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Dark resonances in 87Rb vapor in the field of a femtosecond laser
pulse train have been studied theoretically and experimentally.
Three- and four-level schemes of interaction between an 87Rb atom
and the field, which are formed by the field-coupled magnetic
sublevels of states 2S1/2 and 3P3/2 of the rubidium atom have
been analyzed. The position and the shape of the experimentally
recorded dark resonance correspond to the results of our calcula-
tions. It has been shown that the interaction between rubidium
vapor and a polychromatic field allows the signal to be enhanced
substantially in comparison with that in the case of bichromatic
field.

1. Introduction

The study of phenomena resulting from the coherence of
atomic and molecular quantum states attracted the at-
tention of researchers for last three decades. One of the
most interesting among them is the coherent trapping
of population [1–3]. Population trapping reveals itself
experimentally as a reduction of the atomic fluorescence
intensity under the influence of two fields, which cou-
ple two long-lived atomic states (one of which can be
the ground state) with a short-lived excited state in a
narrow frequency interval, when the frequency of either
field changes. This dip in the fluorescence intensity plot
is observed, if the difference between the frequencies of
light fields acting upon the atom is so that the energy
difference between their quanta is equal to the difference
between the energies of long-lived state levels (the con-
dition of two-photon resonance). This phenomenon is
referred to as a “dark resonance” [4]. The physical ba-
sis of the population trapping is a possibility for a “dark
state”, which emerges owing to a superposition of long-
lived states, to be formed in the system “atom + field”;
the atom in such a state does not emit. The dark res-
onance width is governed by the duration of the atom–
field interaction and the relaxation times of the density
matrix elements which describe the long-lived state. It
can be very narrow (in a rubidium cell filled with a buffer

gas, there were observed resonances 30 Hz in width [5]).
Such resonances are of great interest in the domains of
frequency standards [6] and magnetometry [7, 8].

For today, still poorly studied remains the interaction
between an atom and a polychromatic field, the Fourier
components of which can form a dark resonance. In this
respect, fields with equidistant spectral components, i.e.
the sequences of light pulses with a fixed repetition fre-
quency, are most interesting. By so selecting the repeti-
tion frequency that the difference between the energies
of two lower levels is multiple of it, a dark resonance can
be observed [9, 10].

In 1999, there appeared a possibility to effectively gen-
erate a “frequency comb”which overlaps a wide frequency
range by equidistant frequency components. Such a
spectrum is generated, for instance, by femtosecond
lasers. The fixed time interval between laser pulses de-
termines the frequency shift between the “comb” compo-
nents, and the wide spectral range is provided by a small
duration of laser pulses. The frequency comb is widely
used today in metrology, mainly for optical frequency
measurements [11]. Besides its application in metrology,
the “frequency comb” can be used in experiments, where
the coherent interaction between laser light and atoms
is studied. Let the width of the frequency comb exceed
the frequency ω12 that corresponds to the difference be-
tween the energies of long-lived states. If the difference
between the “comb” frequency components Ωm is so se-
lected that NΩm ≈ ω12, where N is an integer, then,
provided NΩm = ω12, the coherent trapping of popula-
tion and, respectively, a dip in the fluorescence spectrum
can be expected, if the interval between frequency com-
ponents is varied in the vicinity of Ωm = ω12/N [9].

The most complete – to date – research of dark reso-
nances in the field of a light pulse train was carried out in
work [9], using Rb atoms as an example. With the help
of a numerical simulation of the interaction between an
atom and the field of a sequence of light pulses with the
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Fig. 1. (a) Energy level diagram for 87Rb atom. Each level of the superfine structure with the total momentum F is degenerate
with multiplicity 2F + 1. Dashed arrows correspond to allowed transitions under the action of σ+-polarized radiation from states
|2S1/2, F = 1, m = −1〉 and |2S1/2, F = 2, m = −1〉, and solid arrows correspond to allowed transitions from states |2S1/2, F = 1, m = 1〉
and |2S1/2, F = 2, m = 1〉. In the latter case, the interaction between the atom and the field can be described by the Λ-scheme (b),
because estimations show that the transition |2S1/2, F = 2, m = 1〉 → |2P3/2, F = 3, m = 2〉 is far from the resonance with the
Fourier components of the field. In panel b, symbols |1〉, |2〉, and |3〉 denote states |2S1/2, F = 1, m = 1〉, |2S1/2, F = 1, m = 1〉, and
|2P3/2, F = 2, m = 2〉, respectively. Constants γ31 and γ32 are the rates of spontaneous transitions into states |1〉 and |2〉, respectively;
the Rabi frequencies Ω13 and Ω23 describe the interaction between the atom and the field

carrier frequency close to the frequency of D1-transition
in rubidium, it was shown that dark resonances can be
observed, if the energy difference between the superfine
structure components is multiple of the pulse repetition
frequency ν. At the same time, the authors of work [9]
left real conditions of the experiment beyond the scope of
their consideration, namely, the fact that the field inter-
acts with an ensemble of atoms with various velocities.
The distribution of atoms over velocities was taken into
account in work [5], where the interaction between a ru-
bidium atom and a bichromatic field with the frequencies
close to the frequency of D2-transition in rubidium was
studied. However, the assumptions made in this work
to make the analysis simpler – namely, identical values
of Rabi frequencies, which describe the atom–field inter-
action, and identical probabilities of spontaneous transi-
tions from superfine structure levels of the excited state
onto those of the ground state – were not adequate to
real experimental conditions. Therefore, the study of the

interaction between a rubidium atom and a light pulse
train, which would use real spectroscopic constants that
describe the atom–field interaction and consider the dis-
tribution of atoms over their velocities, is challenging.

2. Model of Atom–Field Interaction

The scheme of Rb atom energy levels, which are respon-
sible for D2-line in the rubidium spectrum (λ = 780 nm),
is shown in Fig. 1 [13]. Every level of the superfine struc-
ture with the total momentum F is split into 2F + 1
sublevels which are described by the quantum number
m (m = −F,−F + 1, . . . , F − 1, F ) and, if the atom
is subjected to a magnetic field, have different ener-
gies. We assume that the atom is subjected to the cir-
cularly polarized (σ+-polarization) radiation of a laser
which generates a sequence of light pulses with period
T . If the frequency difference between magnetic sub-
levels with an identical m-value of states |2S1/2, F = 1〉
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and |2S1/2, F = 2〉 coincides with N times the repetition
frequency of light pulses, the dark resonance – a reduc-
tion of the rubidium atom fluorescence intensity – can
be observed.

As is seen from Fig. 1,a, states |2S1/2, F = 1〉 and
|2S1/2, F = 2〉 with the magnetic quantum number
m = −1 are coupled by the σ+-polarized laser radi-
ation with states |2P3/2, F = 1〉, |2P3/2, F = 2〉, and
|2P3/2, F = 3〉 with m = 0. The coupling between those
states depends on a detuning of the closest, by frequency,
Fourier component of the field from a resonance with
the frequency of the corresponding transition. In addi-
tion, the excitation of state |2P3/2, F = 2〉 with m = 0
is possible. At the same time, states |2S1/2, F = 1〉
and |2S1/2, F = 2〉 with the magnetic quantum num-
ber m = 1 are coupled by the σ+-polarized laser radia-
tion with states |2P3/2, F = 2〉 and |2P3/2, F = 3〉 with
m = 2. Under the experimental conditions, the latter
state is excited insignificantly, so that, for transitions
from sublevels with m = 1, the interaction between the
atom with the field can be analyzed in the framework of
the three-level atomic model (Fig. 1,b).

The probability of that or another transition is de-
termined by the electric field strength of laser radia-
tion, the matrix elements of the corresponding transi-
tion, and the frequency difference between this transi-
tion and the closest Fourier component in the spectrum
of laser radiation. If the magnetic field does not act
upon the atom, all probable transitions form dark res-
onances on the dependence of the atomic fluorescence
intensity on the pulse repetition frequency ν = 1/T
at identical frequency values. Provided that the tran-
sitions are weakly saturated, the populations at mag-
netic sublevels of the ground state are slightly differ-
ent from their equilibrium values, and the result of the
interaction between atoms and the field can be found
in most cases, by considering the three-level schemes
of atom–field interaction independently and then sum-
ming up the populations found for the magnetic sub-
levels of the excited state. An exception is the inter-
action of atoms with the field of such a pulse train,
when the transitions between states |2S1/2, F = 1, m〉,
|2S1/2, F = 2, m〉, and |2P3/2, F = 1, m′〉, as well as be-
tween states |2S1/2, F = 1, m〉, |2S1/2, F = 2,m〉, and
|2P3/2, F = 2,m′〉, where m′ = m,m ± 1, are simul-
taneously close to the resonance (with different Fourier
components of the field). In this case, the analysis of
two different Λ-schemes of the atom–field interaction is
needed, in which two magnetic sublevels coincide in the
ground state and differ from each other in the excited
one.

Now, let us analyze how a rubidium atom interacts
with the σ+-polarized field. Consider the transitions
which are most favorable for the formation of dark res-
onances: |2S1/2, F = 1,m = 1〉 → |2P3/2, F = 2,m = 2〉
and |2S1/2, F = 2,m = 1〉 → |2P3/2, F = 2,m = 2〉
(see Fig. 1). To make the form of the equations for
the density matrix – they are given below – simpler, we
introduce the notations |1〉 = |2S1/2, F = 1,m = 1〉,
|2〉 = |2S1/2, F = 1,m = 1〉, and |3〉 = |2P3/2, F =
2,m = 2〉. We neglect the transition |2S1/2, F = 2,m =
1〉 → |2P3/2, F = 3,m = 2〉, because the Fourier compo-
nent of the field, which is closest to its frequency, is far
from resonance. Hence, the equations for density matrix
evolution look like

d

dt
ρ11 =

iE
~

(d13ρ31 − d31ρ13)−Γ11

(
ρ11 − ρ

(0)
11

)
+γ31ρ33,

d

dt
ρ22 =

iE
~

(d23ρ32 − d32ρ23)−Γ22

(
ρ22 − ρ

(0)
22

)
+γ32ρ33,

d

dt
ρ33 =

iE
~

(d31ρ13 − d13ρ31 + d32ρ23 − d23ρ32)−

− (γ31 + γ32 + γ3L) ρ33,

d

dt
ρ12 =

iE
~

(d13ρ32 − d32ρ13) +
i

~
(W2 −W1) ρ12−

−1
2

(Γ11 + Γ22) ρ12,

d

dt
ρ13 =

iE
~

(d13 [ρ33 − ρ11]− d23ρ12) +
i

~
(W3−

−W1)ρ13 − 1
2

(γ31 + γ32 + γ3L + Γ11) ρ13,

d

dt
ρ23 =

iE
~

(d23 [ρ33 − ρ22]− d13ρ21) +
i

~
(W3−

W2)ρ23 − 1
2

(γ31 + γ32 + γ3L + Γ22) ρ23,

ρ21 = ρ∗12, ρ31 = ρ∗13, ρ32 = ρ∗23, (1)

where d13, d31, d23, and d32 are the matrix elements of
dipole moment; and W1, W2, and W3 are the energies
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of states |1〉, |2〉, and |3〉, respectively. Let the concen-
tration of rubidium vapor be so low that the collision-
induced relaxation can be neglected. As a result, the
relaxation rate for the density matrix elements is de-
termined by the rate of spontaneous radiation emission
from state |3〉 with transitions into states |1〉, |2〉, and
others, differing from those two (γ31, γ32, and γ3L, re-
spectively), as well as by the time τtr needed for a flying
atom to cross the laser beam (Γ11 = Γ22 = τ−1

tr ). Pro-
ceeding from the condition that, in the absence of laser
radiation, all magnetic sublevels of state 2S1/2 are pop-
ulated identically, we obtain

ρ
(0)
11 = ρ

(0)
22 =

1
8
. (2)

Let the inverse lifetime in state |3〉 be equal to γ. Then,
γ3L is determined from the equation

γ31 + γ32 + γ3L = γ, (3)

and γ31 and γ32 from the equations

γ31 =γ

∣∣〈2P3/2, F = 2,m = 2|d|2S1/2, F = 1, m = 1〉∣∣2
2∑

F ′=1

F ′∑
m′=−F ′

∣∣〈2P3/2, F =2,m=2|d|2S1/2, F ′, m′〉
∣∣2

,

γ32 =γ

∣∣〈2P3/2, F = 2,m = 2|d|2S1/2, F = 2, m = 1〉
∣∣2

2∑
F ′=1

F ′∑
m′=−F ′

∣∣〈2P3/2, F =2,m=2|d|2S1/2, F ′, m′〉
∣∣2

,

(4)

where d is the operator of atomic dipole moment.
The physical meaning of Eqs. (4) is transparent.
For instance, the rate γ31 of transition from state∣∣2P3/2, F = 2,m = 2

〉
into state

∣∣2S1/2, F = 1,m = 1
〉

with photon emission is equal to the product of γ
by the ratio between the square of the dipole mo-
ment of this transition (which is proportional to the
probability of just this transition) and the summed
squares of the dipole moments of transitions from state∣∣2P3/2, F = 2,m = 2

〉
onto every magnetic sublevel of

states 2S1/2 with F = 1 and F = 2. Simple calculations,
which use the values of dipole moment matrix elements
given in work [13], bring about γ31 = γ/2 and γ32 = γ/6.

The field E that acts upon the atom takes the form

E =
1
2
Ẽ(t)eiωt + c.c., (5)

where Ẽ(t) is the slowly varying complex amplitude of
the field. Its expansion into a Fourier series looks like

Ẽ(t) =
Nmax∑

n=−Nmax

En expinΩMt+iφn , (6)

where ΩM = 2π/T . The Fourier amplitudes are simu-
lated by the Gaussian-like distribution, and the phases
by a function linear in n, which corresponds to the se-
quence of femtosecond pulses:

En = E0 exp
(
−n2

n2
0

)
, φn = βn + φ0. (7)

The variation of β or φ0 is evidently equivalent to a time
reckoning shift and does not influence the evolution of
the state population in the atom interacting with the
field. Therefore, in what follows, we put β = 0 and
φ0 = 0.

Let us introduce “irreducible” Rabi frequencies Ωn

which are determined by the Fourier components of the
field:

Ωn = −dirrEn/~, (8)

where dirr = 〈2S1/2||d||2P3/2〉 is the irreducible matrix
element of the dipole moment of transition 2S1/2 ↔2

P3/2. If In is the intensity of the n-th Fourier component
of the field, then [14]
∣∣∣∣
Ωn

2π
[MHz]

∣∣∣∣ = 70.24
dirr

ea0

√
In[W/cm2], (9)

where e is the electron charge, and a0 the Bohr radius.
For the transition 2S1/2 ↔2 P3/2, dirr = 4.227 ea0 [13].

We need a stationary solution of Eqs. (1). For this
purpose, the density matrix elements are expanded into
Fourier series:

ρ11(t) =
∞∑

p=−∞
%
(p)
11 eipΩMt, ρ12(t) =

∞∑
p=−∞

%
(p)
12 eipΩMt,

ρ22(t) =
∞∑

p=−∞
%
(p)
22 eipΩMt, ρ23(t) =

∞∑
p=−∞

%
(p)
23 eiωt+ipΩMt,

ρ33(t) =
∞∑

p=−∞
%
(p)
33 eipΩMt, ρ13(t) =

∞∑
p=−∞

%
(p)
13 eiωt+ipΩMt.

(10)
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Substituting expansions (10) into Eqs. (1) and apply-
ing the approximation of circularly polarized wave, we
obtain

%
(p)
11 (ipΩM + Γ11)− Γ11ρ

(0)
11 − γ31%

(p)
33 +

+
i

2

∞∑
q=−∞

Ω(q)
13

(
%
(p−q)
31 eiφq − %

(p+q)
13 e−iφq

)
= 0,

%
(p)
22 (ipΩM + Γ22)− Γ22ρ

(0)
22 − γ32%

(p)
33 +

+
i

2

∞∑
q=−∞

Ω(q)
23

(
%
(p−q)
32 eiφq − %

(p+q)
23 e−iφq

)
= 0,

%
(p)
33 (ipΩM + γ31 + γ32 + γ3L) +

+
i

2

∞∑
q=−∞

Ω(q)
13

(
%
(p−q)
31 eiφq − %

(p+q)
13 e−iφq

)
−

− i

2

∞∑
q=−∞

Ω(q)
23

(
%
(p−q)
32 eiφq − %

(p+q)
23 e−iφq

)
= 0,

%
(p)
12

[
ipΩM − iω12 + 1

2 (Γ11 + Γ22)
]
+

+
i

2

∞∑
q=−∞

(
Ω(q)

13 %
(p−q)
32 eiφq − Ω(q)

23 %
(p+q)
13 e−iφq

)
= 0,

%
(p)
13

[
ipΩM + iδ + 1

2 (Γ11 + γ31 + γ32 + γ3L)
]
+

+
i

2

∞∑
q=−∞

eiφq

[
Ω(q)

13

(
%
(p−q)
33 − %

(p−q)
11

)
− Ω(q)

23 %
(p−q)
12

]
= 0,

%
(p)
23

[
ipΩM + iδ + ω12 + 1

2 (Γ22 + γ31 + γ32 + γ3L)
]
+

+
i

2

∞∑
q=−∞

eiφq

[
Ω(q)

23

(
%
(p−q)
33 − %

(p−q)
22

)
− Ω(q)

13 %
(p−q)
21

]
= 0,

%
(p)
21 =

(
%
(−p)
12

)∗
, %

(p)
31 =

(
%
(−p)
13

)∗
, %

(p)
32 =

(
%
(−p)
23

)∗
, (11)

where

δ = ω − W3 −W1

~
, ω12 =

W2 −W1

~
, (12)

and

Ω(n)
13 = −d13En

~
=

d13

dirr
Ωn =

1
2
Ωn,

Ω(n)
23 = −d23En

~
=

d23

dirr
Ωn =

√
1
12

Ωn. (13)

The obtained equations (11) cannot be solved analyt-
ically. We use them below for a numerical simulation of
dark resonances in the fluorescence intensity produced
by Rb vapor in a cell in a field of femtosecond laser
pulses. Instead of changing the pulse repetition period
T , the appropriate choice of which leads to a dip in the
dependence of the fluorescence intensity on T , we con-
sider the dependence of the fluorescence intensity on the
magnetic field induction B, the variation of which de-
tunes the difference between the energies of states |1〉
and |2〉 from the condition of resonance with one of the
differences between the frequencies of Fourier compo-
nents of the laser radiation field.

3. Numerical Simulation of a Dark Resonance

The population n3 of state |3〉 = |2P3/2, F = 2, m = 2〉
at the interaction between a Rb atom and the σ+-
polarized radiation of a femtosecond laser is found by
solving Eqs. (11). Only two Fourier components of the
laser radiation, which are the closest to the frequen-
cies of transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉 are taken
into account. The femtosecond laser radiation emission
wavelength λ = 780.24 nm, and the pulse repetition fre-
quency is about 75.65 MHz. For a numerical simulation,
we have to know the Rabi frequency Ω0 and the relax-
ation constants Γ11 and Γ22. For estimations, let us
take Γ11 = Γ22 = 1/τtr, where τtr is the time needed
for an atom to cross the laser beam. The one-mode
power of laser radiation emission was 2.3 µW. With
the help of a lens, it was possible to vary the laser
beam diameter at the site of its interaction with rubid-
ium atoms. Equation (9) makes it possible to calculate
Ω0. For instance, in the case of the laser beam diame-
ter 2R = 8 mm, we have Ω0/2π = 0.64 MHz. For the
numerical simulation, we selected the pulse repetition
frequency ν = 75.65 MHz. On the one hand, the beam
focusing increases Ω0; on the other hand, it reduces τtr.

If the magnetic field is absent, the energy difference
W2 −W1 is 6834.682610904 MHz in terms of frequency
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Fig. 2. Distribution function of rubidium atoms over their veloci-
ties in state |2P3/2, F = 2, m = 2〉. The diameter of a laser beam
2R = 8 mm, B = −18.766 Gs

units [13]. The field-induced energy variation of the state
characterized by the quantum numbers F and m is de-
termined by the expression

∆W|F,m〉 = µBgF mB, (14)

where B is the projection of the vector of magnetic in-
duction onto the direction of light propagation. For
state |2S1/2, F = 1〉, we have µBgF = −0.7 MHz/Gs;
for state |2S1/2, F = 2〉, µBgF = 0.7 MHz/Gs; and
for state |2P3/2, F = 1, 2, 3〉, µBgF = 0.93 MHz/Gs
[13]. Whence, it follows that, when the σ+-polarized
radiation interacts with a Rb atom, a dark resonance
for the state |2P3/2, F = 2, m = 2〉 population is to
be observed at B = −18.766 Gs (the energy differ-
ence between sublevels with m = 1 is 90hν). The
main contribution to the dark resonance formation is
given by those atoms, the speeds of which, owing to
the Doppler effect, provide the resonance interaction be-
tween the Fourier components of the field and the atom.
Let us check up our assumption that the influence of
level |2P3/2, F = 3,m = 2〉 on the resonance forma-
tion can be neglected. Taking into account that the en-
ergy difference between levels |2P3/2, F = 2,m = 2〉 and
|2P3/2, F = 3,m = 2〉 is 266.650 MHz in frequency units,
we obtain that the detuning of the Fourier component
of the spectrum closest to the frequency of transition
|2S1/2, F = 1,m = 1〉 ↔ |2P3/2, F = 3, m = 2〉 is about
35 MHz, which considerably exceeds the inverse lifetime
of an atom in the excited state (of about 6 MHz).

In our calculations, we took the distribution of atoms
over their velocities into account. At room temperature,
the root-mean-square velocity of the atom v0 = 280 m/s,
so that kv0 ≈ 300 MHz. The time of atom transit
through the laser beam τtr = 2R/v0. The relaxation
rates Γ11 = Γ22 = 1/τtr = 50 kHz at 2R = 8 mm. The
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B

Fig. 3. Results of numerical calculations of the dependences of the
population of state |2P3/2, F = 2, m = 2〉 on the magnetic field
induction (in Gs) for various diameters of a laser beam 2R = 8
(a), 4 (b), and 2 mm (c), which correspond to Ω0/2π = 0.65, 1.3,
and 2.6 MHz, and Γ11/2π = Γ22/2π = 50, 100, and 200 kHz,
respectively

halfwidth of line D2, which arises due to the distribution
of atoms over their velocities (the Doppler broadening),
considerably exceeds the pulse repetition frequency. As
a result, several groups of atoms with different velocities
give a contribution to the formation of a dark resonance
(see Fig. 2), and the population of the excited state be-
comes much higher than it could be at the interaction
between the atom and a bichromatic field.

In Fig. 3, the dependences of the population of state
|2P3/2, F = 2,m = 2〉 on the magnetic field induction are
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Fig. 4. Scheme of the experimental installation

depicted for various diameters of the laser beam, namely,
2R = 8, 4, and 2 mm, which correspond to Ω0/2π =
0.65, 1.3, and 2.6 MHz, and Γ11/2π = Γ22/2π = 50,
100, and 200 kHz, respectively. The contrast (the ratio
between the dip depth and the value beyond the dip) of
the dark resonance in the dependence of the population
of state |3〉 on the magnetic field is equal to 0.07, 0.12,
and 0.18 for cases a, b, and c, respectively.

Note that a dark resonance can also be observed for
the transitions from states |2S1/2, F = 1,m = −1〉
and |2S1/2, F = 2,m = −1〉 into states |2P3/2, F =
2,m = 0〉 and |2P3/2, F = 2,m = 0〉, when two Λ-
schemes of atom–field interaction are realized simulta-
neously. Since, in this case, the magnetic quantum
number of the ground state is the same by the ab-
solute value as that in the case just analyzed by us,
the dark resonance will be observed at the same value
B = 18.766 Gs, but at another direction of the mag-
netic field induction. It is essential that, when one of
the Λ-schemes is close to a single-photon resonance, the
detuning of the other Λ-scheme from the single-photon
resonance amounts to 5.7 MHz, which is close to the
line width of Rb-atom fluorescence. The conditions,
which are needed for the registration of this dark res-
onance, are evidently less favorable than those in the
case where atoms occupying the magnetic sublevels of
the ground state with m = 1 are excited. The analy-
sis of the four-level scheme, which is similar to that in
the three-level case, gives a resonance contrast of about
0.11 for the dependence of the total population in states
|2P3/2, F = 1,m = 0〉 and |2P3/2, F = 2,m = 0〉 on the
magnetic field in the case where the diameter of a laser
beam is 2 mm.

The other states also contribute to atomic fluores-
cence, which reduces the dark resonance contrast. For
example, for 2R = 2 mm, the dark resonance in the de-
pendence of the total population on magnetic sublevels
of states |2P3/2, F = 1〉 and |2P3/2, F = 2〉 has a con-
trast of 0.05 at the interaction between the atom and
the σ+-polarized light.

For the observation of a dark resonance, a femtosec-
ond laser with the wavelength λ = 780.24 nm was
used. By filtering the laser radiation, a spectral in-
terval of about ∆λ = 0.2 nm was selected. The ra-
diation power in this spectral interval was 3 mW. The
pulse repetition frequency ν was different in every ex-
periment, by varying around 75.65 MHz. This means
that the radiation that acted upon the atom consisted
of N = c∆λ/λ2∆ν = 1300 modes, and the power of a
mode was P = 3000 µW/1300 = 2.3 µW.

The scheme of the experimental installation is shown
in Fig. 4. A beam about 6 mm in diameter generated by
a femtosecond laser passed through a quarter-wave plate
to be focused by a lens with a focal length of 40 cm in a
cell with rubidium vapor (the natural mixture of isotopes
87Rb:85Rb=27.835%:72.165% [16]) at a temperature of
25 ◦C. The laser beam diameter at the fluorescence reg-
istration site was about 2 mm, so that the intensity of
one mode was I = P/(πR2) = 73× 10−6 W/cm2. Using
formula (9), we obtain Ωn/2π = Ω0/2π = 2.6 MHz (in a
narrow spectral interval of laser radiation, which acted
upon the atom, the intensities of Fourier components
practically did not differ from one another). Fluores-
cence of rubidium was registered by means of a photo-
electronic multiplier. The cell was located at the center
of a system of Helmholtz rings, two pairs of which were
used to compensate the Earth’s magnetic field, and the
third pair created the working magnetic field along the
direction of beam propagation. The block of the cur-
rent control by means of Helmholtz rings allowed us to
scan the magnetic field in accordance with a triangular
signal given by an external generator and also to mod-
ulate the field with a frequency of 900 Hz. The devi-
ation amplitude was 0.2 Gs. The signal from a photo-
electronic multiplier was synchronously detected at the
same frequency of 900 Hz and recorded into the com-
puter memory with the help of an ADC. To register the
current in the coils, and, respectively, the magnetic field
magnitudes in rubidium vapor, the voltage drop across
a resistor connected in series with the coils was mea-
sured.

According to our calculations (Fig. 3,c), the dark res-
onance width should be about 1 Gs. Its position is de-
termined by the pulse repetition frequency and changes
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Fig. 5. Dependences of the fluorescence intensity I (a) and the
derivative dI/dB averaged over the interval of the order of B-
deviation amplitude (b) on the magnetic field induction B (in Gs)

from −21.9 to −15.5 Gs, if the frequency varies from
75.6 to 75.7 MHz. The dependences of the fluores-
cence intensity I (in arbitrary units) and the derivative
dI/dB averaged over an interval of the order of the de-
viation amplitude (the signal from a synchronous de-
tector) on the magnetic field induction, which are ex-
hibited in Fig. 5, correspond to the laser pulse rep-
etition frequency of 75.71 MHz. The dark resonance
width (of about 1.5 Gs), as is seen from Fig. 5,a, agrees
well with the results of theoretical calculations. The
resonance contrast (the ratio between the dip depth
and the value beyond the dip) is slightly larger than
1.5%, which is close, by the order of magnitude, to
the theoretical value of 5% given at the end of Sec-
tion 3.

4. Conclusions

Dark resonances, which are observed at the interaction
of rubidium vapor with a femtosecond laser radiation,
have been studied both theoretically and experimentally.
Dark resonances have been observed for the first time at
frequencies that correspond to line D2 in the fluorescence

spectrum of 87Rb vapor. The experimental data agree
well with the results of numerical simulations of the in-
teraction between the Rb atom and the laser radiation
field.

The work was carried out in the framework of
the INTAS project 06-1000024-9075 and DFFD-RFFD
project F28.2/035.
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Р е з ю м е

Теоретично i експериментально дослiджено темнi резонанси
в парi 87Rb у полi послiдовностi фемтосекундних лазерних

iмпульсiв. Аналiзуються три- i чотирирiвнева схеми взаємо-

дiї атома з полем, сформованi пов’язаними полем магнiтни-

ми пiдрiвнями станiв 2S1/2, 3P3/2 атома 87Rb. Положення i

форма експериментально зареєстрованого темного резонансу

вiдповiдає проведеним розрахункам. Показано, що взаємо-

дiя пари рубiдiю з полiхроматичним полем дозволяє значно

збiльшити величину сигналу порiвняно з випадком бiхромати-

чного поля.
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