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The resonant phenomena appearing on the diffraction of an
H-polarized plane wave on periodic gratings consisting of
perfectly conducting bars of rectangular section are studied.
These phenomena represent an abrupt change of the transmitted
or reflected field intensity in a certain short interval of the
frequencies or the incidence angles adjacent to the resonant
values. It is established that, for gratings with the nonzero bar
thicknesses, there always exist the conditions, under which the
incident wave transmits through the grating completely even if
the slits between the bars are very narrow. The natural modes of
a grating are studied, and it is shown that resonant phenomena
occur if the incident plane wave excites a mode close to the
natural one.

1. Considerable attention has recently been given to
the study of open resonant systems and the means
of their excitation in connection with the uptake of
millimeter and submillimeter wave ranges. A periodic
grating from perfectly conducting bars of rectangular
section considered in the present paper can be assigned
to systems of this kind. When a plane H-polarized
wave is diffracted on this grating, a number of resonant
phenomena arise such as the anomalous transmission
in the neighborhood of sliding points, full transmission
at certain frequencies and incidence angles, etc. Some
of the effects are similar to those for reflecting
gratings (for example, the anomalous transmission and
Wood anomalies). These phenomena can be explained
naturally with the help of the notion, given in the
present work, about the natural mode of a grating. It
is shown that the system under consideration possesses
three types of natural modes, which are the solutions of
Maxwell’s equations in the absence of sources: a) a mode
with a complex frequency (negative imaginary part) and
real phase propagation velocities along the grating; b)
a mode with a real frequency and a complex (negative
imaginary part) propagation constant along the grating;
c) a mode with a real frequency and real phase velocities.

It is also shown that, in each resonant case, the incident
plane wave excites the mode close to one of the above-
listed.

Note that, in the available literature, these grating
natural modes are called ‘damped resonances’, ‘leaky
waves’, and the surface wave mode, respectively. In
[1, 2], the relationship between damped resonances and
leaky waves with the excitation of open systems is
discussed. The mode of the third type is inherent in a
wide class of slow-wave structures and has been studied
in detail in [3] for a reflecting grating.

R. Wood was the first who observed, back in
1902, the resonant phenomena on reflecting diffraction
gratings in the optical range [4]. Since that time,
a lot of papers have been published, in which
these resonances named the Wood anomalies, are
investigated experimentally [5] and theoretically [6–
8]. In the millimeter range, the Wood anomalies
on reflecting gratings with rectangular grooves were
studied experimentally in the recent work [9]. The
most consistent theory of the diffraction of a plane
wave on a grating of this kind in the case where the
groove width is small in relation to the wavelength
is presented in [3]. In particular, this theory allowed
one to study some features of the Wood anomalies. In
this case, it was established that the Wood anomalies
appear on the diffraction of a plane H-polarized wave
in the spectra of the 1st, 2nd, etc. orders in a narrow
frequency band or a narrow interval of incidence
angles adjacent to the so-called ‘sliding points’, i.e.
the points of the initiation of higher propagating
harmonics.

In the present paper, the resonant effects that
arise not only in the vicinity of the sliding points are
studied in detail. Thus, the theory developed here allows
one to reveal practically all things, including Wood’s
resonances that take place on the diffraction of a plane
H-polarized wave on perfectly conducting gratings made
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from bars of rectangular section if the width of the slits
between bars is small [10].

2. If a plane H-polarized wave is incident on a grating
(Fig. 1) from the side y<0 at an angle ψ = 0, then the
diffraction field is defined by relations (1)–(4) in [10]. If
the width of slits between bars d is small as compared
with the grating period l, i.e., if θ2 =

(
d
l

)2 � 1, we can
restrict ourselves to the first-order approximation. Then,
for Hz (x, y;κ, α) = H (ξ, η;κ, α) (where ξ = 2x

l , η = 2y
l

if d
λ < 1

2 ), we obtain the following expressions (see [10]):

H (ξ, η;κ, α) = eiπακξ
[
eiπκγη + e−iπκγ(η+2δ)+

+2
iκθ

D
e−iπκγδ(iκθS0 sin 2πκδ − cos 2πκδ)×

×
∞∑

n=−∞
Rne−iπrn(η+δ)eiπnξ

]
; η < −δ,

H (ξ, η;κ, α) = 2
iκθ

D
eiπκ(αξ−γδ)×

×
∞∑

n=−∞
Rneiπrn(η−δ)eiπηξ; η > δ,

H(ξ, η;κ, α) =
2 sin ακθπ

Dακθπ
e−iπκγδ

{
sin(δ − η)π+

+iκθS0 cos πκ(δ − η) + 2iκθ×

×
∞∑

m=1

e−im π
2

Sm cos πm
2θ (ξ + θ)

shπδ
2θ τm

×

×
[
sh
[
π(η + δ)

2θ
τm

]
− sh

[
π(δ − η)

2θ
τm

]
×

×(cos 2πκδ − iκθS0 sin 2πκδ)

]}
+ 4e−iπκδακθπ×

×
∞∑

m=1

e−im π
2

sin
(
ακθπ − mπ

2

)
(ακθπ)2 − (mπ

2

)2 sh
[

π(δ−η)
2θ τm

]
sh
[

πδ
2θ τm

] ×

Fig. 1. Transmission coefficients |b0| versus the frequency κ =
ωl
2πc

= l
λ

in the case of normal incidence (ψ = 0). Different kinds
of frequency resonances are shown: in the vicinity of the sliding
points (κ = 1, 2 for δ = 0.05) and far from them (δ = 2). θ = 0.2,
γ = 0.99999

× cos
πm

2θ
(ξ + θ); |η| < δ; |ξ| < θ,

Ex = − 1
ik

∂Hz

∂y
; Ey =

1
ik

∂Hz

∂x
;

Ez = 0; Hx = 0; Hy = 0, (1)

where

D =
(
1 + κ2θ2S2

0

)
sin 2πκδ + 2iκθS0 cos 2πκδ;

Rn =
sin (n + ακ) θπ

rn (n + ακ) θπ

sin ακθπ

ακθπ
,

Sm =
∞∑

s=−∞

sin (s + ακ) θπ

rs

sin
[
(s + ακ) θπ − mπ

2

]
(s + ακ)2 θ2π2 − (mπ

2

)2 ;

rn =
√

κ2 − (n + ακ)2; τm =
√

m2 − (2κθ)2;

α = sin ψ; γ = cos ψ; κ =
kl

2π
=

l

λ
; δ =

h

l
; k =

ω

c
,

(2)

k is the wave number, λ is the incident wavelength, and
h is the bar height.
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The approximate expression for the field given by (1)
at |y| > h

2 (−∞ < x < ∞) and at |y| < d
2 (|x − nl| < d

2 ;
n = 0,±1,±2, . . . ) satisfies the Helmholtz equation, is
continuous throughout the entire space, and is such that
the condition Etang = 0 is fulfilled on the bars. The
electromagnetic field defined by (1) and (2) does not
have, however, the required singularity on the bar edges,
since the first-order approximation is inadequate to take
the higher harmonics into account. As a consequence,
the continuity condition for Ex (x, y;κ, α) in the slits for
y = ±h

2 is fulfilled with a moderate accuracy. However,
the accuracy of formulas (1) and (2) improves as θ and κ
decrease. It is significant that the amplitude coefficients
in (1) of spatial harmonics propagating away from the
grating satisfy the energy conservation law∑
|n+ακ|<κ

(
|an|2 + |bn|2

)
rn = κγ, (3)

where an correspond to the reflected field, while bn

correspond to the transmitted field.
3. Going to the analysis of formula (1), we note, first

of all, that the smaller the θ, the greater the amplitudes
|bn| (n = 0,±1,±2, . . . ) of the spatial harmonics of the
transmitted field (for |y| ≥ h

2 ) if the following relation is
not fulfilled:

tan 2πκδ = − 2κθV (α, κ)
1 − κ2θ2 |S0 (α, κ)|2 = −U (α, κ) , (4)

which results in

|bn| =
Rn

R
. (5)

Here,

S0 = R − iV =
∞∑

n=−∞

sin2 (n + ακ) θπ

rn (n + ακ)2 θ2π2
;

R ≡ R (α, κ) =
∑

|n+ακ|<κ

sin2 (n + ακ) θπ

rn (n + ακ)2 θ2π2
> 0,

V ≡ V (α, κ) =
sin2 (n + ακ) θπ√

(n + ακ)2 − κ2 (n + ακ)2 θ2π2

. (6)

For the harmonic amplitudes in the reflected field, taking
into account (3), we have

|an| = |bn| , (n �= 0) ; |a0| = 1 − 1
κγR

sin2 ακθπ

(ακθπ)2
.

Thus, relation (4) determines the values of the
parameters α and κ (which will be referred to as the
resonant values), for which the transmission of the
incident field is maximal.

In this case, if (4) holds for

κ(1 + α) ≤ 1, (7)

i.e., if only the principal wave propagates, then, as seen
from (5) and (6), the transmission coefficient |b0| is equal
to unity (the reflection coefficient equals zero, since (3)
yields |a0|2 = 1 − |b0|2). In this situation, the incident
wave passes through the grating completely, without
reflection even if the slits between the bars are very
narrow, i.e., if θ � 1.

When analyzing relation (4), we will distinguish two
cases: the function U (κ, α) is positive, and it is negative.
The latter takes place if

κθ |S0 (κ, α)| ≥ 1. (8)

With the help of this inequality, we determine the
neighborhoods of the sliding points.

First, we consider frequency resonances (by κ). For
the present, we restrict our consideration to the case
κθ |S0| < 1. In this case, the resonant values κ = κN

(N = 1, 2, . . . ) satisfying (7) have the form, to within
θ2,

κN =
N

2δ

[
1 − 1

Nπ
arctan U

(
α,

N

2δ

)]
;

N = 1, 2, ... ,

[
2δ

1 + α

]
.

In this case, the inequality δ > 1
4 should be

necessarily valid. If the value of
(

Nθ
2δ

)2 ∣∣S0

(
α, N

2δ

)∣∣2 can
be neglected, since it is considerably less than unity, the
corresponding value of κN is close to

κN =
N

2δ

(
1 +

2θ

πδ
ln sin

πθ

2

)
, (9)

whereas if
(

Nθ
2δ

) ∣∣S0

(
α, N

2δ

)∣∣ tends to unity, we have
κN → 1

2δ

(
N − 1

2

)
.

Hence, for δ > 1
4 , there exist a number of values

κ = κN (Fig. 2) depending on θ, δ, and the angle of
incidence ψ such that the intensities of the transmitted
and incident waves are equal to 1. For κ = κN , the
reflected wave is absent; the value of |H (ξ, η)| in a slit
is as much as the values of the order of γ

θ . However,
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Fig. 2. Transmission coefficients |b0| versus the frequency κ =
ωl
2πc

= l
λ

in the case of normal incidence (ψ = 0). Different kinds
of frequency resonances are shown: in the vicinity of the sliding
points (κ = 1, 2 for δ = 0.05) and far from them (δ = 2). θ = 0.2,
γ = 0.99999

when κ is displaced from the resonant values κN ,
the field picture changes: the reflected wave arises, and
the intensity of the transmitted wave as well as the
magnitude of |H (ξ, η)| in the slits decreases sharply; the
smaller is θ, the more abruptly they change (Figs. 1 and
5,a).

We determine the width of the grating transmission
band Δκ as the difference between two values of κ being
closest to a resonant value and such that the intensity
of the transmitted wave for these κ is twice lower than
the intensity for the corresponding resonant value. These
values of κ satisfy the equation

tan(2πκδ) =

− U

1 − R2

V 2 U2

[
1 ± R

V

√
1 +
(

1 − R2

V 2

)
U2

]
,

(10)

which implies that, for
(

Nθ
2δ

)2 ∣∣S0

(
α, N

2δ

)∣∣2 � 1, the
transmission band width ΔκN in the vicinity of κN is
close to

ΔκN =
2θ

πγδ
(11)

and tends to zero as θ decreases or δ increases.
For κ (1 + α) > 1, new types of propagating waves

arise. In this case, there also exist the resonant values
κ satisfying relation (4) (Fig. 2) and being such that
the total intensity of propagating harmonics in the
transmitted field reaches the maximum. However, as it
follows from (5), (6), and the energy conservation law
(3), this intensity is now invariably less than the incident
wave intensity.

Fig. 3. Resonance dependence of |b0| on κ in the vicinity of the
first sliding point at a near-normal incidence (γ = 0.99999) for
θ = 0.2 and various δ (a) and for δ = 0.05 and various θ (b)

Passing to the study of the neighborhoods of the
sliding points

κ (1 ± α) = n (n = 1, 2, ...) , (12)

which have been determined by condition (8), we restrict
ourselves, for simplicity, to the neighborhood of the
sliding point κ = 1 in the case of the normal incidence
(ψ = 0). This neighborhood, with an accuracy of
θ6 ln2 sin πθ

2 , is given by the inequalities
√

1 − 4θ2 (1 + Gθ)2 ≤ κ ≤
√

1 + 4θ2 (1 + θ)2,

where

G = 2
∞∑

s=2

sin2 sπθ√
s2 − 1s2π2θ2

.

Suppose there exist κ such that tan 2πκδ > 0 within the
interval√

1 − 4θ2 (1 + Gθ)2 ≤ κ ≤ 1.

Then the intensity of the transmitted wave changes
sharply from small values up to the unity and then
decreases abruptly at the sliding point κ = 1 down
to zero if κ is varied in this interval (Fig. 3,a,b). The
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Fig. 4. Amplitudes of the first spatial harmonics in the reflected field |b0|, |b1|, and |b2| as a function of κ in the case of a normal
incidence. As seen, these amplitudes are abruptly changed in the vicinity of the sliding points (abnormal transmission); this concerns
especially the amplitude of a harmonic that propagates by passing through a sliding point (|b1| near κ = 1; |b2| near κ = 2)

resonant value κ = κ0, with an accuracy of θ4, is equal
to

κ0 =
√

1 − ς2
0 , (13)

where

ζ0 =
2θ
(√

1 + tan2 2πδ − 1 + Gθ tan 2πδ
)

tan 2πδ + 2Gθ
.

In this case, the transmission bandwidth in the vicinity
of κ = κ0 is close to

Δκ0 = ζ3
0 . (14)

Relations (13) and (14) are derived on the assumption
that tan2πδ > 0.

We note that ζ0 ≈ θtan 2πδ for tan 2πδ � 1 and
θ � 1.

Among the amplitudes of spatial harmonics in the
transmitted field (η ≥ δ), the harmonics with n = −1
and n = 1 show the highest amplitudes for κ = κ0

(Fig. 4):

|b−1| = |b1| =
κ0

ζ0

sin πθ

πθ
.

In the reflected field (η ≤ −δ), the highest amplitudes
have the harmonics with n = −1 and n = 1 as well:

|a−1| = |a1| =
κ0

ζ0

sin πδ

πδ
.

By taking into consideration that the principal reflected
wave is absent for κ = κ0, we get the following field
picture in this resonant situation: far from the grating,
the field under the grating is determined by the incident
wave only, the field above the grating is determined
by the transmitted wave, whose intensity is equal to
that of the incident wave; in the vicinity of the grating,
these fields are determined to a large extent by the
harmonics with n = −1 and n = 1. These harmonics
are the surface waves of high amplitudes that propagate
along the grating in opposite directions with the velocity
close to the velocity of light, and they exponentially
decrease with a small damping factor as the observation
point moves away from the grating. Consequently, the
contribution of these waves is less than that of the
incident (or transmitted) wave only if

|η| > δ +
1

πζ0
ln

1
ζ0

.

In this case, the field inside the slits between bars
consists of the propagating and damped guided waves of
high amplitudes; in the slits, the magnitude of |H (ξ, η)|
reaches the values of the order of ζ−1

0 (Fig. 5,b).
The field structure changes abruptly as κ shifts from

the value κ0; at the sliding point κ = 1, the transmitted
field vanishes1. In the slits, the field consists of the
guided waves exponentially decreasing in the direction

1Within the limits of the given approximation.
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Fig. 5. Distribution of the absolute value of the magnetic field over η (η = 2y
l

) for ξ = 0 (ξ = 2x
l

) for different types of resonances
far from the sliding point κ = 1. a – far from the sliding point κ = 1 (normal incidence). The field distributions in the resonant case
κmax = 0.4585, the region −2 ≤ η ≤ 2 is occupied by a slit; in the absence of resonances, κmin = 0.5738; b – in the vicinity of the
sliding point κ = 1 (almost normal incidence). The field distributions in the resonant case κmax = 0.995, the region −0.5 ≤ η ≤ 0.5 is
occupied by a slit; in the absence of resonances, κmin = 0.991

of positive η, whose amplitude is proportional to θ2.
Beneath the grating, the field is a superposition of the
incident, reflected, and two sliding waves propagating
along the grating in opposite directions:

H (ξ, η) = eiπη + e−iπ(η+2δ)−

− πθ

sin πθ
e−iπδ

(
eiπξ + e−iπξ

)
, η ≤ −δ.

On the further increase in κ, the field begins to ‘seep’
through the grating, new propagating modes arise, and
their amplitude changes abruptly as κ varies in the range

1 < κ <
√

1 + 4θ2 (θ + θ2).

At κ = κ′
0 =
√

1 + ζ ′20 , where

ζ ′0 =
2θ
√

tan 2πδ
(
θ
√

tan 2πδ +
√

2Gθ + tan 2πδ
)

2Gθ + tan 2πδ
,

it reaches its maximal value (for κ > 1)

|an| = |bn| =
sin πθ

πθ

κ′
0

ζ ′0 + 2κ′
0

sin2 πθ
(πθ)2

, (n = ±1) .

We note that, in this case, the amplitude of the principal
reflected wave differs little from 1, while the one of the
transmitted wave is close to 0 (Fig. 4):

|a0| =
2κ′

0

ζ ′0 + 2κ′
0

sin2 πθ
(πθ)2

sin2 πθ

(πθ)2
;

|b0| =
ζ ′0

ζ ′0 + 2κ′
0

sin2 πθ
(πθ)2

.

Consider now the resonances by an angle of incidence. It
follows from (10) for κ (1 + α) < 1 that the transmitted
wave intensity is higher than a half of the incident wave
intensity for those ψ, for which the following inequality
holds:

R2 (α, κ) ≥ 1 + U2 (α, κ)
U2 (α, κ)

V 2 (α, κ) , (α = sin ψ > 0) .

For κ < 1
2 , these angles of incidence belong, with an

accuracy of θ4, to the interval

π
2 − arcsin θ√

3−2
√

2+(
√

2−1)κ2θ2

[
1√

1−2κ2
+P (1,κ)

] <

< ψ < π
2 − arcsin θ√

3+2
√

2+(
√

2+1)κ2θ2

[
1√

1−2κ2
+P (1,κ)

] ,

where

P (α, κ) =
∑

n �= 0
n �= −1

sin2(n + ακ)πθ

π2θ2(n + ακ)2
√

(n + ακ)2 − κ2
.

We determine the angle of full transmission ψ0 as the
angle of incidence, at which the incident wave passes
through the grating without reflection. It is seen from
(1) that, in this case, κ (1 + α) < 1.

First, we consider the case where the right-hand part
of relation (4) is negative (κθ |S0 (α, κ)| < 1). It follows
from the properties of the function U (α, κ) that the
angle of full transmission exists only if −tan2πκδ ≥
U (0, κ) > 0. For κ < 1

2 (in this case, V (α, κ) is a slowly
varying function of ψ and κ; hence, we can consider that
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Fig. 6. |b0| as a function of the angle of incidence ψ (γ = cos ψ) for
various κ. Different types of resonances by the angle of incidence
are shown: a full transmission at κ = 0.385 and an abnormal
transmission in the vicinity of the sliding point ψsl. = arcsin 1−κ

κ
for κ = 0.595, θ = 0.0917; δ = 7

V (α, κ) = −2 ln sin πθ
2 making no significant error), the

angle ψ0 is equal to

ψ0 =
π

2
− arcsin θ

[
1 − 4κθ ln sin

πθ

2

(
cotan2πκδ+

+κθ ln sin
πθ

2

)]−1/2

; (15)

whereas, for 1 > κ > 1
2 , the angle of full transmission,

for which 1 − κθ |S0 (α, κ)| � 1, is close to

ψ0 = arcsin
{1 − κ

κ
−

θ2
[
1 +

√
tan 2πκδ − κθP

(
1−κ

κ , κ
)]

2
[
tan 2πκδ + 2κθP

(
1−κ

κ , κ
)] }

.

(16)

The intensity of the transmitted wave for the angle of
incidence given by (15) or (16) is the same as that for
the incident wave; it decreases rapidly as ψ moves away
from these values (Fig. 6).

If tan2πκδ > 0, then the resonant value of ψ belongs
to the neighborhoods, which have been determined by
(7), of the sliding points given by (12). We restrict
our consideration to a neighborhood of the sliding point
ψsl. = arcsin 1−κ

κ for 1 > κ > 1
2 , which can be

determined with an accuracy of θ4 by the inequalities

arcsin
{

1 − κ

κ
− θ2

2

[
1 + κθP

(
1 − κ

κ
, κ

)]}
< ψ <

< arcsin

[
1 − κ

κ
+

θ2

2

(
1 +

κθ√
2κ2 − 1

)2
]

.

Fig. 7. Resonant curve |b0| as a function of the angle of incidence
ψ (γ = cos ψ) in the vicinity of the sliding point ψsl. = arcsin 1−κ

κ
;

for θ = 0.1, κ = 0.595, and different δ (a) and for κ = 0.595,
δ = 0.7, and different θ (b)

The transmitted wave intensity changes abruptly as ψ
varies in the range

arcsin
{

1 − κ

κ
− θ2

2

[
1 + κθP

(
1 − κ

κ
, κ

)]}
< ψ ≤

≤ arcsin
1 − κ

κ
,

reaching its maximal value equal to 1 at the angle of
incidence

ψ0 = arcsin
(

1 − κ

κ
− η2

0

)
, (17)

where

η2
0 =

θ√
2

√
1 + tan2 2πκδ − 1 + κθP

(
1−κ

κ , κ
)
tan 2πκδ

2κθP
(

1−κ
κ , κ

)
+ tan 2πκδ

,

and reducing to zero at the sliding point ψ = ψsl. (Figs.
6 and 7).

The transmission bandwidth by the angle of
incidence Δψ in the vicinity of ψ0 is close, in this case,
to

Δψ =
4
√

2κ2

2κ − 1
η3
0 (18)
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and tends to zero as θ and tan2πκθ decrease as
(θtan2πκδ)3.

For ψ > ψsl., a new propagating mode arises, whose
amplitude sharply changes within the interval

ψsl. < ψ < arcsin

[
1 − κ

κ
+

θ2

2

(
1 +

κθ√
2κ2 − 1

)2
]

,

by reaching its maximal value (4) at ψ = ψ′
0 =

arcsin
(

1−κ
κ + η′2

0

)
, where

η′
0 =

θ
√

tan 2πκδ√
2

×[
κθ

√
tan 2πκδ√
2κ−1

+
√

2κθP (1,−κ) + tan 2πκδ
]

2κθP (1,−κ) + tan 2πκδ
.

We note that the field structure at the resonant values
of the angle of incidence is similar to that at the resonant
values of κ; hence, we will not dwell on it.

Thus, if only a principal wave (κ (1 + α) < 1)
propagates, then, for each angle of incidence ψ, there
exists a series of values of κ, for which the incident wave
passes through the grating completely even in the case
of narrow slits and thick bars. Similarly, for any fixed
κ satisfying inequality (6), there exists an angle of full
transmission ψ0. The change of the diffracted field, when
κ or ψ shifts from the resonant value, is especially abrupt
if it lies in the vicinity of the sliding point κ (1 + α) = 1.

Similar phenomena occur in the case where several
types of propagating waves exist (κ (1 + α) ≥ 1);
however, the intensity of the transmitted field is
invariably less now than the incident wave intensity.

In order to understand the origin of the resonance
phenomena considered, let us turn our attention to the
study of the natural modes of a grating.

4. The natural mode of a grating is the solution of the
homogeneous Maxwell equations which is continuous in
the domain complementary to the bars, is given by

Hc
z (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

ane−iπ
√

κ2−(n+ακ)2(η+δ)eiπ(n+ακ)ξ, η < −δ,

ei2πNκα
∞∑

m=0

[
cmeiπ

√
κ2−( m

2θ )2
η + dme−iπ

√
κ2−( m

2θ )2
η

]
cos πm

2θ (ξ − 2N + θ) ; |η| < δ, |ξ − 2N | < θ,

∞∑
n=−∞

bneiπ
√

κ2−(n+ακ)2(η−δ)eiπ(n+ακ)ξ, η > δ, (N = 0,±1, ±2, ...)

Ec
x = − 1

iπκ

∂Hc
z

∂η
; Ec

y =
1

iπκ

∂Hc
z

∂ξ
; Ec

z = 0;

Hc
y = 0; Hc

x = 0; η =
2y

l
; ξ =

2x

l

and satisfies the condition Ec
tang = 0 (on the bars).

In these relations, we have chosen the branch√
κ2 − s2 (in the complex plane s being cut along vertical

lines that go upwards from κ and downwards from −κ)
such that Im

√
κ2 − s2 → +∞ as s → ±∞. Such a choice

of the branch ensures the continuity of
√

κ2 − (n + ακ)2

and
√

κ2 − (m
2θ

)2 for κ and α located in the right half-
plane (Re κ > 0, Re α > 0).

The natural mode is characterized by two parameters
κ and α which are dependent, generally speaking, on
geometrical parameters of the grating and determine,
respectively, the eigenfrequency and the eigenvalue of
the propagation constant along the grating.

If Im κ ≥ 0 and ψ is real-valued (α = sin ψ), then
the natural mode is absent for κ �= 0; the only solution
of the homogeneous Maxwell equations satisfying the
above-listed conditions is the trivial solution. Hence, for
a given value of ψ, the eigenfrequencies possess negative
imaginary parts, while, for fixed κ, the eigenvalue of
the propagation constant is determined by the complex
value of the angle ψ.

If the slits between the bars are narrow, the values of
κ and α associated with the natural mode, as it follows
from (1), can be estimated from the equation2

tan 2πκδ = − 2iκθS0

1 + κ2θ2S2
0

, (19)

where S0 = S0 (α, κ) is determined by (5).
If the angle ψ is real-valued and fixed, then the roots

κ = κc
N (N = 1, 2, . . . ) of this equation not belonging to

neighborhoods of the sliding points (12) are equal, with
2With these values of κ and α, the fields given by (1) tend to

infinity.
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an accuracy of θ2, to

κc
N =

N

2δ

[
1 − 1

Nπ
×

×arctan

√
(1 − σ2

N − t2N ) + 4σ2
N − 1 + σ2

N + t2N
2σN

−

− i

2πN
ln

√
(1 + σ2

N + t2N )2 − 4t2N

1 + σ2
N + t2N − 2tN

]
(N = 1, 2, ...) (20)

σN =
UNV 2

N

V 2
N + R2

NU2
N

;

tN =
VNRNUN

V 2
N + R2

NU2
N

(
2δUN

NθVN
− 1
)

,

where UN , VN , RN are the values of the corresponding
functions at κ = N

2δ . At the same time, the root κ = κc
0

located in the vicinity of the sliding point κsl. (1 + α) = 1
has the following form for α � θ2:

κc
0 =

1 − εc

1 + α
,

εc =
θ2 tan

2πδ

1 + α

(1 + α) (2 − α)

⎧⎨
⎩ θ

γ
tan

2πδ

1 + α
+ i

[
1 +

√
1 + tan2 2πδ

1 + α

]
−

θP
(
α, 1

1+α

)
1 + α

tan
2πδ

1 + α

⎫⎬
⎭

2 .

Note that, for α = 0, we have

κc
0 = 1 − εc

0;

εc
0 =

2θ2 tan 2πδ[
θ tan 2πδ + i

(
1 +

√
1 + tan2 2πδ − θG tan 2πδ

)]2 .

(21)

For the roots whose real part is less than (1 + α)−1, in
the case where

(
Nθ
2θ

)2 ∣∣S0

(
α, N

2δ

)∣∣� 1, (20) yields

κc
N =

N

2δ

(
1 +

2θ

πδ
ln sin

πθ

2

)
− i

θ

πγδ
;

(
N = 1, 2, ... ,

[
2δ

1 + α

])
. (22)

It follows from the formulas derived that the real part
of κc

N (N = 1, 2, . . . ) is close to the resonant values κN

(for example, (8) and (13)), while the imaginary part is
negative and tends to zero as θ decreases.

We recall that, in the case of diffraction, a number of
resonant curves κ = κN (ψ) (N = 0, 1, 2, . . . ) exist in the
plane κ, ψ as ψ varies in the range

(
0, π

2

)
. Similarly, in

the case of the natural mode in the three-dimensional
space Re κ, Im κ, ψ, there exist a number of curves

being the intersection of three mutually perpendicular
cylinders

Re κ = Re κc
N (ψ)

Im κ = Im κc
N (ψ) 0 ≤ ψ ≤ π

2

which determine the eigenvalues of the parameters κ and
α. These curves are close to the corresponding resonant
curves; the curve corresponding to the neighborhood of
the sliding point κsl. (1 + α) = 1 differs the least from
the resonant curve.

We determine the Q-factor of the natural mode in
the way similar to that for an open resonator [11],

Q = − Re κc

2Im κc
,

where κc is one of the eigenvalues of the parameter κ. At
this determination, the Q-factor is little different from
the quantity

Q′ =
κN

ΔκN
,

where κN is a resonant value, and ΔκN is the
transmission bandwidth in the vicinity of this value.
Note that the Q-factor is a function of the angle ψ and
of grating’s parameters θ and δ. For the natural mode
characterized by values (22), it equals

QN =
πγN

4θ

(
1 +

2θ

πδ
ln sin

πθ

2

)
, (N = 1, 2, ... , [2δ]),
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while, for the mode specified by (21) in the case where
tan2πδ � 1, it is close to

Q0 =
1 − 1

2θ2 tan2 2πδ

θ3 tan3 2πδ
.

It is seen from these formulas that the Q-factor of the
natural mode increases as θ decreases, by reaching the
highest value when the eigenvalue of the parameter κ is
close to one of the sliding points (12).

The eigenfield for each value of κc consists of
oscillations of two kinds. At some distance away from
the grating, oscillations of the first kind are waves of the
form

Ane
iπ
[
(κcα+n)ξ+

√
(κc)2−(n+ακc)2|η|

]
, (23)

where Im κc < 0, Im rc
n < 0, and

rc
n =
√

κc2 − (n + ακc)2.

Their number is finite and coincides with that of integers
falling in the interval (Re {κc (1 + α)} ,Re {κc (1 − α)}).
A wave of this kind grows exponentially in the direction
normal to the grating and along positive values of ξ.
However, one can specify a sector of directions, along
which this wave is decaying exponentially. This sector
is bounded by two rays

−Im κcαξ − Im rc
n |η| = const, (24)

and its opening is less than π and equals 2arctan Im κc

Im rc
n
.

Rays (24) specify the directions, along which the
wave given by (23) propagates.

Oscillations of the second kind have also the form of
waves (23). However, they are infinite in number, and
we have Im rc

n > 0 for them. Waves of this kind decay
exponentially in the direction normal to the grating and
grow along positive values of ξ. The opening of the sector
of directions, along which they decay exponentially,
is greater than π and equals 2

(
π + arctan Im κc

Im rc
n

)
. The

propagation direction of the waves is also determined
by the directions of the rays given by (24).

Note that the oscillations of these kinds belong to
a class of the so-called damped resonances [1] or the
eigenoscillations of open systems characterized by a
complex-valued frequency with a negative imaginary
part, which indicates the decay of these waves with
time and the energy leakage in the directions of their
exponential growth. Consequently, they cannot exist
without inflow of energy from the outside.

Let now κ be real-valued and fixed. First, let us
consider a surface natural mode arising if κ < 1

2 and
α > 1 (the angle ψ has the form π

2 − iϕ, ϕ > 0). Let
also ακ = n0 + νκ, where n0 is the integer nearest to ακ
(hence, |νκ| ≤ 1

2 ). Separate the term n = −n0 in S0. The
remained sum for θ � 1 is a slowly varying function of
ν and κ. So, without any substantial error, the sum may
be considered equal to −2i ln sin πθ

2 . Relation (19) yields
the eigenvalue of the propagation constant ακ along the
grating, αc

Nκ = N + νcκ (N = 0, 1, 2, . . . ), where νc can
be determined from the formula√

1 − (νc)2 =

=
iθ

cotan 2πκδ +
√

1 + cotan2 2πκδ + 2κθ ln sin πθ
2

,

and the following inequality must be satisfied:

cotan 2πκδ ≥
1 − 4κ2θ2

[(
1 − 4κ2

)−1/2 − ln sin πθ
2

]2
4κθ
[
(1 − 4κ2)−1/2 − ln sin πθ

2

] .

In this case, the natural mode does not contain waves
which grow while moving away from the grating and
involves only the surface waves propagating along the
grating with phase velocities

vph
n =

κc

αc
Nκ + n

(n = 0, ±1, ±2, . . . )

which are less than the velocity of light. The greatest
phase velocity corresponds to the wave with n = −N
and is determined by the relation vph

−N = c
vc .

Oscillations of this kind can exist without inflow of
energy from the outside like the eigenoscillations of a
closed system. The field structure of such surface natural
mode can be generated with the help of charges moving
with a certain velocity near the grating.

If 1 > κ > 1
2 , then, at

√
1 + cotan22πκδ + cotan2πκδ � θ ln sin

πθ

2
,

the root αc of relation (19) located in the vicinity of the
sliding point αsl. = 1−κ

κ can be written as

αc =
1 − κ

κ
− 1

2
(ηc)2 ;

ηc =
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=
iθ

2κθ√
2κ−1

+i
[√

1+cotan22πκδ+cotan 2πκδ−κθP
(

1−κ
κ , κ
)] . This implies that the real part of αc is close to the

resonant value (16) or (17), while its imaginary part is
negative and equals

Im αc = −
κθ3
[√

1 + cotan2 2πκδ + cotan 2πκδ − κθP
(

1−κ
κ , κ

)]
√

2κ − 1
{

κ2θ2

2κ−1 +
[√

1 + cotan2 2πκδ
]

+ cotan 2πκδ − κθP
(

1−κ
κ , κ

)} .

If tan2πκδ > 0, then −Im αc is little different from
the transmission bandwidth in α. For tan2πκδ � 1, it
is close to

−Im αc ≈ κ (θ tan 2πκδ)3

8
√

2κ − 1
.

In this case, the eigenfield at some distance from the
grating is a superposition of an infinite number of
waves of kind (23). However, we now have Im κ = 0,
Im α < 0, and Im rn > 0 for all n, so that the waves are
exponentially decaying in the direction normal to the
grating and are increasing along the positive values of ξ.
The propagation direction for these waves is determined
by the rays

κIm αcξ + Im rn |η| = const (25)

bounding a sector with the opening

2
(

π + arctan
κIm αc

Im rc
n

)
,

within which they are exponentially decaying.
Waves of this kind belong to the class of leaky

waves, though, in contrast to waves of this class in open
waveguide systems [12], they decay exponentially in the
direction normal to the guided-wave system. The energy
leaks in the directions of the exponential growth of these
waves which belong to a sector characterized by the
opening −2arctanκIm αc

Im rc
n

and bounded by rays (25).
Thus, we have three types of natural modes for the

open periodic structure under consideration.
The first type (damped resonances) is characterized

by complex values of κ belonging to the unphysical
plane of this parameter and resulting in the damping
of oscillations of this kind with time.

The natural mode of the second type (leaky waves)
is characterized by the complex-valued propagation
constants along the structure α, which indicates the field
energy leakage into the free space in the directions of

exponential growth of oscillations of this kind. Therefore,
modes of the first and the second types cannot exist
without inflow of energy from the outside, although they
are the solutions of the Maxwell equations in the absence
of sources. In this sense, they are similar to oscillations
in an open resonator.

The natural mode of the third type (the mode of
surface waves) is characterized by the real-valued κ and
α (κ < 1

2 , α > 1) and represents a superposition of
waves propagating along the grating with the velocity,
which is less than the velocity of light, and decaying
exponentially as the distance from the grating increases.
The eigenoscillations of this kind are inherent in a wide
class of slow-wave structures. These oscillations can
exist without inflow of energy from the outside like the
eigenoscillations of a closed resonator.

5. From the above-presented consideration, it is
not difficult to establish the relationship between the
resonant phenomena appearing on the diffraction of a
plane H-polarized wave and the natural modes of a
grating. The analysis of the results obtained in Sections
3 and 4 shows that, in each resonant case, the diffracted
field has a structure similar to the field of one of
the natural modes. Moreover, the resonances by κ
correspond to the mode of damped resonances, while
the resonances by an angle of incidence correspond to
the surface-wave mode or the leaky-wave mode. The
diffracted field most closely resembles the eigenfield if
the resonant values of κ and α belong to the vicinity
of one of the sliding points (12). In this case, the
intensity of the transmitted field changes especially
abruptly as κ or α shifts from the corresponding
resonant value; the lower the ratio d

l , the sharper
this change. For reflecting gratings, these resonances in
diffraction spectra correspond to the well-known Wood
anomalies. However, as it is seen from the results of
this work, a metal-bar grating possesses, in addition
to the resonances associated with the Wood anomalies,
a number of other resonances. Of particular interest
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are the resonant phenomena occurring in the long-wave
region, since they could be used in the study of the
processes accompanying the motion of charged particles
near a diffraction grating [13].

It is significant that a metal-bar grating can be
considered as a resonant system, in which high-Q
oscillations can be excited with the help of an H-
polarized plane wave. At the appropriate choice of
κ and α, the forced oscillations possess a number of
interesting properties. Among them are the presence of
frequencies and angles of incidence such that the incident
wave passes through a grating without reflection even if
the slits are narrow and the bars are thick; abnormal
transmission in the vicinities of sliding points, etc.

If the bar thickness is zero, the resonant phenomena
considered above do not exist.

The authors would like to thank Ya.S. Komissarov
and V.A. Pavlyuk for their help with the numerical
calculations.
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