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The energy of interaction between neighbor ions has been
determined in the approximation of strongly bound electrons,
as a function of the ionic dipole moments and the ion-to-ion
distance. The equations of lattice vibrations have been solved
taking interaction retardation into account. In the long-wave case,
the resulting spectrum of characteristic frequencies of the crystal
lattice differs substantially from that obtained in the framework
of the Born theory. The Born relationship between the dielectric
constant and the limiting vibration frequency changes as well.
The dispersion law and the moduli of elasticity for six alkali
halide crystals have been determined. A comparison between the
theory and the experiment has been made.

1. Introduction

Almost all the works dealing with crystal lattice
dynamics proceed from the assumption that the
potential energy of an ion pair v = v(R1 − R2)
depends only on the coordinates of ions’ nuclei R1

and R2. However, this energy substantially depends on
properties of the electron shells of ions as well. When
the lattice vibrates, those shells become deformed, and
the law of interaction between them changes. Since
the shape of the electron shells in any ion pair is
also governed by displacements of all its neighbors,
it is incorrect, in principle, to write down the crystal
energy as a sum of ion pair energies. The influence
of ion deformation is not at all small. This becomes
evident from the fact that the quantities n2

0 and ε− n2
0,

where ε is the dielectric constant and n0 the optical
refractive index, are of the same order of magnitude.
Hence, the same order of magnitude must be inherent
to dipole forces originated from the polarization and the
displacement of ions.

In the opinion of some authors [1–3], neglecting or
taking this deformation, as well as the overlapping of
neighbor electron shells, into account incorrectly while
calculating the effective field acting on each ion brings

about the situation, where the Born relationship

ε − n2
0

(n2
0 + 2)2

mω2
0 =

4πe2

9Δ
(1)

is usually no more valid. Here, ω0 is the limiting
frequency of ion oscillations; m = m1m2/(m1 + m2) is
the reduced mass of an ion pair; Δ is the volume of
a unit cell containing two ions with opposite charges
(in the considered case, i.e. two face-centered lattices
inserted into each other, this parameter is equal to 2a3);
and a is half the lattice constant. These issues have
been discussed in work by Skanavi [4] in detail. The
cited authors [1–3] formally “removed” the discrepancies
with experiment by modifying the effective Lorentz field
(4π/3)P and introducing fitting parameters.

It seems expedient to assign, to every ion, the
internal degrees of freedom, which describe its shape,
and define the crystal energy as a function of nuclear
coordinates and internal coordinates of all ions. In the
first approximation, it suffices to take the components
of dipole moments P1 and P2 of both ions for such
internal coordinates. Really, when calculating the energy
of an ion in an electric field and without knowing the
distribution of the ionic charge density, we have to
consider this field to be approximately uniform within
the ion limits. In this case, higher multipole moments
can be neglected as well, because their energy in a
uniform field is equal to zero. The multipole interaction
is substantial only between the nearest neighbors and
will be taken into consideration approximately in this
case.

Supposing the displacement ul
k and the dipole

moment Pk
l of every ion to be small (l is the number

of a cell and k = 1, 2 is the number of an ion in the
cell), we can confine the expression for the potential
energy of the crystal U to quadratic terms with respect
to ul

k and Pk
l . Then, every term of the U -expansion will

include ul
k and Pk

l associated with no more than two
ions, so that U will become decomposed into a sum of
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pair energies v = v(Rl
k,Pl

k,Rl′
k′ ,Pl′

k′), where Rl
k stands

for the coordinates of the nucleus of the l
k-th ion.

The most natural way to define the function v
consists in the consideration of two isolated ions. We will
carry out the corresponding calculation in the framework
of the model of strongly bound electrons.

2. Energy of an Ion Pair

Let Ψ(r1, r2, . . . , rN1) and φ(r′1, r
′
2, . . . , r′N2

) be the
wave functions of ions of the Na+ and Cl− types, which
contain N1 and N2 electrons, respectively.

We take the antisymmetrized product of Ψ and φ
as an approximate wave function Φ for a system of two
closely located ions,

Φ =
1√
N

∑
ν

∑
μi<μν
λi<λν

Ψ(r′λ1
r′λ2

. . . r′λν
rt1 . . . rtN1−ν)×

×φ(rμ1
rμ2

. . . rμν
r′S1

. . . r′SN2−ν). (2)

The expressions for Ψ and φ as functions of the ion-to-
ion distance |R1 − R2| will be determined making use
of the variational principle. In every term of formula
(2), ν radius-vectors rμ1 , . . . , rμν

of electrons belonging
to the first ion are swapped with the same number
of radius-vectors r′λ1

, . . . , r′λν
of electrons belonging to

the second ion, and summation is carried out over all
permutations. N is the total number of permutations.
Since the dimensions of the region, where Ψ and φ are
different from zero simultaneously, are relatively small,
we can confine the consideration to the permutations
with ν = 0 and 1, while calculating any matrix elements.

Let E01 and E02 be the strengths of the external
electric field at the center of the first and the second ion,
respectively. The field is considered to be approximately
uniform within the limits of each ion. Then, the average
value of the system Hamiltonian is equal to

H̄ = H̄1+ H̄2+ W̄− (E01,P1+ eR1)− (E02,P2− eR2).
(3)

Here, H1 and H2 are the Hamiltonians of isolated ions,

W =
∑
i,κ

e2

|ri − r′κ|
−

∑
κ

e2Z1

|R1 − r′κ|
−

−
∑

i

e2Z2

|ri − R2| +
Z1Z2e

2

|R1 − R2|

is the potential energy of interaction (in the case ν = 0),
and Z1 = N1 +1 and Z2 = N2 − 1 are the charges of ion
nuclei. In the approximation concerned, W̄ is equal to
the sum of Coulomb Q (ν = 0) and exchange J (ν = l)
energies (the “correlation energy” is neglected).

Let the expansions of Ψ and φ into series of the
characteristic functions of isolated ions look like

Ψ = c0ψ0 +
∑

x

∞∑
i=1

cxiψxi +
∑

k

ckψk,

φ = b0ϕ0 +
∑

ξ

∞∑
i=1

bξiϕξi +
∑

κ

bκϕκ. (4)

Here, the functions ψxi and ϕξi describe various “p-
states” of the ions which are chosen in such a way that
the matrix elements of coordinate xi,

(0|x1|xi) =
∫

ψ∗
0x1ψxidτ,

and ξ1,

(0|ξ1|ξi) =
∫

ϕ∗
0ξ1ϕξidτ,

are different from zero (for instance, in the Fock
approximation, the angular-dependent multipliers of
these functions are sin θ cos ϕ rather than usual
sin θ eiϕ). The subscripts x and ξ run through three
values (x, y, z) and (ξ, η, ζ), respectively. The functions
ψk and ϕκ describe other excited states.

Let E0, Exi, Ek, ε0, εξi, and εκ denote the energy
levels for those states: H1ψ0 = E0ψ0,H2ϕξi = εξiϕξi,
and so on. We suppose that the shape of ions does
not differ much from the nonperturbed one (spherical):
(|cxi| , |ck|) � c0 ≈ 1 and (|bξi| , |bκ|) � b0 ≈ 1. Now,
we expand H̄1 and H̄2 in the power series in cxi, ck, bξi,
and bκ up to the second and J up to the first order
inclusive (the exchange integrals calculated making use
of the functions (ψ0ϕξi), and so on are supposed small).
It is the indicated coefficients that will play the role
of approximation parameters in the functions Ψ and φ
and will be determined from the variational conditions
∂H̄/∂cxi = 0, and so on.

Certainly, this way does not enable one to obtain
the exact wave function for the pair of ions, because the
freedom in the choice of Φ has already been restricted
by formula (2) and by the condition that cxi, ck, . . . are
small. However, the accuracy of this method, at least for
large distances |R1 − R2|, exceeds considerably that of
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the Heitler–London method, where the approximation
(Ψ = ψ0, φ = ϕ0) is adopted. The resulting H̄min is
identified with the required U(R1,P1,R2,P2). Since we
are interested in the interaction energy at arbitrary P1

and P2, the extremum of H̄ is to be searched, provided
that six following conditions are fulfilled:

P1x = −eN1

∞∑
i=1

2Re[(0|x1|xi)] = const,

P2ξ = −eN2

∞∑
i=1

2Re[(0|ξ1|ξi)] = const. (5)

Carrying out these calculations, which are not
too difficult, separating the interaction between point
charges and dipoles from the Coulomb energy Q, and
combining all other terms in H̄min, which depend on
R1 and R2, but not on P1 and P2, into a function
u(|R1 − R2|), we obtain

H̄min =
∑

x

P2
1x

2αx
+

∑
ξ

P2
2ξ

2αξ
−

∑
x

P1xβx −
∑

ξ

P2ξβξ+

+u(|R1 − R2|) − e2

|R1 − R2| +
(P1,P2)

|R1 − R2|3
−

−3e(P1,R1 − R2)(P2,R1 − R2)
|R1 − R2|5

+

+
e(R1 − R2,P1 + P2)

|R1 − R2|3
−

−(E01,P1 + eR1) − (E02,P2 − eR2), (6)

where

αx = 2eN2
1

∞∑
i=1

|(0|x1|xi)|2
Exi − E0

,

βx =
N2

1 N2e
3

2αx

∞∑
i=1

2Re[ω∗
xi(0|x1|xi)]

Exi − E0
,

ωxi =
∫

· · ·
∫

ψ∗
0(r . . . )ϕ∗

0(r
′ . . . )ω(rr′)×

×ψxi(r′ . . . )ϕ0(r . . . )dτ,

ωξi =
∫

· · ·
∫

ψ∗
0(r . . . )ϕ∗

0(r
′ . . . )ω(rr′)×

×ψ0(r′ . . . )ϕξi(r . . . )dτ, (7)

the quantities αξ and βξ can be obtained by
substituting (0|x1|xi), ωxi, E0, and Exi in these formulas
by (0|ξ1|ξi), ωξi, ε0, and εξi, respectively; and

ω(rr′) =
Z1

|R1 − r′| +
Z2

|R2 − r| −
1

|r − r′| − . . . . (8)

For the reasons of symmetry, we can put

αx = αy = αz = α1, αξ = αη = αζ = α2.

If the x- and ξ-axes coincide with each other and with the
direction R1 − R2, then, owing to the suggestion made
above that the functions ψyi, ψzi, ϕηi, and ϕζi are odd
with respect to the relevant coordinates, the integrals
ωyi, ωzi, ωηi, and ωζi vanish (consequently, so do the
quantities βy, βz, βη, and βζ), whereas the integrals ωxi

and ωξi, together with the quantities βx and βξ, turn out
to have different signs. The quantities βx and βξ depend
on the properties of and the distance between ions.
Generally speaking, |βx| and |βξ| grow with the increase
of ionic dimensions and sharply decrease with increase
in the distance |R1 − R2|. The quantities α1 and α2 are
approximately proportional to the ionic volumes, and
α1 ≤ α2 for the majority of alkali halide crystals. Since
ωxi and ωξi, being exchange integrals, are much more
sensitive to ionic dimensions than the matrix elements
(0|x1|xi) and (0|ξ1|ξi), and α1βx differs from α1 in that
(0|x1|xi) in every term of the sum over i is substituted
by ωxi, it is natural to expect that 0 < −βx ≤ βξ

in the majority of cases. (The positive and negative
ions under investigation have similar electron shells
and approximately equal polarizabilities at identical
dimensions.)

Consider both limiting cases:

βx = −βξ (9a)

and

βx = 0. (9b)

For ions close by dimensions, case (9a) is more
preferable. However, if α1 � α2, case (9b) is more
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adequate to reality; although, in such a case, due to the
smallness of P1, the value of βx is of no importance at
all, and formulas (9a) and (9b) bring about almost the
same results. Below, the calculations are carried on for
case (9a).

We suggest that the aggregation of ions into a
crystal can change only the values of the parameters
α1, α2, βx, βξ, and u(|R1 − R2|), but not the kind of the
dependence of H̄min on P1 and P2. Let us write down
the potential energy of the crystal in the form

U =
∑

H̄min =
∑

l

{(
Pl

1

)2

2α1
+

(
Pl

2

)2

2α2
+

+
(6)∑
l′

βξ

(∣∣∣Rl
1 − Rl′

2

∣∣∣) (Pl
1 − Pl′

2 ,Rl
1 − Rl′

2 )∣∣Rl
1 − Rl′

2

∣∣ −

−
(
El

01+
1
2
El

1,P
l
1+ eRl

1

)
−

(
El

02+
1
2
El

2,P
l
2− eRl

2

)
+

+
(6)∑
l′

u
(∣∣∣Rl

1 − Rl′
1

∣∣∣)}
. (10)

Here, El
k (k = 1, 2) is the strength of the electric

field created at the center of the l
k-th ion by other

ions considered as point charges ek and dipoles Pl′
k′ . In

the sums over l′, the exchange interaction and higher
multipole ones with only six nearest neighbors are taken
into account.

3. Equations for Lattice Vibrations

Let us put Rl
k = rl

k + ul
k, where rl

k is the radius-vector
of the lattice site, expand U into a series up to terms
of the order of

(
ul

k

)2, and write down the equations of
vibrations:

mkül
k = − ∂U

∂ul
k

, 0 = − ∂U

∂Pl
k

. (11)

Both mechanical and optical properties of crystals
can be obtained by considering free lattice vibrations.
However, the optical phenomena are closely related to
the interaction retardation. It turns out that the latter
can be taken into account, if one uses Eqs. (11), where U
is described by formula (10), and the quantities El

1 and

El
2 in the latter are interpreted as exact strength values

of the field radiated by all oscillating dipoles.

Πl
k(r, t) =

∑
k′=1,2

∑
l′

′ 1∣∣r − rl′
k′

∣∣×

×
[
ek′ul′

k′

(
t −

∣∣∣r − rl′
k′

∣∣∣ /c
)

+ Pl′
k′

(
t −

∣∣∣r − rl′
k′

∣∣∣ /c
)]

(12)

is the Hertz vector created by all ions, except for the
l
k-th one. Then,

El
k =

[
∇ (∇Πl

k

) − 1
c2

Π̈l
k

]
r=rl

k

. (13)

Provided that the external field is absent, Eqs. (11) have
plane-wave solutions:

ul
k(t) = uke−iωt+i(Krl

k), Pl
k(t) = Pke−iωt+i(Krl

k). (14)

In this case, Πl
k reads

Πl
k(r, t) = e−iωt+i(Kr)

[
(pk + Pk)S1(r − rk) + pk′+

+Pk′)S2(r − rk)
]
, (15)

where k′ �= k,pk = ekuk, and rk = rl
k at l = 0.

S1 and S2 are slowly convergent series, the form of
which can be easily obtained by substituting Eq. (14)
into Eq. (12). Ewald [5] transformed them into rather
quickly and uniformly convergent series. However, his
result is too complicated. It is more convenient to expand
Ewald’s formulas (rewritten for a crystal of the definite
type) in a power series in the dimensionless wave number
k = a2K. The expansion terms of the order of K2

are sufficient for our purposes, and the quantity k2
0 =

(aω/c)2 can be neglected in comparison with unity. For
the given lattice of the NaCl type, after elementary but
very long numerical calculations, we obtain (see details
in work [6])

El
k(t) =

2
Δ

e−iωt+i(Krl
k)Fk, (16)

where

Fk =
2π

3
P − 2π

(P,k)k − Pk2
0

k2 − k2
0

+

96 ISSN 2071-0194. Ukr. J. Phys. 2008. V. 53, Special Issue



PHYSICAL PROPERTIES OF A ROCK SALT LATTICE

+E1(k;pk + Pk) + E2(k;pk′ + Pk′) + . . . ,

(k′ �= k). Here,

P = p1 + p2 + P1 + P2, (17a)

E1(k;p) = −0.237pk2 + 0.290(pk)k + 0.421(p;kk),
(17b)

E2(k;p) = 0.402pk2 + 0.986(pk)k − 2.191(p;kk),
(17c)

the notation (p;kk) stands for the vector expxk2
x +

eypyk2
y +ezpzk2

z, and ex, ey, ez are the axis unit vectors.
The first term in Eq. (16) is the Lorentz field, the second
one is the macroscopic strength of the field �E . Unlike
other terms, it cannot be expanded into a power series
in kx,ky, and kz. This circumstance is related to the
fact that Coulomb forces diminish slowly with increase
in the distance. Therefore, the analysis of the equations
of vibrations made by Born [7,8] on the basis of such an
expansion is not applicable in this case. In particular, the
conclusion that the given crystals have only one limiting
frequency is wrong.

Taking Eqs. (10) and (16) into account, Eqs. (11)
read

−Mkpkk2
0 = Fk − Gp + f(P2 − P1)+

+
1
2
(G + 6H)(pk′ ;kk) − Hpk′k2+

+(−1)k

{
1
2
f(Pk′ ;kk) − h[3(Pk′ ;kk) − Pk′k2]

}
, (18a)

P/Ak = Fk + (−1)k
fp − (−1)k

{
1
2
f(pk′ ;kk)−

−h[3(pk′ ;kk) − pk′k2]
}

, (18b)

where k = 1, 2, k′ �= k. Here,

Mk = mk
ac2

e2
, Ak =

αk

a3
, H = − c2

e2

[
du(r)

dr

]
r=a

,

h =
a2

e
βξ(a), f =

2a3

e

[
dβξ(r)

dr

]
r=a

+ 4h,

G =
a3

e2

[
d2u(r)

dr2

]
|r|=a

− 4H, p = p1 + p2. (19)

The parameter H is determined from the condition
that, if Pl

k = 0, the positions of ions at lattice sites
rl

k correspond to the minimum of U . Considering the
uniform expansion a → a + δ (|δ| � a), we obtain
from the condition (∂U/∂δ)δ=0 = 0 that H = α0/6 =
0.291, where α0 is the Madelung constant. For the
compressibility of the crystal χ, we similarly obtain

1
χ

=
a2

18

[
∂2

∂δ2

(
U

V

)]
δ=0

=

=
1

36a

[
−2e2α0

r3
+ 6

d2u(r)
dr2

]
r=a

=
e2

6a4
G, (20)

where V is the crystal volume.

4. Optical Vibrations of the Lattice

Consider long waves. Neglecting the terms of the order
of k2 in Eqs. (18); expanding k2

0 into the power series
in k2; expressing p1, p2, P1, and P2 in terms of P; and
taking Eq. (17a) into account, we obtain

k2
0 = k2

00 + k2
01 + k2

02 + . . . ,

[(
1 − 2π

3
A

)(
G − Af2 − Mk2

00

) − 2π

3
β2

]
P+

+2π
[
β2 + A

(
G − Af2 − Mk2

00

)] (P,k)k − Pk2
00

k2 − k2
00

= 0,

(21)

where

M = M1M2/(M1 + M2),

A = A1 + A2, β = 1 + f(A2 − A1).

Since, in this approximation, the right-hand side of
Eq. (18a) does not depend on the k-value (k = 1 or
2), it follows that

k2
00(M1p1 − M2p2) = 0. (22)

For optical vibrations, k00 �= 0, so that M1p1 =
M2p2. From Eq. (21), one can see that P is either
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Fig. 1. Illustrative dependence of the frequency on the wave
number for extremely long waves k2

⊥1 and k2
⊥2 calculated by

formula (26). The dashed line corresponds to neglecting the
retardation

parallel or perpendicular to k. In the former case, by
putting k00 = k‖, we have

Mk‖ = G − Af2 +
(4π/3)β2

1 + (4π/3)A
. (23)

On the other hand, in the case of transverse vibrations,
we obtain a biquadratic equation for the dimensionless
frequency k00 = k⊥. In the limiting case Mk⊥ 	 G (the
visible and near infra-red ranges), it is reduced to the
equation

k2

k2
⊥

= n2
∞ =

1 + (4π/3)A
1 − (2π/3)A

. (24)

If the wave vector k⊥ approaches the dispersion
frequency k∂ , we have k2/k2

⊥ → ∞, and Eq. (21) brings
about

Mk2
∂ = G − Af2 − (2π/3)β2

1 − (2π/3)A
. (25)

In terms of notations (23)–(25), the solution of the
equation mentioned is

k2
⊥ =

1
2

(
k2
‖ +

k2

n2∞

)
±

√
1
4

(
k2
‖ +

k2

n2∞

)
− k2k2

∂

n2∞
≈

≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k2
‖ +

k2

n2∞
− k2k2

∂

k3
‖n

2∞ + k2
+ . . .

k2k2
∂

k2
‖n

2∞ + k2
+ . . . .

(26)

In Fig. 1, the dependence of k2
00 on k2 is depicted. The

dashed line corresponds to neglecting the retardation,
which is evidently eligible only if k2 	 k2

00, i.e. when
the wavelength is much shorter than the wavelength
of light of the same frequency in vacuum. In this case,
E = 0, and the vibration is purely mechanical. Moving
along the second branch towards large wavelengths, we
progressively enter into the radiowave range: k → 0 and
k2
⊥/k2 → k2

∂/(n2
∞k2

‖) = 1/ε. The first branch has no
analog in the mechanical theory at all. Its asymptote
corresponds to pure oscillations of light in an insulator:
k2
⊥ = k2

‖ − k2
∂ + k2/n2

∞. In this case, p1 = p2 =
0, so that only P1 and P2 oscillate. Each branch of
the k⊥(k)-dependence corresponds to two vibrations
with different polarizations. Hence, the total number
of optical vibrations equals five. This circumstance is
associated with the fact that the equations of motion
with retardation are not linear differential equations,
and two degrees of freedom of radiation join, so to
say, three mechanical degrees of freedom. The range
k0 < k⊥ < k‖ is a “forbidden gap”. For real-
valued k⊥, the quantity k will be imaginary, which
means both a decrease of the vibration amplitude
with increase in the distance and the absence of the
energy transfer. As is known from experiment, crystals
effectively reflect light in approximately this frequency
range. However, the issues of the light transmission
through a crystal with finite dimensions go beyond the
scope of this consideration. In this range, the light
absorption is substantial, so that an account of vibration
anharmonicity is necessary to be made. One can only
assert with confidence that the absorption is maximal
at k⊥ ≈ k0, because a high refractive index n = k/k⊥
corresponds to the large amplitudes of p1 and p2, when
the anharmonicity-induced transmission of energy to
other vibrations is extremely large.

5. Wave Dispersion. Determination of Theory
Parameters

We substitute k2
‖ by (ε/n2

∞)k2
0 and solve Eq. (21) with

(Pk) = 0 to find n2 = k2/k2
00. This gives us the

dispersion law

n2 = n2
∞ +

(ε − n2
∞)k2

∂

k2
∂ − k2

1

. (27′)

The derivation of the law given above is more rigorous
than the conventional one, which is based on the
consideration of forced oscillations. It is so, because
the presented derivation contains neither an ineligible
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identification of the external force acting upon an
ion with the strength of the light wave field, nor a
doubtful introduction of an “effective field”, which would
inevitably include some part of ionic interaction.

A comparison of formula (27′) with experiment is
expedient to be carried out in the range k2

⊥ 	 k2
0. Here,

the absorption is not high, and the experimental data are
the most exact. However, n∞ cannot be more considered
as constant for visible light. Making allowance for the
electron dispersion, n2

∞ is expressed by a multiterm
dispersion formula. At �ω � (Exi − E0, εξi − ε0), this
formula can be reduced to a one-term one. Substituting
n∞ by n0 in the second term of formula (27′)—here, n0

corresponds to the previous, static definitions of α1 and
α2; and such an operation is admissible, because this
term is small at those frequencies, at which n∞ �= n0—
we finally obtain

n2 = 1 +
(n2

0 − 1)ω′2
∂

ω′2
∂ − ω2

+
(ε − n2

0)ω
2
∂

ω2
∂ − ω2

, ω∂ =
c

a
k∂ , (27)

where ω′
∂ is the effective frequency of electron dispersion.

In Fig. 2, the experimental n(ω)-values for NaCl,
KCl, KBe, and KJ taken from the Landolt–Börnstein
Handbook and for LiF and NaF taken from works [9,10]
are exhibited. The curves were drawn by formula (27),
where the parameters n0, ω

′
∂ , ω∂ , and ε acquire the

values that give the best agreement with experiment in
the middle section of the range ω∂ � ω � ω′

∂ . In so
doing, the value of n2

0 is determined with an accuracy
of about 0.01%, those of ω′2

∂ and (ε − n2
0)ω

2
∂ with an

accuracy of no more than 1%, while those of ε and ω2
∂

separately with an accuracy of 5–7%, i.e. within the
spread limits of experimental data obtained at the static
determination of ε. From Eqs. (23) and (25), we have

G − Af2 = Mk2
∂

ε + 2
n2

0 + 2
, (28a)

β2 =
9
2π

ε − n2
0

(n2
0 + 2)2

Mk2
∂ . (28b)

If we neglected the dependence of the exchange
energy J on the dipole moments P1 and P2, we would
obtain—in accordance with Eq. (19)—that f = 0 and,
hence, β = 1; so that Eq. (28b) would reduce to Eq. (1).
It is this neglect that is implicitly contained, in essence,
in all works dealing with the theory of crystals; and just
this neglect is responsible for the discrepancy between
the Born relation (1) and the experimental data.

Fig. 2. Comparison of n(ω) experimental data with curves drawn
by formula (27) for the parameters listed in Table 2: KBr (1),
KJ (2), NaCl (3), LiF (4), KCl (5), and NaF (6). In the case of
curve 1, crosses correspond to data of work [11], and triangles to
data of work [12]

The deviation sign can be easily predicted. Namely,
since βξ(r) > 0 and drastically decreases with the growth
of r, f < 0 according to Eq. (19), and, therefore, β < 1
(because A2 > A1).

To find f , one has to know both A2 and A1

separately. Various authors determined the α1- and α2-
values following independent ways (see works [2, p. 14]
and [8, p. 299]). Table 1 demonstrates that all the
methods bring about almost identical values for α1.
Since α1 � α2, a small determination error for α1

almost does not influence the determination accuracy
for α2 calculated by the formula α2 = Aa3 − α1. A
comparison of α2 calculated in such a way (the value
of A was determined by Eq. (24) assuming n∞ → n0,
and that of α1 was taken from the work by J. Mayer and
M. Göppert-Mayer) with α2’s obtained by other authors
testifies to a sufficient accuracy of formula (16) for the
actual field and for all six crystals.

Skanavi [4] drew a conclusion that the Lorentz
formula is applicable only to crystals, where the ions
are close by dimensions. However, he proceeded from
the assumption that the polarizabilities are additive:

ε − 1
ε + 2

=
4π

3Δ
(α1 + α2 + α),

where α is the polarizability associated with
displacements of ions. However, as is evident from
more general formulas (18), there is no additivity:
owing to the terms f(P2 − P1) and (−1)kfp, the
displacements of ions give rise to the emergence of a
polarization, and vice versa.
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T a b l e 1. Ionic polarizabilities

Crystal α1 × 1024 cm3 α2 × 1024 cm3 A1 = α1/a3 A by Eq. (24) α2 calc.
Fajans and Joos Pauling Born, Heisenberg Mayer Fajans and Joos Pauling

LiF 0.08 0.029 0.075 0.025 0.98 1.04 0.0031 0.1126 0.89
NaF 0.196 0.179 0.21 0.17 0.98 1.04 0.0137 0.0948 1.01
NaCl 0.196 0.179 0.21 0.17 3.53 3.66 0.0076 1.1467 3.10
KCl 0.88 0.83 0.87 0.80 3.53 3.66 0.0260 0.1344 3.34
KBr 0.88 0.83 0.87 0.80 4.97 4.77 0.0225 0.1488 4.50
KJ 0.88 0.83 0.87 0.80 7.55 7.10 0.0183 0.1639 6.62

T a b l e 2. Most important crystal parameters

Crystal a × 108 cm M × 109 ε n2
0 ω∂ × 10−13 ω‖ × 10−13 β f G ωd × 10−13

LiF 2.01 0.665 8.14 1.9257 6.08 12.51 0.800 −1.875 3.26 5.78
NaF 2.315 1.562 5.26 1.7430 4.42 7.67 0.811 −2.810 4.29 4.64
NaCl 2.814 2.546 5.80 2.3302 3.09 4.88 0.753 −1.877 4.38 3.09
KCl 3.135 3.780 4.78 2.1748 2.68 3.98 0.797 −2.463 5.64 2.66
KBr 3.290 5.601 4.81 2.3585 2.14 3.06 0.756 −2.353 5.65 2.13
KJ 3.525 6.832 5.20 2.6481 1.83 2.56 0.730 −2.003 5.58 1.85

T a b l e 3. Elastic constants of the crystals†

Crystal Calculated Experimental Source
ε C12 = C44 For Eq. (9a) For Eq. (9b) C12×10−11 C44×10−11 C11×10−11 χ×1012 T, K

(in 1011 CGS) C11×10−11 χ×1012 C11×10−11 χ×1012

LiF 8.14 4.92 13.2 1.30 13.0 1.32 4.04 5.54 9.74 300 [13]
8.73 4.92 12.7 1.37 12.4 1.35 4.33 6.28 11.77 1.467 300 [14]

1.53 300
1.4 extrapol.

to 0 K
NaF 5.26 2.79 12.0 1.74 10.4 1.88 2.11 300

powder
NaCl 5.80 1.28 5.50 3.72 5.35 3.79 1.306 1.281 4.97 4.14 300 [15]

1.27 4.11 300
1.23 1.19 4.67 290 [14]

6.00 1.28 5.29 3.82 5.15 3.89 1.23 1.265 4.85 300 [13]
1.31 1.27 4.99 290 [16]
1.30 1.278 5.06 270 [17]
1.17 1.332 5.76 80 [17]

KCl 4.78 0.83 5.08 4.46 4.56 4.82 0.64 0.63 3.77 300
0.64 3.63 300

0.6 0.63 4.08 290 [17]
4.94 0.83 4.86 4.60 4,34 5.00 0.6 0.66 4.81 80 [17]

5.52 300
5.1

0.70 4.71 4.92 extrapol.
to 0 K

KBr 4.81 0.69 4.19 5.40 3.85 5.75 0.54 0.508 3.45 300 [18]
0.58 0.621 3.33 300

0.523 4.175 extrapol. [18]
to 0 K

0.57 3.46 300
KJ 5.20 0.52 3.13 7.20 2.97 7.49 0.362 2.69 300 [13]

0.421 2.67 300
†Unreferenced data were taken from the Landolt–Börnstein Handbook
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Different values calculated for the polarizability α2

of the same anion in different compounds (see the last
column in Table 1) are associated with the influence of
the cation on the anion properties; the effect was left
beyond consideration in Section 2 as an effect of the
second order. This cation influence also results in that
the value of α2 for an ion in the crystal is less than that
for an isolated one.

To summarize, in Table 2, we list the values of
ε, n2

0, ω∂ , and ω‖ = ck‖/a which were obtained from a
comparison of formula (27) with experimental results, as
well as values for the parameters G, f, and β calculated
by formulas (28). The last column contains the values
for the frequencies of maximal absorption ωd taken from
work [8]. One can see that the agreement between the
ωd- and ω∂-values is excellent.

6. Elastic Properties of Crystals

We can obtain an additional confirmation that the
deduced law of interaction (6) is correct, by comparing
the elastic constants of the crystals with experimental
data. We can do it, because all parameters of the theory
are already determined. For this purpose, let us consider
acoustic vibrations which correspond to putting k00 = 0
in Eq. (22). Then, from Eq. (21), we obtain, in the zero-
order approximation, that P(0) = 0, P(0)

1 = P(0)
2 = 0,

and p(0)
2 = −p(0)

1 . Let k2
0 = k2

01, p1 = p(0)
1 + p′

1,

p2 = −p(0)
1 + p′

2, P1 = P′
1, P2 = P′

2, and P = P′.
The first pair of Eqs. (18) looks like

2π

3
P′ − 2π

(P,k)k − Pk2
01

k2 − k2
01

− Gp′ + f(P′
2 − P′

1) =

= (−1)kMkk2
01p

(0)
1 +

+(−1)k

{
E1(k;p0

1) − E2(k;p0
1) + Hp0

1k
2−

−1
2
(G + 6H)(p(0)

1 ;kk)
}

, (k = 1, 2). (29)

For this pair to be consistent, the relevant condition is

1
2
(M1 + M2)k2

01p
(0)
1 = 0.348p(0)

1 k2 + 0.696(p(0)
1 k)k+

+
(

1
2
G − 1.739

)
(p(0)

1 ,kk). (30)

This relationship is equivalent to the equation of elastic
wave propagation in a continuous anisotropic medium,

ρ
∂2q
∂t2

= C44Δq + (C12 + C44)∇(∇q)+

+(C11 − C12 − 2C44)
(
ex

∂2qx

∂x2
+ ee

∂2qy

∂y2
+ ez

∂2qz

∂z2

)
,

(31)

where ρ is the density, and Cik are the moduli of
elasticity. The former equation is reduced to the latter
one by substituting q = p(0)

1 e−iωt+i(Kr).
By comparing Eqs. (30) and (31), and making

allowance for the relationships between (k,Mk, k01) and
(K,mk, ω) given in Section 3, we find that

C44 = 0.348
e2

a4
= C12, (32a)

C11 =
(

1
2
G − 0.655

)
e2

a4
, (32b)

3
χ

= C11 + 2C12 =
e2

2a4
G, (32c)

in accordance with Eq. (20).
In Table 3, we give the values for C11, C44, and

χ calculated by those formulas both in case (9a),
for which all the calculations were carried out, and
in case (9b)1. Since α1 � α2 for all crystals, the
second assumption is closer to the truth. It is also
confirmed by the comparison with experiment. However,
the discrepancy between those two cases is small. The
influence of a probable error in the determination of
ε is illustrated making use of LiF, NaCl, and KCl
crystals as examples. In so doing, together with the
corresponding values ε = 8.14, 5.80, and 4.78, which
provide the best results for the dispersion, the values
ε = 8.73, 6.00, and 4.94, which are also acceptable in
formula (25) without producing a large error, were also
used.

While comparing with experiment, one should bear
in mind that the theory, in which the thermal motion
and even zero oscillations are ignored, should give
the best match with experiment at T = 0 K. There
are no relevant experiments for n(ω). Meanwhile, the
dependence of C11 and χ on T is stronger and that
of C44 is weaker than the temperature dependences of
optical constants. The systematic error also stems from
neglecting the non-electrostatic interaction between
ions located at distances a

√
2 and a

√
3 from one

another. At last, the real crystals possess plenty of
structural distortions, which are capable to affect
n(ω) and C11, C44, χ differently. So, there are no
reasons to exactly identify the values calculated for an
ideal lattice with the macroscopical values measured

1See work [6] for more details.
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making use of real crystals. This circumstance manifests
itself in rather a substantial spread of experimental
data.

Having all those considerations in view, the
agreement with experimental data should be adopted
as good. Thus, the theory of a lattice composed of
deformable ions, which operates with four parameters
(A1, A2, G, and f), provides a good agreement with
experiment for seven quantities: α1, α2, ε, ωd, C11, C12,
and C44, as well as for the dispersion curve.

The author takes an opportunity to express his
sincere gratitude to Prof. S.I. Pekar for his interest to
this work and a valuable discussion.
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