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The influence of strains on the valence band spectrum, the inter-
band matrix elements, and the light gain spectrum in zinc-blende
GaN quantum wells has been studied. In the framework of the
effective mass theory, the Schrödinger equation with a 3× 3-block
Hamiltonian was solved for the valence band. The results are il-
lustrated for a GaN/Al0.14Ga0.86N quantum well. It was found
that, provided a biaxial compressive strain, the matrix elements
of optical transitions from the heavy-hole subband correspond to
a strict polarization of light in the quantum well plane. The large
negative mass and the strong modification of the momentum ma-
trix elements were connected to a biaxial tensile strain effects. The
“random” double degeneration of spin-degenerate heavy- and light-
hole states at the center of the Brillouin zone was found. The ma-
trix element for the polarization in the direction perpendicular to
the quantum well plane was found to be large. The biaxial strain
was demonstrated to cause quite significant changes in the gain
spectra of heterostructures. The tensile strain and the appearance
of a circular loop of valence band maxima in the heterostructure
were shown to be accompanied by a suppression of the laser effect.
At the same time, the stimulated optical transitions are well pro-
nounced at a compressive strain. Our results testify that internal
strain effects are important for studying the optical properties of
GaN and corresponding heterostructures.

1. Introduction

Direct wide-band-gap nitride semiconductors of group
III, which are based on GaN, are intensively studied ow-
ing to their application in optoelectronic devices, such
as light diodes and lasers in the green, blue, and ultra-
violet spectral ranges, as well as ultra-violet photodetec-
tors [1, 2]. Ultra-violet light-emitting diodes [3–8] and
laser diodes [9–15] have already found their application.
However, nitride structures and devices on their basis
are only at the research stage.

Internal strain effects in heterostructures are impor-
tant for modern semiconductor technology. They arise,
in particular, when GaN is grown up on Si, SiC, GaAs,
ZnO, and sapphire crystalline substrates. Internal de-
formations are connected with a large mismatch be-
tween crystal lattices and with the difference between
the coefficients of temperature expansion of the epitaxial
layer and the substrate. They can induce large biaxial
strains in the epitaxial layer. There can be compres-
sive or tensile biaxial strains, depending on the crys-
talline substrate material [16–18]. In this article, the
effects of internal deformations are studied. We re-
port the results of our researches dealing with the in-
fluence of a biaxial strain on the valence band struc-
ture of the quantum well GaN/AlGaN with the zinc
blende type lattice and the width w which is oriented
perpendicular to the growth direction (001) and local-
ized in the spatial region −w/2 < z < w/2. The
transverse components of the biaxial strain are pro-
portional to the difference a0 between the lattice con-
stants and also depend on the Al content, x: εxx =
εyy = x (aAlN

0 − aGaN
0 )/aGaN

0 = −0.029x < 0, whereas
εxy = εyz = εxz = 0 [19]. The longitudinal compo-
nent can be expressed as εzz = −2(C12/C11) εxx, where
C12 and C11 are the elastic constants. Since εxx < 0,
the lattice mismatch gives rise to a biaxial compressive
deformation of the quantum well. In this paper, the sit-
uation where the crystalline substrate is the origin of
tensile strains in the quantum well is also analyzed. To
compare the roles played by compressive and tensile bi-
axial strain effects, we also consider an undeformed GaN
thin film.
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Our research does not consider polarization effects
which are very important in such structures.

In order to describe the light emission and absorption
processes, we calculated the energy, as well as the wave
functions of the lowest conduction band and the valence
subbands. We found the dependences of matrix elements
of the dipole optical interband transition and the light
gain spectrum in the zinc-blende GaN quantum well on
the deformation.

The point group of a structure with a zinc blende type
lattice is identical to elements of the tetrahedron point
group which is denoted as Td. The space group of such
a structure is symmorphic, being denoted as T 2

d [20].
Bonds between the closest neighbors in a wurtzite crys-
tal also form a tetrahedron. The configuration of the
closest neighbors within the first coordination sphere of
the wurtzite lattice coincides with that in the zinc blende
type lattice, if a relatively small deformation in the (111)
direction takes place [21]. For this reason, the physical
basis for the cubic approximation is based on a similar-
ity between the (0001) axis in the wurtzite structure and
the (111) direction in a cubic crystal [21].

The space group of the wurtzite structure is C4
6v. The

binding energy of the wurtzite structure is very close to
that in the zinc-blende structure [20]. For this reason,
GaN can crystallize in both structures.

It is known [20–23] that the spectrum of the valence
band at point Γ results from the sixfold degenerate state
Γ15 × D1/2. In the zinc-blende structure, level Γ15 is
split due to the spin-orbit interaction, forming fourfold
degenerate level Γ8 of heavy (hh) and light (lh) holes, as
well as double degenerate level Γ7 of spin-split holes (sh),
which belong to space group T 2

d . Being subjected to the
hexagonal crystalline field and the spin-orbit interaction
in a wurtzite crystal, level Γ15 get split, giving rise to the
formation of three spin-degenerate levels, namely, Γ9,
upper Γ7, and lower Γ7 levels which are referred to as
the band of heavy, light, and split holes, respectively, and
belong to space group C4

6v. The states in the conduction
band in the vicinity of the Brillouin zone center are spin-
degenerate, being characterized by a single effective mass
in the case of cubic symmetry, and two effective masses
in the case of hexagonal symmetry.

The Hamiltonian for the valence band of wurtzite,
which takes the interaction of levels Γ9, upper Γ7, and
lower Γ7 into account, was obtained in the framework
of the kp-method [22]. The derivation of the wurtzite
Hamiltonian, which is based on the method of invari-
ants and takes the influence of strains on the hole spec-
trum into account, was proposed in works [21, 24]. The
transformation of the Hamiltonian written down in the

|1,m〉|1/2, s〉 basis to the basis of angular momenta 3/2
and 1/2 with regard for the spin-orbit splitting was car-
ried out in papers [23, 25]. The basis of angular mo-
menta 3/2 and 1/2 is usually used for the Luttinger–
Kohn six-dimensional Hamiltonian, when describing the
zinc-blende structure. To use a unitary transformation
for a block-diagonal form with two 3 × 3-blocks, which
corresponds to the spin degeneration of states in the va-
lence band, was proposed in works [23, 25, 26]. Just this
approach was used in this work.

The structure of the paper is as follows. In Section 2,
we introduce the well-known Hamiltonian of the valence
band for both structures, zinc blende and wurtzite. The
wave functions for the conduction and valence bands in
an infinitely deep quantum well are presented. The ma-
trix elements of the dipole moment and the light gain
coefficient are given. In Section 3, original results on the
strain dependences of the band structure, the matrix ele-
ments of the dipole moment, and the light gain spectrum
are presented. Section 4 summarizes the results of our
researches.

2. Theory

It is known [27] that the optical gain for a substance can
be calculated using Fermi’s golden rule

α0 =
π e2

c
√

ε m0 w ω

∑

σc=↑,↓

∑
σv=+,−

∑
m,α

∫
kt dkt×

×
∫

dφ

2 π
|eMσc σv

m α (kt)|2(fc
m(kt)− fv

σvα(kt))×

×δ(Ecv
σv,mα(kt)− ~ω), (1)

where e is the electron charge, m0 is the electron rest
mass, c is the light velocity, ε is the dielectric permittiv-
ity of the substance, f c

m and fv
σvα are the Fermi–Dirac

distribution functions for electrons in the conduction and
valence bands, respectively, e is the unit vector of the
vector potential of an electromagnetic wave, Ecv

σv,mα(kt)
is the energy gap between the conduction and valence
bands, and ~ω is the optical energy.

We consider an electromagnetic wave which propa-
gates in the quantum well plane. The gain coefficient,
which defines the threshold laser ability, is proportional
to the product of the substance gain coefficient α0 and
the optical confinement factor Γ. The latter is propor-
tional to the well width and the number a of quantum
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wells in multiplet quantum wells: α = α0Γa. In the
calculations, we suppose that Γ = 0.01 and a = 1.

Although charge carriers in each zone are in a strongly
nonequilibrium state, the times of interband relaxation
are much longer than those of intersubband relaxation.
Hence, the Fermi–Dirac statistics can be used in calcu-
lations.

The quantity Mσcσv
mα (kt) = 〈Ψvσv

α,kt
|p̂|Ψcσc

m,kt
〉 is the ma-

trix element of the dipole moment for transitions be-
tween states in the conduction band, Ψcσc

m,kt
(z), and the

states in the valence one, Ψvσv

α,kt
(z), and p̂ is the momen-

tum operator.
The initial state, which is supposed to belong to the

conduction band, is described by the orbital Bloch func-
tion |S〉 and the spinor |σc〉 = | ↑〉, | ↓〉 which corresponds
to two directions of the electron spin. The wave function
of the m-th conduction subband can be written down as

Ψcσc

m,kt
(r) =

ei kt ρt

√
A

χm(z)|S〉|σc〉, (2)

where A is the area of the quantum well in the plane
xy, ρt is the two-dimensional vector in the same plane,
kt = (kx, ky) is the wave vector in the quantum well
plane, and χm(z) is the z-dependent part of the wave
function envelope.

To symmetrize a p-like valence band, a similarity be-
tween p-like states and atomic p-wave functions is usu-
ally considered [20]. The p-states are known to be triply
degenerate. We distinguish three states with the orbital
angular momentum l = 1 and the eigenvalues ml of its
z-component – namely,

|1,±1〉 = (∓|X〉 − i |Y 〉)/
√

2

and

|1, 0〉 = |Z〉

– as well-known spherical harmonics. The eigenfunctions
of a Hamiltonian, which includes the term of the spin-
orbit interaction, are the eigenstates of the total angular
momentum and its z-component. Therefore, the final
state of the electron belongs to the valence band and
can be determined by these eigenfunctions. The latter
can be expressed as linear combinations of eigenfunc-
tions of the orbital angular momentum and the spin, i.e.
|1,ml〉|1/2, s〉 (the projections s = ±1/2 are connected
with two possible spin orientations) [28]:

|Γ8(HH);±3
2
〉 =

1√
2
| ∓X − i Y,±1

2
〉,

|Γ8(LH);±1
2
〉 =

1√
3

(| ∓X − i Y,∓1
2
〉+

√
2 |Z,±1

2
〉),

|Γ7(SH);±1
2
〉 =

1√
3

(±
√

2 | ∓X − i Y,∓1
2
〉 ∓ |Z,±1

2
〉).
(3)

The determination of “(l = 1)-like” states in GaN crys-
tals with zinc-blend-like and wurtzite crystalline struc-
tures is based on the Hamiltonian [21, 22]

−H = Λ I + Ξ J2
z −∆2 Jz σz−

−
√

2∆3 (J+ σ− + J− σ+) + Π J2
+ + Π∗ J2

−+

+2Σ [JzJ+] + 2 Σ∗ [JzJ−] + Υ J+ + Υ∗ J−, (4)

where

Λ = ∆1 + ∆2 + A1 k2
z + A3 k2

t + D1 εzz + D3 εt,

Ξ = −∆1 + A2 k2
z + A4 k2

t + D2 εzz + D4 εt,

Π = A5 k2
− + D5 ε−,

Σ = A6 kz k− + D6 ε−z,

Υ = i
~2 < k−
2 m0

,

k± = kx ± i ky, k2
t = k2

x + k2
y,

J± =
1√
2

(Jx ± i Jy), 2 [Jz J±] = Jz J± + J± Jz,

σ± =
1
2

(σx ± i σy),

ε±z = εxz ± i εyz, ε± = εxx − εyy ± 2 i εxy,

and

εt = εxx + εyy.

Strain effects are taken into account by adding the corre-
sponding terms: kikj → εij , with the strain parameters
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D1, . . . , D6 in the corresponding positions of the effec-
tive mass parameters A1, . . . , A6. Here, m0 is the mass
of a free electron; I is the identity matrix; Jx, Jy, and
Jz are the components of the angular momentum oper-
ator; σx, σy, and σz are the Pauli matrices; ∆1 ≡ ∆cr is
the split energy induced by the hexagonal component of
the crystalline field; ∆z

so ≡ 3∆2 and ∆t
so ≡ 3∆3 are the

energies of the spin-orbit splitting in the z-direction and
perpendicularly to it, respectively.

The term linear in the wave vector describes a loop
of maxima in the valence band of a crystal with the
wurtzite symmetry [29]. In the quasicubic GaN approx-
imation, there is no term in the Hamiltonian which is
linear in the wave vector [21].

The transformation of the Hamiltonian written down
in the basis |1,ml〉|1/2, s〉 to the basis of angular mo-
menta 3/2 and 1/2 is carried out by means of Eq. (3)
[23]. Choosing the unitary transformation in the same
way as in the cubic case [23, 25],

|1,±〉 =
1√
2

[|3
2
,
3
2
〉 e−3 i φ/2 ∓ i |3

2
,−3

2
〉 e3 i φ/2],

|2,±〉 =
1√
2

[±i |3
2
,
1
2
〉 e−i φ/2 − |3

2
,−1

2
〉 ei φ/2],

|3,±〉 =
1√
2

[±i |1
2
,
1
2
〉 e−i φ/2 + |1

2
,−1

2
〉 ei φ/2], (5)

where tan φ = ky/kx, we can transform the total 6 ×
6-Hamiltonian into a block-diagonal one with the spin
σv = ± [23]:

H = −
∥∥∥∥

H+ 0
0 H−

∥∥∥∥ . (6)

Here, H± for the biaxial strain defined above is ex-
pressed in the basis [|1, σv〉, |2, σv〉, |3, σv〉] as follows:

H± =

=

∥∥∥∥∥∥∥∥

P + Q R∓ i S
√

2 R± i√
2

S

R± i S P −Q
√

2 Q± i
√

3
2 S

√
2 R∓ i√

2
S
√

2 Q∓ i
√

3
2 S P + ∆so

∥∥∥∥∥∥∥∥
,

(7)

where

P =
1
3
∆cr + α1k

2
z + α2k

2
t + d1εzz + d2(εxx + εyy),

Q = −1
3
∆cr − 2α3k

2
z + α4k

2
t − 2d3εzz + d4(εxx + εyy),

R =
√

3α5k
2
t ,

S = 2
√

3α6kzkt,

and

k2
t = k2

x + k2
y.

The relations between the parameters introduced here
and the parameters of the Hamiltonian in the basis
|1,ml〉|1/2, s〉 can be written down in the form

α1 = A1 +
2
3

A2, α2 = A3 +
2
3

A4, α3 = −1
6

A2,

α4 =
1
3

A4, α5 = −1
3

A5, α6 = − 1
3
√

2
A6,

∆cr = ∆1, ∆so = 3 ∆2 = 3 ∆3. (8)

In a similar manner, the parameters of the deformation
potential can be expressed as

d1 = D1 +
2
3

D2, d2 = D3 +
2
3

D4,

d3 = −1
6

D2, d4 =
1
3

D4. (9)

The parameters A1 to A6 are connected with the
Luttinger-like parameters [23]:

−A1 = γ1z + 4 γ3z, −A2 = γ1t − 2 γ3t, A3 = 6 γ3z

−A4 = 3 γ3t, A5 = γ2t + 2 γ3t, A6 =
√

2 (2 γ2z + γ3z).
(10)

In a similar manner, the relations for the parameters of
the deformation potential can be expressed as

−D1 = δ1z + 4 δ3z, −D2 = δ1t − 2 δ3t, D3 = 6 δ3z

−D4 = 3 δ3t, D5 = δ2t + 2 δ3t, D6 =
√

2 (2 δ2z + δ3z).
(11)

966 ISSN 2071-0194. Ukr. J. Phys. 2009. Vol. 54, No. 10



VALENCE BAND STRUCTURE

The relations between the Luttinger-like parameters, the
Luttinger parameters γ1, γ2, and γ3, and the deforma-
tion potentials av, b, and d in a cubic crystal are simple
[23]:

γ1z = γ1t → γ1, γ2z = γ2t → γ2, γ3z = γ3t → γ3, (12)

δ1z = δ1t → −av, δ2z = δ2t → −b/2,

δ3z = δ3t → −d/2
√

3. (13)

In both cubic and hexagonal substances, the vertex
of the sixfold degenerate valence band originates from
atomic p3-orbitals, which correspond to the vector rep-
resentation for Γ15 and are split due to either the spin-
orbit interaction or the hexagonal crystal field [20, 21].
We calculate the matrix elements of the dipole moment
making use of the vector representation for Bloch func-
tions. We introduce the Bloch function written down as
a vector in the three-dimensional Bloch space:

|α σv kt〉 =

∥∥∥∥∥∥∥

φ
(1)
α (z, kt)

φ
(2)
α (z, kt)

φ
(3)
α (z, kt)

∥∥∥∥∥∥∥

|1, σv〉
|2, σv〉
|3, σv〉

, (14)

where

φ(j)
α =

n∑

i=1

V
(j)
kt

[i, α]χi(z). (15)

The Bloch vector of the α-type for a hole with the spin
σv = ± and the wave vector kt is determined by three
coordinates [V (1)

kt
[n, α], V (2)

kt
[n, α], V (3)

kt
[n, α]] in the ba-

sis [|1, σv〉, |2, σv〉, |3, σv〉]. The z-dependent part of the
envelopes of quantum well eigenfunctions can be deter-
mined in the case of boundary conditions for an infinitely
deep quantum well, χn(z = −w/2) = χn(z = w/2) = 0,
as

χn(z) =

√
2
w

sin (π n (
z

w
+

1
2
)), (16)

where n is a natural number. The hole wave function
can be written down as

Ψvσv

α,kt
(r) =

ei kt ρt

√
A

|α σv kt〉. (17)

The valence band structure Eσv
α (kt) can be determined

by solving the equation

3∑

j=1

(Hσv
ij (kz = −i

∂

∂z
) + δijE

σv
α (kt))×

×φ(j)σv
α (z, kt) = 0, (18)

where i = 1, 2, 3.
On the basis of the symmetry properties of Bloch func-

tions, a conclusion can be drawn that only the following
nonzero matrix elements between basic functions exist
[23, 28]:

〈S|p̂z|1, 0〉 = Pz,

〈S|p̂+|1,−1〉 = −〈S|p̂−|1, 1〉 =
√

2 P⊥, (19)

where p̂± = p̂x± i p̂y. Two matrix elements of the dipole
moment are determined as P⊥ ≡ 〈S|p̂x|X〉 and Pz ≡
〈S|p̂z|Z〉.

The matrix elements of the dipole moment for the x-
or y-polarization (e ⊥ z) can be determined as follows
[31]:

|ex M↑+
m α(kt)|2 =

|〈S|p̂x|X〉|2
4

×

×
(
|〈χm|φ(1)

α 〉|2 +
1
3
|〈χm|φ(2)

α 〉|2+

+
2
3
|〈χm|φ(3)

α 〉|2 +
√

8
3
〈χm|φ(2)

α 〉 〈χm|φ(3)
α 〉+

+
2√
3

cos 2 φ 〈χm|φ(1)
α 〉 〈χm|φ(2)

α 〉+

+

√
8
3

cos 2 φ 〈χm|φ(1)
α 〉 〈χm|φ(3)

α 〉
)

. (20)

The matrix elements for the z-polarization (e ‖ z) can
be given as

|ez M↑+
m α(kt)|2 =

|〈S|p̂z|Z〉|2
3

(
|〈χm|φ(2)

α 〉|2+

+
1
2
|〈χm|φ(3)

α 〉|2 −
√

2 〈χm|φ(2)
α 〉 〈χm|φ(3)

α 〉
)

. (21)

Numerical values of the constants |Pz,⊥|2 can be found
[23] in the framework of the kp-theory –

m0

m
(c)
z,x

= 1 +
2

m0
Σj 6=c

|〈c|p̂z,x|j〉|2
E0

c − E0
j

(22)
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Fig. 1. (a) valence band structure; matrix elements of the elec-
tric dipole moment for (b) x- or y- and (c) z-polarizations for an
undeformed thin GaN film

– by the formula

2 |Pz,⊥|2
m0

' Eg(
m0

m
(c)
z,⊥

− 1), (23)

making use of experimentally measured effective masses
m

(c)
z,⊥. Here, we use the same numerical values for the

effective mass, the energy of spin-orbit splitting, and the
deformation potential parameters as in works [23,30,31].

3. Results and Their Discussion

We consider a pseudomorphically deformed
GaN/Al0.14Ga0.86N quantum well 6 nm in width
and assume a rectangular potential shape for it. The
results of numerical calculations of the valence band
spectrum and the dependences of matrix elements on
the wave vector kt = (kx, ky), which lies in the quantum
well plane, are presented in Figs. 1 to 3. Here, for
all structures, two the highest hole subbands are the
subbands of heavy and light holes.

In order to elucidate the role of biaxial compressive-
tensile strains, we consider an undeformed thin GaN
film. In Fig. 1, the corresponding valence band structure
and the k-dependences of matrix elements are demon-
strated. Figure 1,a shows that each band contains a
mixture of heavy, light, and spin-orbit-split hole states.

It is known that the p-like sixfold spin-degenerate va-
lence band in cubic crystals becomes split at point Γ into
fourfold degenerate level Γ8 and double degenerate level
Γ7 due to the spin-orbit interaction. The magnitude of
this splitting is the energy of spin-orbit splitting, which is
determined by the matrix element of the Hamiltonian of
the spin-orbit interaction between atomic orbitals. Usu-
ally, it is referred to as the spin-orbit splitting width. De-
generation originates from cubic symmetry and can be
obtained from Γ8-representation. In the case where the
quantum well is grown up along the (001) direction, the
crystal symmetry decreases to the tetragonal one [32].
This means the elimination of Γ8-state degeneration, as
is shown in Fig. 1,a.

In Fig. 2, the valence band structure and the k-
dependences for the matrix elements of a quantum well
at a biaxial compressive strain are depicted. The strain
components are εxx = −0.0041 and εzz = 0.0047. This
strain corresponds to the 14% aluminum content. Such
an Al content in the AlxGa1−xN material structure gives
rise a mismatch between its lattice constants and those
of GaN. From Fig. 2,a, one can see that a compressive
strain lowers valence bands with respect to their posi-
tions in a thin film. Such a behavior agrees with the
results of calculations dealing with the deformation ef-
fects on the valence band structure in (0001) wurtzite
GaN quantum wells which are used for nitride-based de-
vices on sapphire substrates [33].

We consider optical transitions between the follow-
ing initial and final states: with the angular momen-
tum J = 3/2 and the magnetic quantum numbers
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Fig. 2. The same as in Fig. 1, but for a GaN/AlGaN quantum
well at the biaxial compressive strain εxx = −0.41%

mj = ±3/2,±1/2 in the valence band, with J = 1/2
and mj = ±1/2 in the same band, and with J = 1/2
and mj = ±1/2 in the conduction band. The transitions
from the valence band states with mj = ±1/2 satisfy the
selection rules ∆m = 0 and ∆m = ±1; therefore, they
have both x- (or y-) and z-oriented light polarization.

Fig. 3. The same as in Fig. 1, but for a GaN/AlGaN quantum
well at the biaxial tensile strain εxx = 0.41%

The transitions from the states mj = ±3/2 of the va-
lence band satisfy the selection rules ∆m = ±1; hence,
they are only x- or y-polarized [28].

At a compressive deformation, the growth of alu-
minum content is accompanied by the growth of splitting
width between the heavy- and light-hole bands and the
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Fig. 4. Light gain factor of a GaN/AlGaN quantum well for:
(a) x- or y-polarization of undeformed quantum well, (b) x- or
y-polarization at the biaxial compressive strain εxx = −0.41%, (c)
z-polarization at the biaxial tensile strain εxx = 0.41%

reduction of the valence band mixing effect. Let us con-
sider transitions from the heavy-hole band. Figures 1
and 2 evidently illustrate that the contribution of x (or
y) light polarization is larger, if one moves from an unde-
formed thin film to a deformed heterostructure, in which
εxx = −0.0041. Hence, in the case of a quantum well
subjected to a biaxial compressive strain, the matrix el-
ements have a strict x (or y) light polarization. Such a
behavior agrees with the results of calculations [21,34,35]
of the matrix elements of the dipole moment in crys-
tals with the wurtzite symmetry and the corresponding
quantum-well structures, in which the considered tran-
sitions are allowed for x (or y) light polarization, while
they are forbidden for the z one.

In Fig. 3, we exhibit the valence band structure and
the k-dependences of matrix elements for a quantum
well at a biaxial tensile strain. The strain compo-
nents are εxx = 0.0041 and εzz = −0.0047. Figure 3,a
demonstrates that the tensile deformation brings about
a strong modification of the hole effective mass and a re-
duction of the splitting width, since the light-hole band
shifts upwards to the top of the heavy-hole band. The
first phenomenon results in the emergence of a large neg-
ative mass at the center of the Brillouin zone, whereas
the second one is responsible for the appearance of “ran-
dom” double degeneration of spin-degenerate states of
heavy and light holes at the center of the Brillouin zone.
We show that the fourfold degeneration of states in the
valence band at the center of the Brillouin zone of the
(001) zinc-blende GaN quantum well: first, the states
of heavy and light holes become spin-degenerate, and,

afterwards, there emerges the additional “random” dou-
ble degeneration under the action of a tensile strain. In
general, the degeneration is the reason for the density-
of-states growth. If the tensile strain grows further, the
light-hole band can shift above the heavy-hole one, which
means the elimination of the fourfold degeneration of
states in the valence band. Therefore, if εxx > 0.0041,
the light-hole band becomes the highest among the quan-
tized hole subbands. It is expected that the density of
states would change under the action of a biaxial ten-
sile strain. Such a behavior qualitatively agrees with the
results of researches of the influence of internal strain
effects on the valence band structure of Si1−xGex [36].

In zinc-blende GaN, the light-hole band states include
both |X ± i Y 〉 and |Z〉 ones. A comparison between
Figs. 1 and 3 shows the growing presence of state |Z〉 in
the light-hole band, if we move from an undeformed thin
film to a deformed heterostructure, where εxx = 0.0041.
Therefore, a greater contribution of state |Z〉 is observed
in the light-hole band in the deformed heterostructure
than that in a thin film. Hence, in a deformed quan-
tum well with εxx > 0.0041, the contribution of the |Z〉-
function, which generates a strong matrix element for
z-polarization of light, dominates in the states belong-
ing to the highest light-hole subband.

Although biaxial compression-tensile deformations
were studied, only the GaN quantum well with the zinc
blende type structure reveals a spectral section with a
negative effective mass and a strong modification of ma-
trix elements for z-polarization of light at stretching.
The density of states, the inverse level population by
carriers, the matrix elements, and the light gain spec-
trum are changed specifically, when a negative effective
mass emerges at the center of the Brillouin zone.

Our understanding of the effects induced by internal
deformations owing to a lattice mismatch is crucial for
improving the laser characteristics and the optimal de-
sign of a device.

In Fig. 4, the dependences of the light gain factor on
the energy in the quantum well with a charge carrier con-
centration of 4 × 1012 cm−2 are shown for such a light
polarization that the corresponding optical transitions
are allowed by selection rules, i.e. by the calculated ma-
trix elements. The temperature is 4.4 K. As soon as we
obtain an inverse interband population, the light inten-
sity becomes enhanced. The growth of the electron-hole
concentration makes the effective electron-hole recombi-
nation in the heterostructure possible, which provides
the high optical gain factor of a laser. It is shown that,
under the action of a biaxial compression, the displace-
ments of the valence and conduction bands give rise to
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a blue shift of the gain spectrum with respect to the
absorption edge of an undeformed quantum well, as is
shown in Fig. 4. In Fig. 4,b, we illustrate a possibility
of stimulated emission in the wavelength range between
347.5 and 340.8 nm in a zinc-blende GaN/Al0.14Ga0.86N
quantum well under the action of a compressive strain.
The peak of the gain spectrum was determined to be at
a wavelength of 345.4 nm. Semiconductor laser diodes
and light emitting diodes can emit ultra-violet light ow-
ing to a wide-band-gap nature of the GaN substance.
Here, we suppose the energy gap width to be 3.5 eV. In
Fig. 4,b, the structure of the gain spectrum is well pro-
nounced due to the contributions of optical transitions
from both heavy- and light-hole subbands. As the tem-
perature grows, the structure of the gain spectrum gets
smeared.

The effective mass was found to change drastically at
a tensile deformation. The emergence of a negative ef-
fective mass at the center of the Brillouin zone allows
the gain factor sign to change, as is shown in Fig. 4.
It can be explained by the appearance of a loop with
the radius kt ≈ 0.6 nm−1 in the valence band structure
of the quantum well of zinc-blende GaN under the ac-
tion of a tensile strain. Effects of the extremum loop,
which originate from a term linear in the wave vector in
the wurtzite Hamiltonian, are known from works [29].
However, in our research, the extremum loop arose due
to the entanglement of the heavy- and light-hole sub-
bands. As soon as the spectral range with a negative
effective mass emerges, the holes are localized at the
loop of valence band maxima. As a result, the opti-
cal transitions near the absorption edge are accompa-
nied with high absorption of light in the ultra-violet
range, in the interval from 352.4 to 349.5 nm, suppress-
ing the laser effect. At a tensile deformation, the dis-
placements of the valence and conduction bands give
rise to a red shift of the absorption spectrum with re-
spect to the absorption edge of the undeformed quantum
well.

In the zinc-blende and wurtzite crystals, every atom is
surrounded by four closest neighbors forming a perfect
tetrahedron. The valence electrons of such a crystalline
structure form hybridized sp3-orbitals [20]. Those sp3-
hybridizations are well-known for bonds in a methane
molecule. It is of interest to consider the analogy that
exists between the dependence of matrix elements on the
strain and the influence of deformation effects on the
behavior of angles between bonds in a tetrahedron. It is
known [37] that, in the case of a biaxial tensile strain,
the tetrahedron bonds become squeezed along the c-axis,
so that the distances from the Ga-N layers to the planar

structure become shorter, and the angles between bonds
change. This stimulates the dehybridization of ideal sp3-
hybrids into sp2- and pz-orbitals. In such a manner, the
quantum-mechanical problem of dehybridization of sp3-
hybrids into sp2- and pz-orbitals explains the tendency
for the state |Z〉 to grow in the light-hole subband at a
tensile deformation, which generates the matrix element
for the z-polarization, as is shown in Fig. 3,c.

Hence, one can see in Fig. 4 that the variations of both
the sign and the polarization of the gain coefficient in the
heterostructure are distinctly pronounced.

4. Conclusions

We studied the influence of strain effects on the valence
band structure, the interband matrix elements, and the
light gain spectrum in a pseudomorphically deformed
zinc-blend GaN quantum well. With this purpose in
view, we used the 3 × 3-Hamiltonian to calculate the
spectrum of the valence band in the heterostructure. A
detailed analysis for the dependence of the hole spec-
trum, the matrix elements, and the light gain spectrum
on the strain emerging due to the lattice mismatch in
the heterostructure has been made. The analysis of the
band structure of a quantum well at a compressive de-
formation testifies to a reduction of the valence band
energy. If the quantum well is subjected to squeezing,
the matrix elements for the transitions from the first
hole band have a strict light polarization, with the po-
larization vector laying in the quantum well plane. On
the other hand, at stretching, those matrix elements
are strictly polarized in the direction perpendicular to
the quantum well plane. A tensile strain is accompa-
nied by the emergence of a large effective mass at the
center of the Brillouin zone and a considerable modifi-
cation of matrix elements. At the center of the Bril-
louin zone, there appears the “random” double spin-
degeneration of heavy-and light-hole states. For a ten-
sile deformation of the heterostructure, the growth of
the state |Z〉 in the light-hole band was found. It has
to induce a considerable polarization of the matrix el-
ement in the direction perpendicular to the quantum
well plane. A loop of valence band maxima with a
confined radius was found in the heterostructure sub-
jected to a tensile strain. The paper demonstrates the
importance of the loop of the valence band extremum.
At a compressive deformation, holes are localized at
the vertices of valence subbands, and, in the case of a
tensile deformation, at the cyclic loop of valence sub-
band maxima. The laser effect was shown to be sup-
pressed in the GaN quantum well at a tensile deforma-
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tion, whereas the stimulated emission in the ultra-violet
region is distinctly pronounced at a compressive one. Al-
though the extremum loop effects in wurtzite crystals
have been studied earlier [29], the suppression of the
laser effect was not mentioned in publications. In gen-
eral, the internal deformation effects can be marked as
those playing a considerable role in the study of opti-
cal properties of heterostructures. It should be noted
that our research does not take into account polariza-
tion effects, which are very important in such struc-
tures.

The author is grateful to Profs. V.A. Kochelap and
V.I. Sheka for numerous useful discussions.
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ВАЛЕНТНА ЗОННА СТРУКТУРА, ОПТИЧНI
ПЕРЕХОДИ I СПЕКТР ПIДСИЛЕННЯ СВIТЛА
В ПСЕВДОМОРФIЧНО ЗДЕФОРМОВАНIЙ
КВАНТОВIЙ ЯМI GaN З ҐРАТКОЮ
ЦИНКОВОЇ ОБМАНКИ

Л. O. Локоть

Р е з ю м е

В статтi вивчено вплив ефектiв деформацiї на спектр валентної
зони, мiжзоннi матричнi елементи i спектр пiдсилення свiтла в
квантовiй ямi GaN з ґраткою цинкової обманки. В рамках тео-
рiї ефективної маси розв’язується рiвнянняШредiнгера для ва-
лентної зони, яка описується гамiльтонiаном розмiрнiстю 3×3.
Наведено результати для квантової ями GaN/Al0,14Ga0,86N.
Знайдено, що при двовiснiй деформацiї стиску, матричнi еле-
менти оптичних переходiв з пiдзони важких дiрок мають стро-

гу поляризацiю свiтла з вектором, який лежить в площинi
квантової ями. Показано, що походження великої негативної
маси i сильна модифiкацiя матричних елементiв електричного
дипольного моменту пов’язанi з ефектами двовiсної деформа-
цiї розтягу. Знайдено “випадкове” двократне виродження ви-
роджених за спiном станiв важких i легких дiрок в центрi зо-
ни Брiллюена. Знайдено великий матричний елемент електри-
чного дипольного моменту для поляризацiї свiтла в напрямку,
перпендикулярному до площини квантової ями. Показано, що
двовiсна деформацiя є причиною дуже значних змiн в спектрi
пiдсилення гетероструктур. Показано, що лазерний ефект по-
давлений пiд час виникнення петлi максимумiв валентної зони
в гетероструктурi при деформацiї розтягу, натомiсть при де-
формацiї стиску стимульованi оптичнi переходи яскраво вира-
женi. Нашi результати свiдчать про те, що внутрiшнi деформа-
цiйнi ефекти важливi у вивченнi оптичних властивостей GaN
i вiдповiдних гетероструктур.
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