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This paper! gives a rigorous mathematical description of the

equilibrium state of an infinite system of particles on the basis
of canonical ensemble theory. The proof of the existence and
uniqueness of limiting distribution functions and their analytical
dependence on the density is given. The results have been
obtained by using the methods developed by two of the authors
in 1949 and are based on the application of the theory of Banach
spaces to the study of the equations for distribution functions.

1. Introduction

In order to obtain thermodynamic relations on the
basis of statistical mechanics, one requires to study
systems with an infinite number of degrees of freedom.
Such systems are derived from finite systems when
there is an infinite increase in the number of
particles N accompanied by a proportional increase
in the volume Vy (Vy = oN, v =const). Here,
difficult problems arise associated with the rigorous
mathematical substantiation for the limiting transition
as N — oo. To solve these problems, we use
the formalism of canonical ensemble and involve the
apparatus of distribution functions.

The considerable progress in this direction has been
made in the last two decades.

A monograph [1] described the methods of giving
a rigorous mathematical substantiation for the limiting
transition in statistical mechanics, using the formalism
of the Gibbs canonical ensemble, and developed a general
method for seeking for the limiting distribution functions
in the form of formal series in powers of the density 1/v.

In 1949 in [2], the foundations for a rigorous
mathematical description of infinite systems in
statistical mechanics were developed. The detailed
presentation of the results was published in 1956
in [3]. References [2,3] gave the full solution to the

IThe content of this paper was reported by one of the authors
(N.N. Bogolyubov) at the College de France in April of 1969.
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mathematical problems arising during the consideration
of the limiting transition N — oo in systems described
by a canonical ensemble, for the case of a positive
binary interaction potential of particles and sufficiently
small densities. In this case, the system of equations for
the distribution functions was treated in essence as an
operator equation in the Banach space.

However, the methods developed in these papers
evidently escaped the attention of investigators. In
1963, Ruelle [4] again suggested a similar approach to
the study of the systems of equations for distribution
functions. There, Ruelle used the formalism of large
canonical ensemble which led him, in our opinion, to
simpler tasks in formulating a basis for the limiting
transition. At the same time, Ruelle was able to enlarge
the class of potential functions under consideration by
using the very ingenious idea of making the original
equations for the distribution functions symmetric.

The objective of the present paper is a rigorous
mathematical description, based on the theory of
canonical ensemble, of the equilibrium state (at
low densities) of infinite systems of particles, whose
interaction potential is free from the restriction of
positiveness and satisfies the Ruelle condition [4].
Here, we make use of the methods developed by two
of the authors in [2,3] and the Ruelle method of
symmetrization.

In the second section, we formulate the problem
and derive the relations between the distribution
functions in a finite volume, which become, on the
limiting transition, the well-known Kirkwood—Salzburg
equations. In contrast to the case of a large canonical
ensemble, for a Gibbs ensemble in a finite volume,
there are generally no equations for the distribution
functions: the appropriate equations appear only after
the limit transition to the infinite volume. This leads to
new problems, in comparison with the case of a large
canonical ensemble.
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The third section proves a theorem on the existence
and uniqueness of a solution of the Kirkwood—Salzburg
equations for the potentials satisfying the Ruelle
condition. In this case, we give the explicit estimate the
densities, for which the solution is a series of iterations,
and prove a theorem concerning the analytical nature of
the dependence of the limiting distribution functions on
the density is established.

The fourth section deals with the proof of the
existence of limiting distribution functions when the
number of particles in the system tends to infinity.
Finally, in the fifth section, the uniqueness of these
limiting functions is proved.

2. Statement of the Problem

1. We consider a system of N identical particles
enclosed in a three-dimensional macroscopic volume Vy
and interacting with one another via central forces
characterized by an interaction potential ®(gq). We
assume that the position of each particle is completely
determined by its three Cartesian coordinates ¢®(a =
1,2,3), ¢=(¢", ¢* ¢*).

We start out from the ordinary theory of equilibrium
states based on the canonical Gibbs distribution; in the
presentation, we follow [1] and [2, 3].

We introduce the probability distribution function
for the positions of all the particles with a density

U
Dy = Dalar ) = @V Ve {5 1

where Uy is the potential energy of the system,

> g —q), ®lei—gq5) = (g — ;)
1<i<j<N

Uy =

and Q(N, Vy) is the configuration integral,
U
Q(N,VN):/.../exp{—TN}x
Vn  Vn

xdqi ... dqn,dq = dq} dg?dg;.

The physical system under consideration is a canonical
Gibbs ensemble. We now introduce a series of
distribution functions [1]:

F™N(qr,...,q5 V) =

=V1@/---/DN(ql,-~-,qs;qs+1,---

VN VN

an)x
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Xdgsi1 ... dgn. (2.1)

As usual, we assume that Vy is a ball: we also denote
its volume by Vy, Vx = vN, where v is the volume per
particle, and 1/v is the particle density.

The basic object of an investigation in statistical
physics is the limiting functions

Fo(qr, .- q50) = (FM (a1 -4 V).

lim
N—o0
On this limiting transition, the density 1/v is considered
constant.

By studying the questions related to the above-
mentioned limiting transition, we used a system of
equations for limiting functions Fy(qq, - - -, ¢s;v).

Below, we will derive certain relations required for
obtaining the appropriate equations.

2. We consider the expression exp{—Uy/0} and
transform it as follows:

1
eXpy~y Z‘I’(Qi—qj')

=exp {—% Z‘I’(%— Qi)}x
i=2

1<i<j<N
1 N
Xexp g~y Z ®(q; — q5) H [pg (i) +1],(2:2)
2<i<j<N i=s+1

where
1
©q(¢i) = exp —g‘b(q —a@)p— 1
Substituting Eq. (2.2) into Eq. (2.1), we obtain

Q(N —1,Vn)
Q(N, V)

1 s
Xexp{—azq)(ql —ql)} X
=2

></.../DN_l(qQ,...,qs;qf,...,qj‘v_s)x

FMN (g1, ..., q5;Vn) = V¥

Vn  Vn
N-—s
(N—s)(N—s—1)...(N—s—k+1)
X [1 + Z ol X
k=1
k
T owdtan) | . (23)
i=1
where
Duy(qr,---am) =
169
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= QM Ve Y ai—a) p

1<i<j<M Nlp4dlyr1—2 1- k
aN(VN[JrZ( N)( k'Nk) ( N)x
Q(Ma VN) = k=1 v
1 / /FN 1q17"'7qk7VN)
/ /GXp —= > ®(gi—qy) pdar...daw.
Vo 1<i<j§1b[ Vi
We also consider the distribution functions % H Qo (@)dgrt . .. dq;}
_ i=1
F;iN l)(Q1,~~,(Jk,VN / /DN 1%
Vy Similarly, for the functions Fs(Nfl)(qn, ooy (s V), we
obtained the relations
X(q1y oy Qs Qo 1y -+ s AN—1)d k41 - - - AN (2.4) Nt
Fg( B )(Q177Qs,VN) -
and the quantities
(V) = UMQ(M -1, Vy) _ NN laN_l(VN)exp {é i@(ql - qz)} X
MAYN Q(M,Vy) - i=2

Here, it is evident that

Fg,(N)((hauw(Is,VN) (N 0)(Q17~~,(155VN)-
)

X FN - 1) q?v"'vqs;VN)—’_

N—-I— _
s (1 l+s)__.(1_ l+s}k 1)

Using the function FISN_ and the quantities aps (Vi),

X
Eq. (2.3) can be transformed into the form i P klok
F™N(q1,...,q5 V) = an (V) x Nl . .
></ /Fe+k 1 (qg,...,qs;ql,...,qk;VN)x
1¢ - % 1%
xexp{QZ@(qlqi)} [FS(Nl Voo qe Vi) + Mo
=2 k

NS (1 _ 2y(1 - sy, (1 stkey XHsoql(q;“)dQT---dQZ} (2.6)

n ~ 7). =) b
klvk

k=1 where
X/ /Fslj-k a2, asqt, - a5 V) X L<s<N—1§

Vn  Vn

F(N l)((I1v~~~7QN7l;VN): N laNfl(VN)X

X _
«ITewtaitat .. daz . (25) .

=t X exp —lz (g1 — ai)

0 - 3
where =2
1<S<N, XFI(\/'Nllll)(q27'"7qN—l;VN);
F\M (g, qns Vi) = an (Vi) x FN D (qi; V) =
Nflfl l+1 I+k
N (1-%)
Xexp{——z@ }FI(VNll)(qQ,...,qN;VN), :N—la]\r lVN |:1+ Z )k"l)k N X
k=1
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<[ [ EY i v
VN VN
k
< [ [ ea(a})das - .. qu].
=1

3. We assume temporarily that the limits

Es(q1,~~-,QS§U): hm F( )(qla---aQS;VN)a

s=1,2,...,

Fsl(ql,...,qs;v): lim FS(N_Z)(qh...,qS;VN),
N—o0

s=1,2,...,

a(v) = ao(v) lim an(Vv),

lim an—;(Vn), (2.7)

al('l)) - N—oco

exist in some sense, and we will carry out a formal
limiting transition in relations (2.5) and (2.6).
Relations (2.5) take the form

Filas, oo asi) = a(v)exp{é > e q»} x

1
X |:F811((JQ,...7C]5;’U) +Z TR %
k=1

x/"'/Fa}+k—1(QQ7"'aQS;qra"'aqz;U)x

k
x [ [ e (a)dai - --dQZ]-

i=1

(2.8)

(We adopt the convention of not showing the integration
limits if the integral is taken over the whole three-
dimensional space.)

The formal limiting transition in relations (2.6) gives

Fé(QlwnvC]s; )—al exp{__Z(I) }

o0

1
X [Fﬁ*i(qg,...,qs;v)—kzmx

+1
/ /Fs+k1qQ""
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. * *.
aQSv(IIa"'an”U)X

k
x [ [ pai(a))dai - dai |- (2.9)
i=1
If the equalities
Fsl(ql7 cey sy V) = Fs(qr, ..., qs3v);  ar(v) = a(v) (2.10)

were to hold for any [ > 1, then relations (2.8) and (2.9)
would pass into the well-known Kirkwood—Salzburg
equations [5]

Fs(q1,-.-,qs;v) = alv exp{ ZCD }

oo
1
X |:Fs—1(qQ7~--aQS;U) +Z Tk
k=1

X/~~~/Fs+k71(q27‘"7qs;qT7"'7q;:;v)X

k
< [ ea (a;)da; ...

i=1

qu} . (2.11)

In order to completely determine (2.11) for s = 1, we
assume that Fy = 1 here. It follows from the definitions
that all Fs(q1,...,qs;v) are symmetric functions of the
variables ¢;.

4. We now discuss the problems arising on the
mathematical description of the system in an equilibrium
state.

In our opinion, it is necessary to solve three following
problems in order to give the complete substantiation for
the mathematical description of such a system which is
based on the Gibbs canonical distribution and uses a
sequence of distribution functions:

1) to prove that limits (2.7) exist in a definite sense;

2) to prove that the limiting distribution functions
do not depend on the method of going to the limit with
regard for the validity of equality (2.10);

3) to prove that, for sufficiently small densities 1/v,
a unique solution exists for the system of Kirkwood—
Salzburg equations.

We will solve the above-given problems in the
following order: first, the third problem, then the first,
and, finally, the second.

3. Theorem on the Existence of a Solution of
the System of Kirkwood—Salzburg
Equations

In this section, we consider the system of Kirkwood—
Salzburg equations (2.11) for the distribution functions
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Fy(qa,...,9s;v) and prove that, for sufficiently small
densities 1/v, the system has the unique solution.
Thus, we have the system

F(q1,...,qs;v) = alv exp{ Zq) }

<1
X |:Fsl(q27 ceey qs;’l)) + Z klvk x
k=1

></~H/Ferkfl(an~"7QS;q1a"'aqk;U)><

< [ ea (a})das ...

i=1

dq,:], Fo=1. (3.1)

We will seek for a solution to this system in some
Banach space [2,3,4] introduced as follows.

We consider a linear space, whose elements are the
columns of measurable bounded functions

filar)
_ Ja(q1,q2)
IJ=1 fa3la,q2,43)

with the usual summation of the columns and the
multiplication of them by a number. This linear space
becomes a Banach space B, if we introduce the norm of
an element

sup | fs(q1, .- (3.2)

q1;--+,9s

15 1= s .
where A is some positive constant to be determined later
on.

In [2,3], the equivalent norm

sup |fs(q,- -

----- qs

15 1| 0]

was introduced. It is more convenient in studying
the equations for distribution factions in the Mayer—
Montroll form ([1], p. 23).

We define, as yet only formally, an operator K acting
in the space B according to the formula

(Kf)s(q1,...,qs —exp{ Zfb }

1
X fs—1(Q27~~-,QS)+ZWX
k=1
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X/.../fSJrk,l(qg,...,qs;qi‘,...,qZ)x

k
< | [ ea (a})das ...

=1

dq:] fo=1. (3:3)

With the use of the operator K, the system of
equations (3.1) can be represented in the form

F =a(v)KF + a(v)F°, (3.4)
where

Fi(qi;v) 1
e Fy(q1, 925 v) 70 _ 8 (3.5)

F3(q1,q92,q3;v) | >

Later on, we will establish the existence and
uniqueness of the solution of the operator equation (3.4)
in the space B under certain assumptions regarding the
potential ®(¢) and for sufficiently small 1/v.

For Eq. (3.4) to have a unique solution in B, as is
known, it is sufficient that a(v)F° € B, the operator
a(v)K be defined throughout the whole space B, and its
norm be less than unity. In this case, we represent the
solution F' as the series

F= Z(a(v)K)”a(v)Fo
n=1

which converges in the norm of the space B.
In the case of a nonnegative potential ®(g) which, as
usual, is assumed to be a real function in Fs such that

-

it is easy to verify that these conditions are satisfied for
sufficiently small 1/v [2,3].

First, we postulate that a(v) and v are independent
parameters (generally speaking, complex) such that

(3.6)

(3.7)

1
exp {—EQ(Q)} — l‘dq < 00,

la(v)] < 2, (3.8)
11] % (3.9)

We now evaluate the norm of the operator a(v)K. We
note first that the inequality ®(g) > 0 yields

GXP{—é Z‘I’((h - Qz)} <1

n=2

(3.10)
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Further, Eq. (3.3) yields

la(W)(Kf)s(qr, - -5 q6)] < la(v)]x

b_ oo
><|:qsup |fs—1((I2a-~7CIs As— As—1

25000505 =1
/ / sup Ifs+k_1(q2,---,qs;QT,---,QZ,)IX
,Qa;qv
iiz 1ﬁ|<ﬁq1 (g7)|dgy - dQZ] <
< la()le™’ AL £ (3.11)

Hence, we obtain

1
a(v)Ky| = Sup{ﬁ

(3.12)

If we now put A = 2e and take inequalities (3.8) and
(3.9) into account, we obtain

(K [< 2@l
2e

< 1.

At the same time, we have been convinced that the
operator K is defined throughout the whole space B. It
remains only to verify that a(v)F° € B. But this follows
immediately from definitions (3.5) and (3.2), since

0 _ la(v)
@ = =2 <1
Thus, it has been proved that, for ®(¢) > 0 and with
assumptions (3.7) and (3.8), the system of Kirkwood—
Salzburg equations (1.2) has the unique solution in a
certain neighborhood of the point 1/v = 0.

The method described above was developed by two of
the authors in [2,3]. We will prove that it can be applied
also to the more general case where the requirement
that the potential ®(¢q) be nonnegative is replaced by
the following Ruelle condition [4].

There exists a positive constant b such that, for all s
and for any qi,...,¢qs € Es3s, the inequality

—sb

1
Usla-. (3.13)

1 Qs) >
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holds. It follows from this condition that, for any point

q,---,qs of E3,, there exists at least one index i such

that

7 Z d(q ) > —2b. (3.14)
J#i

Using the symmetry property of the functions Fs, we
can write Eqgs. (3.1), following Ruelle [4], in a symmetric
form.

By m;, we denote an operator acting on the function

fs(q1,...,qs) by the formula
’n-lfS(qth? e Q11,491,414 15 - - - 7q5) =
= fS(qtha e Q115491549141 - - .,qs).

It follows from Eq. (3.14) that there exist the measurable
functions v;(q1,.-.,¢s) which are invariant relative to
the group of rotations, take their values in the interval
[0,1], and are such that

sz qla"'

kal(ql,...

. qs) =1,

1Gs) = Uk(q1, - -5 Gs)-

In this case, inequality (3.14) is valid if v;(q1, . .., ¢s) # 0.
The collection of the functions v; is a resolution of unity.

Finally, we define the operator 7 according to the
formula

S
mfs(qi, .., qs) = Zﬂl[vl(qla v Gs) fslan, -5 s))-
1=1
Using the symmetry property of the functions
Fs(qi1,--.,qs;v), we represent system (3.1) in such final
form

1 S
Fi(qr, ..., 4s5v) = a(v)mexp {—5 > (g - Qi)} X
=2

1
x [Fs1((J27 cesgsiv) + Z ok
k=1

x/.../FSHH(qz,...,qs;qiwu,qi;v)x

x [T #a (@)dgi - dQZ} : (3.15)

i=1

Assuming that the potential function ®(q) satisfies
conditions (3.8) and (3.13), we will establish the
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existence and uniqueness of the solution of system
(3.15) for sufficiently small 1/v. As was done above,
we consider, for the time being, that a(v) and v are
independent complex parameters, and we assume the
validity of inequality (3.8).

System (3.15) can be written in the form of Eq. (3.4)
under the condition that the operator K is now defined
by the symmetrized formulas (3.3) as

S
(Kf)s(q1,---,qs) :Wexp{—éz:q)(ql —qi)} X

|:fs 1 Q27~~~>q5 +Zk'vk

></~--/fs+k—1(Q27---7(15;‘1T7--->QZ)X

k
< | [ ea (a})da; ...

dQZ]a f() =0.
i=1

(3.16)

THEOREM 1. The system of equations (3.15)
possesses the unique solution in the space B when

1 1
la(v)] < 2; — <

—. 1
[v| ~ 2e20+1J (3.17)

This solution is a holomorphic function of a(v) and 1/v
in region (3.17).

Proof. In order to prove the first assertion of the
theorem, it is sufficient to establish that the norm of the
operator a(v)K defined by formulas (3.16) is less than 1
under conditions (3.17).

Taking into account that estimate (3.10) is now
replaced by the expression

1 S
T exp {—5 Z O(¢y qz)} <e?,
i=1

following from (3.14), we obtain from Eq. (3.15), in
complete analogy with (3.11) and (3.12), that

qsupqv la(v)(Kf)s(q1s---5qs)| <
< law)le®e™ A7 | f || (3.18)
la@)kf < SWlereri?

Setting A = 2e2**! and taking Eq. (3.17) into account,
we obtain, from Eq. (3.18), the required estimate

la(v)] 2e%041 T
2%+ -
ge2vt1 P20 T

| aw)K |< }§k<1.
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Thus, we have proved the existence and uniqueness
of the solution of system (3.15) or, which is the same,
Eq. (3.4) in region (3.17). The holomorphic nature of
the solution as a function of a(v) and v in the indicated
region follows from the possibility to represent it by
series (3.6) which converges uniformly with respect to
a(v) and v in any closed region contained in (3.17).

Returning to the case of limiting distribution
functions Fs(q1,-..,¢s); v, we must regard v as a real
(positive) variable and a(v) as a function of v. We will
show that, in this case, the condition |a(v)| < 2 in Eq.
(3.17) can be dropped.

To this end, we will find the estimate for the numbers

ar(v).
LEMMA 1. The numbers a;(v) satisfy the inequality
wv) < —1 (3.19)
W =9_ J/v’ '

Proof. Indeed, let us consider the quantity [3]

Q(M,Vy) 1

QM —1,Vy) QM —1,Vy) "
(I’(Qi -

1
exp 7
Vy 1<1<]<M
xag.-. d‘JM‘/qu /Q M1 V)

VN VN

qj) ¢ X

1
X expq — Z (g — q5) ¢ X
1<i<j<M-1

M—1
<11 {soq<qi>+1}dq1...qu_1} (3.20)

i=1
We use the elementary inequality

M-1

H 0a(@i) +11 21— 3" |pg(a0)] (3.21)
i=1 i=1

which is valid not only for our specific functions ¢,(g;),
but also generally for arbitrary quantities a; such that
14 a; >0.

Using (21.2), we obtain, from Eq. (20.2), the estimate

= fal [ ] (1K o)

VN

QM. VN)
QM —1,Vy)

ISSN 2071-0194. Ukr. J. Phys. 2008. V. 53, Special Issue



MATHEMATICAL DESCRIPTION OF THE EQUILIBRIUM STATE

1
X ——————€exp —

QUM — 1.V R

1<i<j<M—1

=

qul . ..qu[_l > VN — (M — 1)J

Whence we get that, for any M < N,

CLM(VN) =
MQ(M —1,Vy) 1 1
= < M .
QUM V) S UMV — 1 S 1=
Since, for any I, a;(v) = lim any_;(Vnx) by
N —o00

definition, the quantity a;(v) also satisfies inequality
(3.19).

Lemma 1 and the inequalities 1 < ﬁ < 55 yield
the inequality a;(v) < 2. That is, the second condition
in (3.17) yields the first one.

We consider, finally, the question about the character
of the dependence of the limiting distribution functions

on the density.

THEOREM 1I. The  distribution  functions
Fy(q1,...,qs;v) are holomorphic functions of 1/v
in a certain neighborhood of zero.

Proof [3]. By Theorem I, Fi(q,...,qs;v) are

holomorphic functions of a(v) and 1 /v in region (3.17),
i.e. (by virtue of Lemma 1) at + < 53rr5. Therefore, it
is sufficient to prove that, in some neighborhood of the
point 1/v =0, a(v) is a holomorphic function of 1/v.

The solution of Eq. (3.4) is translation-invariant,
since each term of series (3.6) possesses this property.
Therefore, F(g1;v) =const.

As will be proved in Section 5,

hm —/F( q1,VN)dq1

= lim L/Fl(q;fu)alql =1, (3.22)

N—oo Vi
\%N

whence it follows that F(gi;v) = 1.
Now, using the Kirkwood-Salzburg equation, we
obtain

1= Fi(q;v) =
=1
11)[1+Zm/.../Fk(qi‘,...,qz;v)x
k=1
k
< T] oo (a2 - dq;;] = x(a,0), (3.23)
=1
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where the function y(a,v) is holomorphic with respect
to a and 1/v in region (17.2).

We will prove that, in some neighborhood of the
point 1/v = 0 for |a| < 2, the partial derivative 9y /da #
0. Whence it will follow that equality (23.2) can be
solved for a, and the function a(v) is a holomorphic
function of I/v in a neighborhood of the point 1/v = 0.

For dx/da, we obtain

> 1 * *
_:1+ZW//Fk(Q1,;qk7U)X
k=1

k
< [ [ eai (a))dai -

=1

k
></.../Fk(qi‘,--.7q;’2;v)qu1(qz")dqi‘~~~dq72](3-24)
=1

It follows from (28.2) that dx/da = 1 at the point
1/v = 0, and, hence, 9x/da # 0 in some neighborhood
of zero.

The theorem has been proved.

quJra

[Z Kloh—17"

4. Existence of the Limiting Distribution
Functions

1. In this section, we will investigate Problem 1

formulated in Section 2. In solving this problem, it is

convenient to use relations (2.5) and (2.6) which are a

basis for obtaining the Kirkwood—Salzburg equations.
Thus, we consider the relations

FND(gy, ... q5:Vy) = N laN—z(VN)WX
RS (N—1—1)
Xexpy —g (g1 —q;) p [Fy_q (g2,---,qs; Vn)+
=2
NEos (1= ) o (1 — sl
N N
+ Z kluk x
k=1
X/ /Fs(ivk oy s Vi) X
VN VN
k
<[] ea (a)dgi - dgi), (4.1)
=1
F(N l)(q17~--7QN—l;VN): N—laN_l(VN)X
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WGXP{Z‘I’ } FRO (2, av—i Viv),
VD g

which follow from Eq. (6.1), if we make use
of the symmetry property of the functions

FN (g, ... qs: Vi) [see Section 3, Eq.(3.15)].
We consider that these relations are valid throughout

the entire 3s-dimensional Euclidean space FE3;. We
define the functions FS(N_Z)(ql, .oy qs; VN) in By
according to formulas (2.4) and (2.10).
We introduce the notation
FY (g5 V)
FN (a1, q0; Vi)
FN-1) _ : ’
FJ(V]\:Z)(QL%, cogN—1; V)
0
Lan—1(Vy)
FON=0 — 0 (4.2)

By KgN_l), we denote the operator acting in the Banach
space B on an arbitrary column f by the formulas

(Ké(;N_l)f)S(q17"'7qs) = aNfl(VN)X

N —1

XWexp{——ZCD } [fs 1(g2; -+, qs)+

N—l-s R N R )
N N
+ 2 P x
k=1
x/~-~/fs+k—1(QQ,---a(Jsﬂﬁw--aQZ)X
VN VN

x [ [ e (a))dai .. dQZ] :
=1

(Ks(Nil)f)i?éS(qla"'vqi):Oa S#N*lv

(K(N l)f)N (qr, - av—1) = an—1(Vn)x

N -1

176

N-l
1
XWGXP{—E (g1 —qz‘)}fozq(QmquNfl),
=2
(K](VNl Pign—i(q,...,¢) =0, fo=0. (4.3)
. (N-1I)
Here, the expressions (K fslqr, ..., qs) are

defined also throughout the whole space E3;. We denote
the operator

KN _ KfN_l) +K2(N—z) +K(N )

by KN,
Using the operators KV~ and the columns F'
we can represent relations (4.1) in the compact form:

FN=1) _ g(N=0) p(N=1-1) 4 pO(N-1),

(N=1D)

2. We now examine the properties of the operator
KW=1 Tt can be shown that the norms of the operators
KW=0 and KéN_l)(l < s < N-1) for I < o5
are less than unity, || K&=D <k < 1, | KV7Y <
k < 1. To do this, it is necessary to use literally the
same arguments as in the proof of Theorem I and to take
into account that the numbers %a ~n—1(Vn) satisfy, for
1/v < 1/2J, the inequality

N—_laN,l(VN) < 2 and

l+s l+s+k—-1
1-— ol 1.
(1-F) (-5 <

Here and in what follows, we consider that the
number A appearing in the definition of the norm is
subject to the same restriction as that in Section 3.

The positive sequences ay(Vy), %aN_l(VN), cee
Foanv—i(Vy); N = 3,4,..., for 1/v < 1/2J are
bounded from above by number two.2 Therefore, using
a diagonal process, we can choose any finite number [+ 1
of convergent subsequences

N;
an, (Vn,), N__laNz—l(VNi) oy e (V)
whose limits for N; — oo are denoted by
a(v), (Il(U), cee 7(11(11)5
lim oy, (Vi) =alv); lim N - 1GN1—1(VNL)
=ai(v),..., lim an;—1(Vn,) = ai(v).

N~>ooN—l

2We put ay_;(Vy) =0 for I > N — 3.
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The further analysis shows (see Section 4) that,

for each sequence an(Vy), %aN,l(VN),...,
%aN,l (Vn), only one limiting point exists.
That is, indeed, the sequences an(V),
%aN_l(VN),...,%aN_l(VN) converge as

N — oo. In addition, it will be shown that
a(v) = a1(v) = ... = q;(v). In what follows, we accept
the sequences ay(V), “e¥=l(Vy), ..., 2an—i(Vy)
to be some convergent subsequences. Moreover, when
we say that we carry out the transition to the limit
as N — oo, we mean that we carry out the limiting
transition with respect to the corresponding subsequence
of the indices N; — oo.

By K, we denote the operator acting on an arbitrary
element f of the Banach space B by the formula

(st)s(qlv--~7QS) = (Kf)s(ql,
(Ksf)izs(qi,...q;) =0.

By ¢ (q), we denote the characteristic function

of the ball Vy with the radius Ry = %UN and its

center at the coordinate origin. We now introduce the
ball V}; with the radius Ry — ry and the characteristic
function ") (¢q). We require that the function ry
possess the following properties: 1y — o0 as N — oo,
and ry /Ry — 0 as N — o0

Finally, we denote, by W(E=7)  the operator acting
on an arbitrary element f € B by the formula

WE N lqrs - qs) =
= F ) (1) . P (q0) fulan, -

We formulate one more property of the operator

2 qs)s

1 s)-

KS(N_Z) in the following lemma.

LEMMA 2. If% < ﬁ, the sequence of operators
UE=) (q)(v) Ky — KN7!) converges in its norm to zero
as N — oo and for fized l.

Proof. For any f, we consider the expression

GET) (g (0) Ky — KWV7D) f = a(v) T E)

xwexp{——Z@
[eS)
Z Uk/~~-/fs+k—1(Q2,~~a%%qr»u-aqu
k=1

k

< [ [ ea (a})da; - ..
=2

} [fs—1(q2s ..., qs)+

N
—_laN,[(VN)\I/(Rir) X

dgy] — N
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1 S
xwexp{e P(q1 qi)}[fs—l((h,...,qs)+
=2
N—l—s (1— =)o (1 — beefked)
N N
’ Z k! vk x
k=1
X/.../fsik—l(QQ,...’qs;qi‘,.”’qz)x
VN VN
< [ [ e (a))dai ... dgi] = ar(v) ") x
i=1

xwexp{——z@ } [fs1(q2,. - qs)+

No 1
+Z—mk/-../fHk,l(qg,...,qs;q;...7q,:)><
k=1

k
* * * N —r
x [ [ 0o (@)dai - dgi] = —an (Vi) ) x
=1
X?TeXp{ Z‘I’ } [fs—1(q2, .- qs)+
No (1 _ l-l—_s) . (1 _ l+s+k—1)
N N
+> o x
k=1

X/-~-/fs+k71(q2a~~~7Qs;q>1ka~~~7q2)><

k
< | [ ea (a})das ...

i=1

dgp]+

S

=

+al(v)\I/(R’T)7r exp {— D(q1 — ql)} X

=2
Z k"l}k/ /fs-i—k 1 q27"'7QS7Q17"'7Qk)
k=No+1

k
< | [ ea (a})das ...

=1

1 s
X’]TeXp{—EZ©(ql —ql)} X
=2

aN_l(VN)‘I’(R_r) X

.. N
dgi| — N1
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N—l—s _ l+s) L _ l4s+k-—1
x[Z (1=t (- et

k! vk
k=No+1
X/~-~/fs+k71(q27-~-7QS;qTa---aQZ)X
VN VN

k
* * * N —r
XH@ql(%)d‘h --~ko] + ﬁaN—l(VN)qJ(R ) %

i=1

XWGXP{;Z@(% ql)} X
INECREE S

X
| yk
= klv
X/u'/fs+k71(q27'~'vQS;qT7"'qZ)X
k k
<1 =TT ¢ @) [ e (a))das - - - dai), (4.4)
=1 =1

where Ny is an arbitrary finite number as yet.
By (3,7, and §, we denote three last terms,
respectively. For those, the estimates

18 < A a(w)e® || f || %

o0 1 .
Xy WAka < A% (No) [ £ I,
k=No+1
N
Il < ASilNi_l aN—l(VN)e% fx

oo 1 .
x Yy WAka < A% (No) || f 1l
k=No+1

o] < A°! an—1(Vn)e? || f ]| x

N —1
oo 1 B ’

> WQ(TN)’%‘Jk PAR < A% (r) || S I,
k=1

are valid, where

o) = [ 167 00% 111 - ) (g))dy

The quantity e1(Ng), as the remainder of the
absolutely convergent series, can be made as small
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as possible for sufficiently large but finite N,
independently of N. The quantity es(ry) can be made
as small as possible for sufficiently large N by virtue of
the absolute convergence of the integral

/ e~ (/0% _1|4q.

Denoting the difference between the first two expressions
by alpha, we obtain the estimate

No
ja| <A F Y%
k=0

N I+
N—laN_l(VN) (1 NS>

1_l+s+k—1
~

where the quantity e3(N) can be made as small as
possible for sufficiently large N, since (an—_;(Vny) —
a;(v) (Np is a fixed number here).

Thus, we obtain

X

ar(v) —

Aka .
<A | £

(WD (0 (0) K = KN7) flo(ars -0 05)] <

1,545
< A%(2e1(No) + ea(rw) +e3(N)) || f 1,

which is equivalent to the estimate

I (@ (0) Ky — KVD) 1<

< (261(No) +2(rn) +es(N) || £ -

Whence it follows immediately that the estimate
e (@ (0) K — KV) |I<

< 2e1(No) +e2(rn) +e3(N) = e(rn, N),

lim e(ry,N)=0

N—o0

(4.5)

is valid, which means that the sequence of operators
U= (g (v) K — KéN_l)) converges to zero in norm as
N — 0.

The lemma has been proved.

By B,, we denote the Banach space composed of
columns f such that f,41 = fny2 = ... = 0. Their norm

-,qs)}-
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We now consider the operators

(N0 _ N-i _
Ky 0= 3 KO, Ky =

1<s<n i<s<n

These operators act from the space B into the space
B,,, and their norm is less than unity. The operators

\I'(R_r)(K[(i\]]*l) — a;(v)Kp,)) are the sum of a finite
number of operators ¥ (KN _ g/(v)K,) which
converge in norm to zero. Therefore, the operators
\II(R_T)(K[(S]FZ) — a(v)K,)) also converge in mnorm
to zero. It is easy to see that, for the norm of
the operator \I/(R_T)(K[(é\]hl) — a;(v)K[)), the estimate
I W(R_T)(K[(gfl) —al(v)K[n]) I< e(ry — N) is valid. In
what follows, we will use the inequalities

1w 0y (0) Ky — W0 0y (0) Ky

)pRor ) | < (1% N) :
n

| R0 N D (Rt (VD

i 1
PR 1< (5 N N> , (4.6)

where n, 7 are integers, 7 < n. These inequalities can be
established exactly like inequality (4.5) in Lemma 2.

Remark. The sequence of the operators
YE-)(KN=D _ q)(v)K) does not converge in norm
to zero. Indeed, the operator W(E—7") K(N=D acts from
B into By_;, and $E-KWN=0) — ( on the elements
f € B, for which f; = 0 as s < N — [. Therefore, for
any N as large as possible, there is always an element
f such that WE-KWN=-D¢ — o WE")g (v)Kf # 0,
and the norm of the element W1~ q;(v)K f is finite.

3. We now examine relation (4.4). By using it
repeatedly, we obtain

FWN=-0 — gIN=D) pr(N=1=1) @) p(2) 4 (N=1)
x KIN=1=1)  g@pe@) 4 g(N-D g(N=1=1)
LLKORG-D) o gINSD pON=I=)  pON =D
= KW-OgWN=1=1)  gGp@e) 4

N—-[—-4 [

4 Z (H K(Nflfj))FO(Nflfifl)_i_FO(Nfl). (4.7)

i=0 j=0
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Here, the operator KN =!=J acts following the operator
KN=1=i=1_ Here, by definition,?:

F1(2)(Q1; Vn)

Fg(z)(Qh q2; V)

(2) = .
¥ = 0 ;

VJ\2/ f eXp{*%(I’(fh - Q2)}dQ2
VN

[ [ exp{—5P(q1 — q2) } dq1 dgo’
VN VN

F1(2)(Q1§VN) =

V2 exp {—10(q1 — g2)) (4.8)

[ [exp{—3®(q1 —q2)} dqr dgo
VN VN

FQ(Q)(QM(D;VN) =

Further, we have

i (VN + Jl)VN VN 62b }
A VN(VN + JQ)7 AQVN(VN + JQ) '

| F® |I< max{

In relations (4.8), the following formulas are used:

/eXp {;(I)(‘h - qQ)} dgz =

VN

= /@ql(%)d% + VN =J1+ W,
VN

|J1] <sup| [ wq(q2)dg2 < J,
q1
v,

N
1
/ /eXp {—5‘1’(% - Q2)} dg1 dgo =
Vi Vi
= / / Pq, (@2)dqrdas + Vi = Vv Jo + V33 (4.9)
Vi Vi
|Ja| < J.

It follows from relations (4.8) and (4.9) that, for
sufficiently large N (what will be assumed below), the
inequality || F® ||< 1 is valid.

From (4.7) with regard for || F®) ||< 1, || FON=D ||<

1,...,|| F°®) ||< 1, we obtain the estimate
N—1-3 i
TEN=D < 30 TTINEN " +1<
i=0 j=0

3The following is pertinent: the columns FN1=11) and
F(N2=l2) for Ny # Na, I3 # l2, and N1 —1; = N3 —l2 are different
by definition.
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9e2b eJA/’U -1 1

1-— < . 4.1
< { A ] 1k (4.10)
It follows from Eq. (4.10) that the columns FV=9 for
1 < 5 belong to the Banach space B, and their
norms are bounded uniformly with respect to N and I.

We now examine the columns

Z H @it (v

1=0 j=0

v)K'F° (4.11)

which arise on the iteration of the relations [see (4.9)]

F' = aj(v) KF"™ + ay(v) F° (4.12)
and, according to the estimate
I F < ZHazﬂ IE [ FO <Y K =
1=0 57=0 =0
1

= 4.13

—, (413)
belong to the space B for 1 5 m

THEOREM III. For any fized | and < W, the

sequence W) (FIN=U _ Bl) tends to zero in the space
B as N — o0.

Proof. We represent the difference ¥(#=7) (F(N=1)
F) in the form

PR (pN=D _ ply = (R [K(N—Z)K(N—l—l) o

N—l—4 i

KO R@ Z HK(Nflfj)FO(Nflfifl)_F

i=0 j=0
4+ FO(N=D) ZH‘IHJ VK FO] _
=0 57=0
g (R=7) [Z HK(Nflfj)FO(Nflfifl) 4 OV
i=0 j=0

n+l 1
ST s K’FO} +n(n). (4.14)

1=0 5=0

The norm of the column 7n(n) does not exceed 2k™/1 —k
and can be made as small as possible for sufficiently large
n. By the definition of the operators KV =Y and K and
the columns FOV—1 and FO, the equalities

n

i
Z H K(N=1=§) pO(N—1=i=1) | pO(N=I) _
i=0 j=0

180

n+l 12
_ (N—=1—=3) 70(N—l—i—1) 0O(N— 1)
=D [ Ky PP 4 F

i=0 j=0

n+l 1

ZHalﬂ VE'FO =" T[ i (0) Kl g F°  (4.15)
=0 j=0 1=0 j=0
are valid.

Inequalities (4.5) and (4.6) yield

(N—=1— R—r (N=1) R—r+2Lr
| HK[n+2] 7 -l )K[n+2] P
(N—=1-1) R—r4=1p) p-(N—l—i+1)
XKy ) Loptr )K[n+2] I

. 1
<(i—1)k" e (— TN, N) ,
n
|t

oo

—pf-ng, () K9] GBI g (v)x

n+2

XK[n+2] ce T Al4+i—1

(V) Knyo [I<

. 1
<(i— 1)k e (— rN,N> )
n

(N— l)\IJ(R r4 = T)K(N l— 1)

R—r)
[ K[ 2] 2]

' \Il( [n+2]

— W0y (0) K o) OB 5 g (0) K -

1
aryio1(0)Kipyg [I<

) 1
<ikile (—TN,N> .
n

From (4.16), we obtain the estimate

i—1
([oomtn - T 15

, 1
< 3ikile (— rN,N> .
n

It is easy to verify the validity of the inequality

(4.16)

|| \II(R n+2

(4.17)

. 1
| P P e (Trn) . @)
n
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On the basis of these inequalities, we obtain the estimate

I gy (R-7) {Z HK (N—1=§) pO(N~1—i=1) | pO(N—I)_

[n+2]
=0 7=0
n+1 1
_Z Hal+‘7 K[n+2]F :| ||< 3e (ETN,N) X
1=0 5=0

n+1
xz (i+1) kwe(m, >Zk

=0

() x

1 1 1
_ — <
X(l—k‘) +€< T‘N,N)l_k\

1 1
<4 N)—0. 4.19
(o) 9
Finally, we obtain the estimate
1
| @B (N0 _ Rl < 4e (- N, N) X
n
X ! +2 LA (ry N) (4.20)
A—k2 "1 cUva) '

By choosing sufficiently large n and N, we can make
the right-hand side of inequality (4.20) as small as
possible. This means that

Jim | GE=(FW=0 _ ply = 0.

The theorem has been proved.
As a consequence of Theorem III, we obtain

lim || OE-)(KN-Op(N=1=1) L pO(N-])_
N—)()o
—a;(v) KF'™*! 4 a(v) F°) [|= 0.

5. Uniqueness of the Limiting Distribution
Functions

1. In this section, we will establish the uniqueness of the
limiting distribution function, i.e., we will prove that
F!'=F and

a;(v) = a(v),

THEOREM IV. For sufficiently small 1 /v, the limiting
distribution functions coincide, and equalities (5.1) are
valid.

Proof. According to (4.12), we have

1=1,2,... (5.1)

F' = q;(v)KF'™ + a;(v)F°,
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F'H = (0)KF™2 a4 (0)FO. (5.2)
We now consider the difference

F'— P = g (o) K(F — FH2) — (a4 (v)—
—a;(V))KF™*2 4 (a;(v) — aj1(v))FO. (5.3)

This yields the inequality
[F = FH < ano) || K| F = F2*2 )

Hare1 () = ar@)] | K [ FH2 | +Hare (v) = ar(v)] %

) 70 < ) g

i 2b e(A/'u)J ” Fl+1

_ Fl+2 || +

1
Harg (0) - a(®)] e

o) — )]

2be(A/v)J H Fit2 H +

(5.4)

Below, we will prove the estimate of such a kind for
the difference a;(v) — a;41(v):

|y (v)— a1 (v)| < ar(v)ag1(v)e A7 | FH—F2 | (5.5)

With regard for (5.5), inequality (5.4) yields

| Ft — FI* < #e% AT gy (v)ag (v) x

X6(2A/v)J%e2b | B2 | +al(v)illﬂ(v)em/v)] o

~ ” Fl+1 _Fl+2 ”: 5(1}) ” Fl+1 _Fl+2 ” ) (5.6)

For 1 < 55, the quantities a;(v) satisfy, by Lemma 1,
the mequahty

ai(v) < 2.
It follows from Eq. (4.13) that, for % < M%b“, the
estimate
1
|| Fl+2 ||< W, A > 2e2b+1 (57)

is valid.

By choosing a sufficiently large A, it is easy to prove
that, for sufficiently small 1/v, the quantity 6(v) in
inequality (5.6) can be made less than unity. Inequality
(5.6) yields

” Fl _ Fl+1 ||< 51(1]) ” Fl+1_
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2

1_ 2¢2b o(A/v)J *
A

—FHI< 6 (v) (5:8)

Since 6(v) < 1 and inequality (5.8) is valid for any 4,
the norm || F! — F'*1 || is as small as possible, i.e. F! =
F'*! and, in general, F = F! = F?2 = .. = Fi*! =

It now follows from inequalities (5.5) that, for
sufficiently small 1/v, the values of a;(v) and alH( )
coincide; in general, we have that a(v) = ai(v) =
as(v) = ...aqy(v) =

The theorem is proved.

It follows from Theorem IV that a column F' satisfies
the Kirkwood—Salzburg equation

F =a(w)KF +a(v)F°.

2. By definition, the functions FS(Nfl)(ql, ey Qs V)

satisfy the relations

/.../FS(N_I)(ql,...,qS;VN)dql...dqs:1. (5.9)

VN VN

45

We will go to the limit in this relation and prove that
the equality

Nooo VN / / q17"'aqsa )d(h d
VN

(N l)
VN

dqs:]-

.,SS;VN)X

xdqy ... (5.10)

is valid. To this end, we will examine the identity

Vg/ / qlv-"7qsa )

VN

_F(N_l) X (q17~--aQS§VN))dQ1~-~dq =
GE(Fl gy, ...
VN q17 ;455U )
VN

*Fs,(Nfl)(Qh s V) + (1= T
x(Fqis- .., qs3v) — FXN 7D (qu, --7QS§VN>)}X
xdqy . ..dqs (5.11)

and estimate separately the first and second terms on the
right-hand side. For the second term on the right-hand
side of Eq. (5.11), the estimate

‘Vg/ /1— B=N(Flq, ..., qs;v)—
VN

182

2
—FN g, 06 Vi))day - dgs| <
R} — (Ry —ry)? )’
ASg N = A's|1—1——=

is valid. It follows from this inequality that, as N — oo,
the second term in (5.11) tends to zero. For the first
term, the estimate

TE(Flqr,.. ., qs
‘VN/ / q17 yqs;V )
VN

_FS(Nil)((ha"'7QS;VN))dq1~~~dQS <
Ry —
< B sy ) =
Ry

3s
(1 - %) A% (ry, N); - lim &(ry, N) =0,
is valid.

This proves formula (5.10).

It is easy to see that the functions F!(qi, ..., qs;v) are
translation-invariant. Therefore, the functions F(q;v)
are invariable.

It follows from relation (5.10) that Fj(q;v) =1, 1 >
0.

We now pass to the proof of inequalities (5.5). It
follows from (4.12) that the formula

=1
=1 —X
) +kz::1k!vk

f

is valid.
We now use the formula

) = aa(0) = anlehora ()

L aY Hsoql (¢7)dqi - .. dgj.
=1

1 1
a1 (v) az(v)) B

aH—l Z 'Uk/ /F‘H_2 v'-~7gka )_

Fl-‘rl(

k
Qis-- s Qi3 H(pql(q;‘)dqf...dqz

Whence we obtain estimate (5.5):

jar(v) = @141 (0)] < a(v)ae (v)e” A | FEL—FE2 |
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3. We now prove that, for the sequence ay(Vy), there
exists a unique limiting point. Indeed, if there would
exist two convergent subsequences with limits a(v) and
at(v), the corresponding columns would be F and F*
which would satisfy the relations

F=a(w)KF +a(v)F°, F'=da'(v)KF!+a'(v)F°

because of Theorem IV. Taking into account that
Fi(g;v) = 1 and Fl(g;v) = 1, we can establish the
estimate

ja(v) —a'(v)] < a(v)a' (V)" | F— F' .

Hence, like the case of Theorem IV, we prove the validity
of the inequality

| F—F[[<8() | F—F' |,

where d(v) < 1 for sufficiently small 1/v. It follows from
relations (5.13) and (5.12) that F = F! and a(v) =
a*(v), respectively. Taking this result into account, we
obtain finally from (5.10) that

1

li o FNTD (g, e .dgs =

Ngnoo VJ@ / / s (qla 5y Qs VN)dQ1 qu
VN VN

. 1
ngnoovﬁ/.../Fs(ql,...,qs;v)dql...dqs:1.
VN 145

In view of the uniqueness of the limiting distribution
functions, Theorem III can now be formulated as
follows. For % < 2e2++1 at any fixed I > O,
the sequence of the functions (=) (g;)... ¢ E=")(q,)
(FSU\FI)(ql7 ooy qs; V) — Fs(q1,...gs,v)) tends to zero
uniformly with respect to ¢1,...¢qs as N — oo, and the
estimate

[ (1) ..

*Fs(qla . QS,U))‘ < Asé(TNaN)a

PE (g ) (FEND(qr, . qe; Vi) —
A=2e271 s>1,

is valid. Moreover, the quantity &(ry,N) depends on
[, and £(ry,N) — 0 as N — oo, generally speaking,
nonuniformly with respect to [. It follows from the results
of Section 2 that the limiting distribution functions
Fy(q1,.-.,qs;v), s = 1 are holomorphic functions of the
density 1/v in some neighborhood of zero.
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BOGOLYUBOV MYKOLA MYKOLAIOVYCH
(21.08.1909-13.02.1992)

M.M. Bogolyubov was the outstanding physicist-theorist and
mathematician. From 1928, he worked at the Nat. Acad. of Sci.
of Ukraine, 1936-1959 — Professor of Kyiv State University, from
1950 — Professor of Moscow State University, from 1956 — Head of
the Laboratory of Theoretical Physics of JINR (Dubna), and from
1965 — Director of JINR, 1965-1973 — the founder and the first
Director of Institute for Theoretical Physics of the NAS of Ukraine.
Academician of the Acad. of Sci. of UkrSSR (1948), Academician
of the Acad. of Sci. of SSSR, twice Hero of Socialist Labor (1969,
1979), winner of the Lenin’s Prize (1958) and three State prizes
of SSSR (1947, 1953, 1984), awarded by M.V. Lomonosov Gold
(1985).

His studies are related to statistical physics, quantum
field theory, theory of elementary particles, and mathematical
physics. Together with M.M. Krylov, M.M. Bogolyubov developed
(1932-1937) the asymptotic theory of nonlinear oscillations,
proposed the methods of asymptotic integration of nonlinear
equations describing various oscillatory processes and gave their
mathematical substantiation. He advanced the idea (1945) of the
hierarchy of relaxation times, which has important meaning in
the statistical theory of irreversible; proposed (1946) the efficient
method of a chain of equations for the distribution functions of
complexes of particles; and constructed (1946) the microscopic
theory of superfluidity which was based on the model of weakly
nonideal Bose-gas. Already in 10 years, by using the quantum-
mechanical model of electron gas interacting with the ion lattice
of a metal, M.M. Bogolyubov generalized the own apparatus of
canonical transformations used in the theory of superfluidity and
developed the microscopic theory of superconductivity. Turning
to the problems of quantum field theory, he gave (1954—
1955) the first version of an axiomatic construction of the
scattering matrix based on the original condition for causality;
proposed a mathematically correct version of the theory of
renormalization with the use of the apparatus of distributions
and introduced the so-called “R-operation” (1955, together with
0O.S. Parasiuk); developed the regular method of refinement of
quantum-field solutions — the method of renormalization group
(1965, together with D.V. Shirkov); and gave a strong proof
of the dispersion relations in the theory of strong interactions
(1955-1956); proposed a method of description of the systems
with spontaneously broken symmetry which was named the
method of quasiaverages (1960-1961); and, by studying the
problems of symmetry and dynamics within the quark model
of hadrons, introduced (1965, together with B.V. Struminsky
and A.N. Tavkhelidze) the notion of a new quantum number
“color”. His main results are presented in the monographs
[1-5].

1. N.N. Bogolyubov, Problems of the Dynamical Theory in
Statistical Physics (Gostekhizdat, Moscow, 1946) (in Russian).
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2. N.N. Bogolyubov, B.V. Medvedev, and M.K. Polivanov,
Questions of the Theory of Dispersion Relations (Fizmatgiz,
Moscow, 1958) (in Russian).

3. N.N. Bogolyubov, V.V. Tolmachev, and D.V. Shirkov, A New
Method in the Theory of Superconductivity (Izd. AN SSSR,
Moscow, 1958) (in Russian).

4. N.N. Bogolyubov, A.A. Logunov, and LT. Todorov,
Foundations of the Axiomatic Approach in Quantum Field
Theory (Nauka, Moscow, 1969) (in Russian).

5. N.N. Bogolyubov and D.V. Shirkov, Introduction to the Theory
of Quantized Fields (Nauka, Moscow, 1976) (in Russian).

PETRINA DMYTRO YAKOVYCH
(23.03.1934—-20.06.2006)

Professor Dmytro Yakovych Petrina, Academician of the National
Academy of Sciences of the Ukraine, Doctor of Physical
and Mathematical Sciences, and Head of the Department of
Mathematical Methods in Statistical Mechanics at the Institute of
Mathematics of the National Academy of Sciences of the Ukraine.

D.Ya. Petrina carried out intensive investigations in many
fields of contemporary mathematical physics. He obtained many
profound results in constructive quantum field theory, the theory
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of analytic scattering matrix, classical and quantum statistical
mechanics, the theory of boundary-value problems in domains
with complicated structure and its applications to the theory
of membranes, and in solving different models in statistical
mechanics.

Among his fundamental results, one should especially mention
the theorem on the impossibility of nonlocal quantum field theory
with a positive spectrum of the energy-momentum operator and
the criteria of the validity of spectral representations of scattering
amplitudes.

D.Ya. Petrina deduced and studied equations for the
coefficient functions of the scattering matrix and suggested to
use the methods of equilibrium statistical mechanics in the
Euclidean field theory. In statistical mechanics, together with
N.N. Bogolyubov, D.Ya. Petrina established the fundamental
theorem on the existence of the thermodynamic limit for
equilibrium states in the canonical ensemble. He developed a new
approach to the Bogolyubov equations as evolutionary equations,
constructed the evolution operator in the explicit form, proved the
existence of the thermodynamic limit for nonequilibrium states,
and gave a mathematically rigorous derivation of the Boltzmann
equation in the Boltzmann-Grad limit.

N.M. Krylov’s prize in mathematics was awarded to a series
of Prof. Petrina’s works in 1984.
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