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Hydrodynamic fluctuations of the surface of a liquid considered as
a continuous medium with a constant temperature gradient have
been analyzed. The calculated asymmetry of the capillary wave
spectrum agrees well with experimental data.

1. Introduction

In work [1], as well as in earlier work [2], the theory
of thermal hydrodynamic fluctuations in a stationary
nonequilibrium continuous medium has been developed.
The theory is based on Onsager’s regression hypothe-
sis and the assumption of a local equilibrium in such
a medium. The nonequilibrium fluctuation-dissipation
theorem (FDT) for Langevin sources (Langevin random
forces) formulated in those works, which is also referred
to as the second FDT or, simply, the Langevin FDT,
differs essentially – by the presence of cross-correlations
among sources – from the branch of modern statisti-
cal physics that became widespread since the middle
of the 1980s and called nonequilibrium fluctuation hy-
drodynamics. In the latter, the Langevin approach to
the description of fluctuations in nonequilibrium states
is adopted as a postulate. As the Langevin forces, the
forces found by Landau and Lifshitz for a liquid at equi-
librium [3] are used, with the thermodynamic parame-
ters in formulas for intensities being substituted by their
local values. Therefore, the nonequilibrium fluctuation
hydrodynamics can also be coined as fluctuation hydro-
dynamics with Landau–Lifshitz local forces. The simul-
taneous correlation functions calculated in the frame-
work of this approach turn out different from the locally
equilibrium ones.

The viewpoint expressed in work [1] is completely op-
posite. It consists in that the nonequilibrium hydro-

dynamic state is considered to be locally equilibrium a
priori, as it takes place in the nonequilibrium hydro-
dynamics of continuous media (the hypothesis of local
equilibrium). Respectively, the simultaneous correlation
functions of fluctuations are locally equilibrium, whereas
the Langevin forces determined from them differ from
the Landau–Lifshitz ones. The Langevin approach with
such forces is equivalent to the Einstein approach as-
sociated with obtaining the dynamical solution and the
following averaging of locally equilibrium initial fluctu-
ations. This means that there exists a distinct split of
the problem into the static and dynamic parts, whereas
the nonequilibrium fluctuation hydrodynamics refuses a
similar separation from the very beginning [4].

In work [5], a comparison of theory [1] with experi-
ment was carried out for a simple case of nonequilibrium
stationary state – a bulk liquid with a temperature gra-
dient. The Mandelshtam–Brillouin doublet caused by
fluctuation waves is asymmetric for a medium with a
temperature gradient, because the numbers of phonons,
which propagate along and against the temperature gra-
dient, are different. The nonequilibrium fluctuation hy-
drodynamics gives an overestimated value for asymme-
try, whereas the proposed theory provides a satisfactory
result.

Below, there will be considered the surface fluctua-
tions of a liquid, in which the temperature changes lin-
early in space. This problem is easy enough to illus-
trate the ideas concerning the local equilibrium in a
nonequilibrium liquid, the equivalency of the Einstein
and Langevin approaches, and the cross-correlations be-
tween Langevin forces. Nowadays, the nonequilibrium
fluctuation hydrodynamics serves as a basis for the the-
ory of light scattering by capillary fluctuation waves [6],
and a large body of experimental material has been ac-
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cumulated [7, 8], which reveals a discrepancy with the
theory [6]. The aim of our work consists in finding the
structure factor for surface displacements and its asym-
metry, as well as in comparing our results with those of
works [6–8].

An importance of carrying out experiments on
the Mandelshtam–Brillouin scattering in a continuous
nonequilibrium medium with a temperature gradient for
testing the theory should be emphasized. This makes it
possible to study the range of small temperature gradi-
ents. Just this range has a predominant interest from the
viewpoint of studying the hydrodynamic fluctuations. It
is so, because hydrodynamics is efficient, first of all, if
the gradients of macroscopic fields of the temperature,
velocity, and so on are small.

2. Simultaneous Correlation Functions of
Displacements and Displacement Velocities
for a Nonequilibrium Surface

To calculate the light scattering by a liquid surface, it
is necessary to find the structure factor, i.e. the space-
time Fourier transform of the autocorrelation function
of displacements,

Sξ,ξ (k, ω) =
1

TS

∫

S

dr
∫

S

dr′
T/2∫

−T/2.

dt

T/2∫

−T/2.

dt′×

×〈ξ (r, t) ξ (r′, t′)〉 eiω(t−t′)−ik(r−r′) (1)

where the surface area S and the time of experiment T
are large, and ξ (r, t) is the surface displacement at a
point determined by the radius-vector r at the time mo-
ment t. The angle brackets 〈. . .〉 denote the locally equi-
librium averaging. Taking into account what was said in
Introduction, the determination of the structure factor
requires the knowledge of simultaneous fluctuation cor-
relation functions and the time evolution of fluctuations,
irrespective of which approach we prefer. Consider now
the first part of the problem, assuming further that the
liquid depth is infinite.

For a liquid in equilibrium, the simultaneous corre-
lation function of surface displacements was found by
Mandelshtam in the k-representation [9] and Leontovich
in the r-representation [10]. Actually, the starting point
for its determination was an expression for the equi-
librium distribution function of liquid surface displace-

ments,

f (ξ) ∝ exp


 − σ

T0

∫
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(√

1 + (∇ξ)2 − 1
)

 , (2)

where T0 is the liquid temperature, and σ the coefficient
of surface tension. If the temperature is not constant
along the liquid surface, the initial locally equilibrium
distribution function should be taken in the form

f (ξ) ∝ exp


 −σ

∫

S

dr
1

T (r)

(√
1 + (∇ξ)2 − 1

)
 . (3)

Below, we assume that the liquid parameters – such as
the coefficient of surface tension σ, density ρ, shear η,
and kinematic viscosity ν – do not depend on the tem-
perature, being constant. Anyway, such an assumption
is satisfied for water, for which the temperature depen-
dences of those parameters are relatively weak. It con-
siderably simplifies the problem, and its application in
previous works [6–8] was rather natural. In addition,
water also has essential advantages in comparison with
other liquids, being therefore most often used in experi-
ments. In particular, its coefficient of surface tension is
not very high, as compared, for instance, with mercury;
therefore, the amplitude of fluctuation capillary waves is
larger. In addition, the temperature gradient does not
induce the emergence of instabilities, as it takes place,
for example, in octane.

From Eq. (3), we obtain

〈∇ξ (r) ∇′ξ (r′)〉 =
T (r)

σ
δ (r− r′) (4)

in the square-law approximation with respect to dis-
placements. Making the expansion

ξ (r) =
1√
S

∑

k

ξkeikr (5)

for the temperature which changes linearly in space,

T (r) = T0 + r∇T, (6)

we find the simultaneous correlation functions for the
Fourier components of displacements:

〈ξkξk′〉 = − T0

σkk′
∆k,k′ , (7)

where

∆k,k′ = δk,−k′ +
i

2
(δk+q,−k′ − δk−q,−k′) (8)
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and

q =
∇T

T0
. (9)

In a similar way, the locally equilibrium distribution
function for displacement velocities, which is determined
by the fluctuations of kinetic energy, can be used – just
as it was made in work [11] – to obtain an expression
for the simultaneous correlation function of displacement
velocities,
〈 .

ξk
.

ξk′
〉

=
T0

ρ

k + k′

2
∆k,k′ . (10)

Formula (10) can also be derived from expression (7)
and an expression for the dispersion of capillary wave
frequency [see Eq. (14) below].

It is evident that, in this problem, there are no corre-
lations between displacements and their velocities. As a
result, the corresponding matrix of simultaneous corre-
lation functions looks like

〈xi,kxj,k′〉 =
( − 1

σkk′ 0
0 k+k′

2ρ

)
T0∆k,k′ (11)

where xi,k =
(

ξk
ξ̇k

)
.

3. Fluctuation Dynamics and Nonequilibrium
FDT for Langevin Sources

The equation of liquid surface oscillations for capillary
waves preserves its form, provided that the liquid param-
eters are independent of the temperature. If the kine-
matic viscosity ν is low, this equation looks like [12]
..

ξk +2δ
.

ξk +ω2
cξk = 0, (12)

where the parameter

δ = 2νk2 (13)

determines the wave damping, and

ωc =

√
σk3

ρ
(14)

is the cyclic frequency. Let us write down Eq. (12) in
the form

ẋi,k = −λij,k xj,k (15)

where the matrix λij,k is

λij,k =
(

0 −1
ω2

c 2δ

)
. (16)

Formulas (11) and (16) define the Ornstein–Uhlenbeck
process. As was proved in work [1], it is this process that
governs the stochastic properties of Langevin sources
yi,k. Applying the relevant formulas, we find the kinetic
coefficients

γi,k;j,k′ = λim,k 〈xm,kxj,k′〉 =

=

(
0 −k+k′

2

− k3

kk′ 2νk2 (k + k′)

)
T0

ρ
∆k,k′ , (17)

and the spectral distribution of random forces, which are
no more than a white noise,

(yi,kyj,k′)ω = γi,k;j,k′ + γj,k′;i,k =

=
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 0 −
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k+k′

2 + k′3

kk′

)

−
(

k+k′
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)
2ν

(
k2 + k′2

)
(k + k′)


 T0

ρ
∆k,k′ .

(18)

The expression obtained represents the nonequilibrium
FDT for Langevin sources and differs by the presence of
crossed terms from the result of nonequilibrium fluctua-
tion hydrodynamics, where non-zero is only the term at
the intersection of the second row and the second col-
umn:

(yi,kyj,k′)ω =

(
0 0
0 2ν

(
k2 + k′2

)
(k + k′)

)
T0

ρ
∆k,k′ .

(19)

Formula (18) can be presented as an explicit sum of
the equilibrium,

(yi,kyj,−k)eqω =
T0

ρ

(
0 0
0 8νk3

)
, (20)

and nonequilibrium,

(yi,kyj,−k∓q)noneq
ω = i

T0

ρ

(
0 3

4
kq
k2

− 3
4

kq
k2 ±4νk3 + 6νkq

)
,

(21)

contributions.
Hence, all the nonequilibrium features of Langevin

forces stem from the nonequilibrium of simultaneous cor-
relation functions, as it was in the bulk case. For the
Rayleigh–Bénard problem, the nonequilibrium of simul-
taneous correlation functions also takes place; however,
an important factor here is the nonequilibrium associ-
ated with fluctuation dynamics [2].
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Fig. 1. Dependences of the asymmetry ε on the quantity k−3/2q.
The slopes are: 5.4×103 m−1/2 (nonequilibrium fluctuation hydro-
dynamics, short-dashed line), (2.6±0.6)×103 m−1/2 (experiment,
solid line), and 2.7× 103 m−1/2 (this work, dashed line)

4. Structure Factor of Liquid Surface
Displacements

To calculate expression (1), let us first use the Einstein
method. The solution of the initial problem for Eq. (12)
is

ξk,ω = Λξ,ξ
k,ωξk + Λξ,

.

ξ
k,ω ξ̇k (22)

Since the correlations between displacements ξk and
their velocities ξ̇k are absent, only the first term with

Λξ,ξ
k,ω =

−iω + 2δ

ω2
c − ω2 − 2iδω

(23)

is of interest. The procedure of calculations is the same,
as was described in work [1]. A distinction consists in
that αξ depends, as is seen from Eq. (7), on the wave
vectors:

αξ = −αpp′. (24)

At the same time, carrying out the summation in the
nonequilibrium contribution, p is replaced by k ± q/2,
and p′ by −k ± q/2. Then, the product pp′ does not
include terms linear in q, so that αξ becomes a constant
which is equal to

αξ = σk2. (25)

Therefore, we may take advantage of formula (42) from
work [1],

Sξ,ξ (k, ω) = αξT0 (2Re + q∇kIm)Λξ,ξ
k,ω (26)

Whence, taking Eqs. (23) and (25) into account, we find

Sξ,ξ (k, ω) =
8T0νk3

ρ∆

(
1− 6νωω2

ckq
∆

)
, (27)

where

∆ =
(
ω2 − ω2

c

)2
+ 4ω2δ2. (28)

Formula (27) can also be derived by the Langevin
method, using the nonequilibrium FDT (18), as was
done in work [1] for a bulk liquid with a temperature
gradient. Therefore, both the Einstein and Langevin
approaches to the description of nonequilibrium fluc-
tuations bring about identical results. A main role in
this equivalency is played by cross-correlations among
Langevin forces.

For a liquid with low viscosity, ωc À δ. Therefore, for-
mula (27) can be expressed as a sum of two Lorentzians
with different heights which correspond to the Stokes
and anti-Stokes satellites of the Mandelshtam–Brillouin
doublet at the frequencies −ωc and ωc:

Sξ,ξ (k, ω) =

=
2νT0

σ

(
1 + ε (k, ω)

(ω + ωc)
2 + δ2

+
1− ε (k, ω)

(ω − ωc)
2 + δ2

)
, (29)

where

ε (k, ω) =
6νω3

ckq
∆

. (30)

Using the fluctuation hydrodynamics with local ex-
ternal forces introduced by Landau and Lifshitz, Grant
and Desai [6] found a structure factor that differed from
expression (27):

Sξ,ξ (k, ω) =
8T0νk3

ρ∆

(
1−

(
8ω3 + 4ωω2

c

)
νkq

∆

)
. (31)

This result, taking a low damping into consideration, can
be transformed to

Sξ,ξ (k, ω) =
8T0νk3

ρ∆

(
1− 12ωω2

cνkq
∆

)
(32)

and, further, to expression (29) with the quantity ε (k, ω)
twice as large as (30). Therefore, such a Langevin ap-
proach contradicts the Einstein one or the equivalent
Langevin one with forces (18).
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Fig. 2. Dependences of experimental asymmetry on theoretical one. The latter is (a) calculated on the basis of nonequilibrium fluctuation
hydrodynamics (work [8]) and (b) determined by formula (34). The axis scales in both panels are identical

5. Comparison of Results

Let us introduce the spectrum asymmetry used in works
[7, 8]:

ε =
Sξ,ξ (k,−ωc)− Sξ,ξ (k, ωc)
Sξ,ξ (k,−ωc) + Sξ,ξ (k, ωc)

. (33)

This means that the asymmetry is determined by the
heights of the Stokes and anti-Stokes peaks. Substituting
expression (29) into formula (33), we obtain that, in our
theory,

ε =
3
8

ωckq
νk4

=
3
8

√
σρ

η
k−3/2k̂q, (34)

where k̂ is a unit vector directed along the vector k. The
nonequilibrium fluctuation hydrodynamics with struc-
tural factor (32) gives the asymmetry value that is twice
larger. Below, we compare our results for the asymme-
try with experimental data and the results of nonequilib-
rium fluctuation hydrodynamics, which does not require
specific comments.

In Fig. 1, the plots from work [7] are reproduced,
namely, the dependences of the asymmetry ε on the
quantity k−3/2q. The solid curve corresponds to experi-
mental data, and the short-dashed one to the results of
nonequilibrium fluctuation hydrodynamics. Our results
[dependence (34)] are also depicted by the dashed line.

Figure 2,a reproduces the plot from work [8]. The
experimental asymmetry is reckoned along the ordinate
axis, and the theoretical one calculated in the frame-
work of nonequilibrium fluctuation hydrodynamics along

the abscissa axis. Figure 2,b exhibits the same depen-
dence, but the theoretical asymmetry is determined by
formula (34). The expected slope of the experimental
line should be equal to 1. The fluctuation hydrodynam-
ics with Landau–Lifshitz local forces gives rise to a value
of 0.35, whereas our theory to 0.7.

6. Conclusions

The structural composition of a medium has no impor-
tance for low-frequency and long-wave hydrodynamic
fluctuations. Therefore, in this limit, the medium should
be considered as continuous. The results of this work, as
well as those of some other ones [1, 2, 5], testify that, to
construct the theory of thermal fluctuations in nonequi-
librium stationary states of a continuous medium, it is
sufficient to accept the hypothesis of local equilibrium in
the medium and Onsager’s regression hypothesis. Then,
all probable approaches to the description of fluctuations
become equivalent. It is important that, in the frame-
work of the Langevin description of hydrodynamic fluc-
tuations, the local equilibrium in a continuous medium
cannot be taken into account by a simple substitution
of constant thermodynamic parameters in the Landau–
Lifshitz formulas by their local values. The comparison
between the results of the developed theory of nonequi-
librium thermal fluctuations and the experimental ones
on the Mandelshtam–Brillouin light scattering looks sat-
isfactorily good.
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РОЗСIЯННЯ СВIТЛА ПОВЕРХНЕЮ РIДИНИ
ЗА НАЯВНОСТI ГРАДIЄНТА ТЕМПЕРАТУРИ

В.П. Лєснiков, Л.М. Васiлiу

Р е з ю м е

Виходячи з уявлення про суцiльне середовище, вивчено гiдро-
динамiчнi флуктуацiї поверхнi рiдини, температура якої лiнiй-
но змiнюється з вiдстанню вздовж поверхнi. Розрахована аси-
метрiя спектра капiлярних флуктуацiйних хвиль добре узго-
джується з результатами експерименту.
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