependences of the average electron distances on the QAD
radius at various U0 = 1200 (1 ), 80 (2 ), and 50 meV (3 )

and curve 3 to U0 = 50 meV. The behavior of curves 2
and 3 testifies that, in the case of a small band discon-
tinuity, the electron is located within the interval r < r0

with a higher probability.
This result is also confirmed by the dependence of the

average distance 〈r〉 on the QAD radius. Such depen-
dences are exhibited in Fig. 4 for the ground state of
the system at various U0-values. For a real CdS/β-HgS
nanoheterostructure (U0 = 1200 meV), an increase of the
QAD radius leads to a proportional growth of 〈r〉. For in-
stance, the average distance 〈r〉 = 1484 Å at a = 600 Å.
However, if U0 = 80 meV, the dependence of 〈r〉 on the
QAD radius is nonmonotonous, and 〈r〉 → 20.6 Å in the
region r > 100 Å. At the same time, if U0 = 50 meV,
〈r〉 → 20.6 Å, provided r > 50 Å.

We also calculated the energies of impurity quasista-
tionary states and the mean lifetimes of an electron in
those states. For this purpose, we used the method dif-
ferent from that of work [12]. We obtained a complex
equation for the complex unknown Ẽ = E − i~δ/2. Nu-
merically, the real and imagine parts of this equation
were separated. Thus, we obtained a system of equa-
tions for the energy of a quasistationary level and the
corresponding mean lifetime of electron, which is recip-
rocal of δ. The execution of the indicated calculation
program demands carrying out rather complicated nu-
merical calculations aimed at separating the system into
the real and imaginary parts, and finding the solutions,
provided that the entering quantities are the integrals of
complicated special functions.

In Fig. 5, the dependences of the energies of first two
quasistationary S-states (solid curves) and the corre-
sponding mean lifetimes of electron in those states (dot-

Fig. 5. Energies of quasistationary levels and mean lifetimes of an
electron in them

ted curves) on the QAD radius a are shown. For conve-
nience, the time τ0 = 2.06 ps is introduced, which is the
mean lifetime of an electron in the first quasistationary
S-state in the case a = 40 Å. The plots testify that the
growth of the QAD radius leads to a reduction of the
electron energy and an increase of the particle lifetime
in the states concerned. This result stems from a reduc-
tion of the spatial confinement. At lower energies, the
barrier is wider and higher, which increases the lifetime
of the electron in the corresponding states. For example,
for the radius a = 150 Å, the lifetime in the first qua-
sistationary S-state τ = 1.35 µs. The figure also demon-
strates that the second quasistationary level is expelled
out of the range 0 < E < U∗ (a)− e2/ε1a at a < 150 Å,
i.e. it transits into the continuous spectrum.

Hence, in this work, on the basis of the exact solu-
tion of the Poisson equation for a donor hydrogenic im-
purity located in the middle of QAD, the general for-
mula for the total potential energy of an electron is ob-
tained, and the effective potential barrier for an electron
in the heterostructure is introduced. The Schrödinger
equation with the potential energy obtained is solved
exactly for the stationary states of the hydrogenic im-
purity. The dependences of the electron energy lev-
els and the lifetime on the QAD radius and the po-
tential barrier height are analyzed. The average dis-
tances for an electron in the heterostructure are deter-
mined.
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СТАЦIОНАРНI ТА КВАЗIСТАЦIОНАРНI
СТАНИ ВОДНЕВОПОДIБНОЇ ДОМIШКИ
У СФЕРИЧНIЙ КВАНТОВIЙ АНТИТОЧЦI

В.I. Бойчук, I.В. Бiлинський, Р.Я. Лешко, Л.Я. Вороняк

Р е з ю м е

Для сферичної наногетероструктури CdS/β-HgS в наближеннi
ефективної маси на основi точних розв’язкiв рiвнянь Пуассо-
на та Шредiнгера визначено дискретнi стани водневоподiбної
домiшки для рiзних розмiрiв квантової антиточки. Розглянуто
залежнiсть дискретних енергетичних рiвнiв вiд величини по-
тенцiального бар’єра. Знайдено i проаналiзовано середнi зна-
чення вiдстанi електрона у структурi. Проведено дослiджен-
ня квазiстацiонарних станiв домiшки, що дозволило визначити
квазiстацiонарнi енергетичнi рiвнi та обчислити середнiй час
життя електрона у цих станах.
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