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The distribution of magnetic moments in a ferromagnetic
crystal is investigated. It is found that such a crystal consists of
elementary layers magnetized to saturation. The width of these
layers is determined. In an external magnetic field, the boundaries
between these layers move; the velocity of this propagation
is determined. The magnetic permeability in a periodical field
parallel and perpendicular to the axis of easiest magnetization is
found.

§ 1. It was pointed out by Bloch [1] and Heisenberg
[2] that a ferromagnetic crystal consists magnetically
of elementary regions, which are magnetized nearly to
saturation. They presumed that these regions are thread-
like; we shall show here that they should more likely
be considered as elementary layers. This can possibly
be brought into accord with the experimental evidence
obtained by various authors [3] by photographing the
distribution of colloidal particles of Fe2O3 on the surface
of a ferromagnetic crystal. In nonmagnetized crystals,
these elementary layers are magnetized successively in
opposite directions, so that the crystal has no magnetic
moment as a whole. When the crystal is magnetized,
the boundaries between the oppositely magnetized layers
move, so that the layers with one direction of magnetic
moment grow at the cost of the layers with moments in
the opposite direction.

Some authors (among them, F. Bloch [1]) tried
to apply statistical considerations to determine the
number and dimensions of the elementary regions in a
ferromagnetic body. This is, however, quite impossible,
because if there were not the demagnetizing influence
of the surface of a body, for instance in an infinite
body, there would be generally no elementary regions
and such a body would be magnetized to saturation. This
is quite analogous to the impossibility of determining the
number of drops of a liquid in a condensing vapor with
statistical methods, since the liquid is formed, in fact, as
a continuous body. The presence of separate elementary
regions magnetized in opposite directions is due only to

the demagnetizing effect of the surface, and the number
and dimensions of these regions are entirely determined
by the dimensions of the body.

Between two such elementary layers with oppositely
directed magnetic moments, there is no discrete
boundary, but there is an intermediate region, where the
direction of the magnetic moments changes gradually
from one direction to the opposite. We shall determine
here both the distribution of the moments in such an
intermediate region and the width of the elementary
layers. We shall discuss the case of a ferromagnetic
crystal with one distinguished axis, which is the axis
of easiest magnetization, such as, for example, a
single crystal of cobalt with its hexagonal axis. Every
ferromagnetic body deformed in one direction (e.g., a
stretched or contracted wire) is also of this kind, if
the sign of a deformation is the same as the sign of a
magnetostriction.

In what follows, we shall speak of a ferromagnetic
crystal, but it is to be remembered that it is not
necessarily a single crystal but an arbitrary body with
one direction of easiest magnetization.

Such a crystal consists of layers which are parallel
to the distinguished axis and magnetized to saturation
parallel or antiparallel to this axis. The fact that the
elementary regions in the crystal are really layers and
do not have a thread-like form will be proved later on.

We shall find the distribution of the directions of
magnetic moments inside the crystal in the following
way. The magnetic energy of a crystal consists of two
parts:

1) The energy which is due to the inhomogeneity in
the distribution of the directions of magnetic moments.
This energy per unit volume can be written in the form

1/2α[(∇sx)2 + (∇sy)2 + (∇sz)2],

where sx, sy, and sz are the components of the magnetic
moment s of a unit volume (its absolute value s is
constant through the whole crystal and is practically
equal to the saturation moment).
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2) The magnetic-anisotropy energy, due to the
presence of an axis of easiest magnetization. If we choose
the coordinates with the z-axis along this axis, this
energy per unit volume can be written as

1/2β(s2
x + s2

y),

by showing that the minimum of energy is obtained
when s is directed along this axis.

Then we can find the distribution of the directions
of s if we demand that the energy of the crystal have a
minimum, i.e.,∫ {

1/2α[(∇sx)2 + (∇sy)2 + (∇sz)2]+

+1/2β(s2
x + s2

y)
}
dV = min, (1)

where the integral is taken over the whole crystal. To
find the distribution of moments between two layers
with opposite magnetizations in the crystal, we can
neglect the effects due to the surface of the crystal.
These effects are fundamental for determining the width
of the layers, but they can be neglected, when we wish
to find only the distribution of magnetic moments in
the intermediate region between two layers inside the
crystal. This means that if we choose the x-axis of
our coordinate system perpendicular to the layers, the
distribution of magnetic moments will be independent
of the coordinates y and z, the direction of s changing
only with x, namely from a certain direction along the
z-axis in one layer through the intermediate region to
the opposite direction in the next one. Relation (1) can
now be written as∫

[1/2αs′2 + 1/2β(s2
x + s2

y)]dV = min, (2)

where the prime denotes the differentiation with respect
to x. The theory is such as if we assumed that the crystal
is infinite. But it is necessary to remember that, in an
infinite crystal, all the moments will have really the
same direction, and the crystal will be spontaneously
magnetized so that no layers will be present. The
presence of the layers is due to the finite dimensions of
the crystal; we now assume that the crystal is infinite
only to find the distribution of the moments in the
intermediate regions far from the surface of the crystal;
the surface effects will be discussed in § 2.

In such a model, all magnetic moments are
distributed in the yz-plane. We denote the angle between
the s and z-axis by θ. Then the components of s are

sx = 0, sy = s sin θ, sz = s cos θ, (3)

and (1) takes the form (θ is a function of x only):1∫
(1/2αs2θ′2 + 1/2βs2 sin2 θ)dx = min . (4)

To find θ which makes this integral minimal, we write
the Euler equation

αθ′′ − β sin θ cos θ = 0, (5)

whence

θ′2 − β

α
sin2 θ = const. (6)

The width of the layers is large as compared with
the width of the intermediate region. Therefore, as the
boundary condition to the equation which determines θ,
we can take the conditions

θ = 0 for x = −∞; θ = π for x = +∞
and

θ′ = 0 for x ±∞ or for θ = 0, π, (7)

showing that the directions of s are opposite in two
adjacent layers. We see then that the constant in (6)
is equal to zero, and we obtain

θ′2 =
β

α
sin2 θ. (8)

Integrating this equation, we find the solution satisfying
(7) in the form

cos θ = −th
√

β/αx. (9)

This gives the distribution of the directions of s between
the two layers.

The numerical value of the constant α can be
obtained approximately in the following way. The
energy 1/2αs′2 has its maximal possible value, when s
changes its direction after every distance equal to the
lattice constant a of the crystal, i.e. when s′2 ∼= s2/a2.
This maximum must be of the order kTc if Tc is the Curie
temperature (k is Boltzmann’s constant). Thus, we find
approximately

α = kTc/as2. (10)

The “width” of the intermediate region can be defined
according to (9) as

√
α/β. With (10), we obtain√

α/β =
√

kTc/αβs2.

1A somewhat analogous calculation was made by Bloch [1] but
from a different point of view.
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Fig. 1

For Ni, the Curie temperature is Tc = 630 K, the
saturation moment of a unit volume s = 480 (for 18 ◦C)
and the lattice constant a = 3.5 × 10−8 cm. We took
the anisotropy energy constant β from the experiments
of R. Becker and M. Kersten [4]. They measured the
magnetic susceptibility of stretched nickel wires and
found the minimal value attained for a large strain to
be 0.6. This corresponds to the constant β = 1/0.6=
1.7. With this value, we get 2.5 × 10−6 for the “width”
of the intermediate region, i.e. ca. 70 lattice constants.

§ 2. The analysis of the preceding paragraph gives
only the distribution of the directions of magnetic
moments in the intermediate regions, but gives nothing
for determining the width of the layers. To find it, it
is necessary to discuss the properties of the surface of
the crystal. For this purpose, we employ the following
method. We shall find the distribution of magnetic
moments near the surface of the crystal for a given value
d of the width of the layer, and then we shall determine
this width so that the energy of the whole crystal will
be a minimum.

Near the surface, there is a magnetic field; let H
be the macroscopical field strength. Inside the crystal,
the field H and the magnetic moment must satisfy the
equation

div(H + 4πs) = 0.

Outside it, we have

divH = 0.

The intermediate regions between the layers and hence
the energy 1/2αs′2 are of no importance for the
distribution of s near the surface. If the magnetic-
anisotropy energy were equal to zero, i.e. β = 0, the
equilibrium, i.e. the distribution with the minimum of
magnetic energy, would be such that H would be zero.
Then, for s inside the crystal, we can write

divs = 0 (11)

with the boundary condition

sn = 0 (12)

on the surface of the crystal if sn is the component of s
normal to the surface. If β is small, we may assume that
these equations are not changed appreciably, and we
shall consider (11) and (12) as the equation determining
the distribution of s near the surface.

Let us regard, at first, the surface of a crystal (of the
same kind of symmetry as in § 1) which is perpendicular
to the axis of easiest magnetization, the crystal being a
parallelepiped. We introduce, as in § 1, the coordinate
axes with the z-axis parallel to the distinguished axis,
and the yz-plane parallel to the magnetic layers of the
crystal. The distribution of s is uniform in the direction
of the y-axis, changing with x and towards the surface
with z. The intermediate regions between the layers
are of no importance for the distribution of s near the
surface, as was already noted. We can therefore assume
that s is everywhere situated in the zx-plane; we denote
the angle between s and z-axis by ϕ, so that we now
have

sx = s sin ϕ, sy = 0, sz = s cos ϕ. (13)

At a great distance from the surface, there are regular
layers, say of the width d, with opposite directions of s,
i.e. ϕ is equal successively to zero or π, jumping from
one of these values to another one periodically along the
x-axis with period d. The distribution of s is then given
by Eq. (11) with the boundary conditions (if the surface
of the crystal is the xy-plane) ϕ = ±π/2 for z = 0 and
for z = −∞, ϕ as a function of x must change from 0 to
π after every interval d.

The solution of (11), which satisfies these conditions,
can be constructed in the way shown in Fig. 1. This
figure shows the distribution of the magnetic moments in
the crystal in the xz-plane or some other plane parallel to
this one (the arrows show the direction of s). In regions
I and III, the moments are directed along the z-
axis (ϕ = 0); in II along the same axis but in the
opposite direction (ϕ − π); in IV, V, VI, the moments
are parallel to the surface, i.e. ϕ = ±π/2. This solution
evidently satisfies the boundary conditions. It satisfies
also Eq. (11) since s is constant in each of the regions
I, II, etc. Moreover, on the boundaries between these
regions, the surface divergence is equal to zero, because
the components of s normal to these boundaries are
everywhere equal on both sides of the boundary.

It is, of course, also possible to construct some
other solution of (11); for instance, if we introduce
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the same distribution as in Fig. 1 near the surface
somewhere inside the crystal. But our solution is the
one which gives, for a given d, the least energy of the
crystal and is therefore the only one allowed by physical
considerations.

We can now calculate the energy of the crystal. The
energy which is due to the distribution of magnetic
moments near the surface of the crystal is the anisotropy
energy βs2

x/2 (for sy = 0) per unit volume. In the
regions such as IV, V, VI (Fig. 1), sx is equal to ±s, i.e.
the energy per unit volume is βs2/2. Let l1, l2, l be the
dimensions of the crystal in the directions of the x, y, z-
axes, respectively. The volume of one of the regions, like
IV, V, VI (Fig. 1), is then equal to d2l2/4. There are
l1/d such regions on each of the two opposite surfaces of
the crystal, their total volume is d2l1l2/2, and therefore
the energy due to the surface of the crystal is

Ee = 1/4βdl1l2s
2. (14)

In the inner parts of the crystal, the energy is due to
the presence of intermediate regions between the layers.
We can calculate it with the help of the results obtained
in § l. To find this energy, we consider one of such
regions. Its energy is, according to § l,∫

(1/2αs2θ′2 + 1/2βs2 sin2 θ)dV,

where we must insert θ from (9). θ is a function of only x.
Therefore, the integration over dydz gives the surface ll2
of the layer, and we get the energy for one intermediate
region as

1
2ll2

s2

+∞∫
−∞

(αθ′2 + β sin2 θ)dx =

= ll2s
2β

+∞∫
−∞

dx

ch2
√

β/αx
= 2s2ll2

√
αβ.

There are l1/d such regions in the crystal, and the whole
internal energy of the crystal is

Ei = 2s2ll1l2
√

αβ/d. (15)

We now find the width d of the layers from the
condition that the whole energy E = Ei + Es of the
crystal must take a minimum value. Hence, we find

d = 2
√

2l 4
√

α/β, (16)

the corresponding energy being

E = s2l1l2
√

2lβ 4
√

αβ. (17)

Fig. 2

If the surface of the crystal is not perpendicular to the
axis of easiest magnetization, the solution of (11), which
satisfies the same conditions at a large distance from the
surface and with s parallel to the surface on the surface
of the crystal, can be constructed in the same way, and
we find the distribution of s in a plane parallel to xz, as
it is shown in Fig. 2.

Let the angle between the z-axis and the intersection
of surface of the crystal with the plane xz be ϑ1, and
let the same angle for the opposite surface be ϑ2. The
angle of inclination of the surface to the plane xz is of
no importance for the width of the layers. In the same
way as we obtained (16), we now get

d = 2

√
l

(
1

sinϑ1
+

1
sin ϑ2

)
4

√
α

β
. (18)

The length l of the crystal and the angles θ1, ϑ2

can in general change along the crystal, which is
accompanied by the variation of the width of the layers.

Now it is easy to show that the crystal really consists
of magnetic layers and not of threadlike regions. If the
crystal consists of elementary regions of spontaneous
magnetization which have the form of rectilinear prisms
with the base d2, the distribution of the magnetic
moments near the surface, satisfying (11) and (12), can
be represented by Fig. 3, showing two of the elementary
regions in a slit and in a plane. The energy Ei is now
twice as large as (15), since the surface of the boundaries
between the elementary regions is now twice as large as
we had before. The surface energy

Es = 1/6βs2l1l2d,

as is easy to calculate. If we determine d so that the
whole energy Ei + Es would be minimal, we find this
minimal energy as√

8/3s2l1l2
√

lβ 4
√

αβ,
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Fig. 3

i.e. it is
√

4/3 times larger than (17). Hence, we see
that this model is energetically less advantageous than
a model with layers.

Numerically, we get the width of the layers d ∼= 5 ×
10−3 or ca. 105 lattice constants (for l = 1 cm) from (16)
for deformed nickel with the same parameters as in § 1.

§ 3. If the crystal is placed in an external magnetic
field, which is directed parallel to the axis of easiest
magnetization, the boundaries between the layers begin
to move, so that the layers with magnetic moments
parallel to the field become wider. We shall now
determine the velocity of this propagation.

As in § 1, we consider only one intermediate region
between two layers and neglect also the surface effects.
The distribution of s is given by (3) and (9) and is at
rest when the field is absent. It begins to move with a
velocity υ along the x-axis when the field is introduced.

If a magnetic moment in the crystal were free, i.e.
they were not under the influence of the other moments,
the variation of s with time would be determined
by the external field. The influence of the interaction
between the magnetic moments can be characterized by
introducing an “effective field” in the following way.

If the macroscopical field strength inside the crystal
is H, then the energy of the crystal can be written as∫

(1/2αs′2 − 1/2βs2
z − Hs)dV (19)

[it is more convenient to write here the anisotropy
energy as −1/2βs2

z instead of 1/2β(s2
x + s2

y); both
these expressions are evidently equivalent]. We did not
write the term Hs in the formulae of § 1, because
the macroscopical field strength inside the crystal was
zero when there was no external field, and all s were
distributed in the zy-plane.

In equilibrium, this energy must be minimal, i.e. the
variation of (19) with respect to s must be equal to zero.
This gives∫

(αs′′ + βszn + H)δsdV = 0

(n is a unit vector in the direction of the z-axis). But δs
is always perpendicular to s (because the absolute value
of s is constant); therefore, we see that

f = αs′′ + βszn + H (20)

must be parallel to s. Hence, the quantity f now plays
the role of the “effective field”.

There are two kinds of the interaction between the
magnetic moments in the crystal: exchange interaction
and relativistic interaction. The latter is in general
much weaker than the former. The exchange interaction
cannot change the magnetic moment. Therefore, in the
presence of the field, the magnetic moment would act as
a free moment, i.e. it would rotate around f , and ṡ (·
stands for differentiation with respect to time) satisfies
the equation

ṡ/μ0 = [fs]

with μ0 = e/mc (and not e/2mc, because the moments
s in ferromagnetic bodies are spin moments). The
approach of s to f is due only to the relativistic
interaction. Since this interaction is weaker than the
exchange interaction, we can assume that the coefficient
of the term [fs] is not altered, and we can simply add a
term giving the approach of s to f . Thus, we come to an
equation of the form

ṡ/μ0 = [fs] + λ

(
f − (fs)s

s2

)
. (21)

The second term here is a vector directed from s to
f . The constant λ is λ � s in accordance with the fact
that the relativistic interaction is weak. We disregard
here altogether the variation of the absolute value of s.

To apply this equation to the motion of the boundary
between the two layers, we must determine, first, the
macroscopic field H inside the crystal. Since the whole
distribution of s is independent of the coordinates y and
z, the equations determining the field, i.e.

rotH = 0, div(H + 4πs) = 0,

become

∂Hy/∂x = 0, ∂Hz/∂x = 0, ∂(Hx + 4πsx)/∂x = 0.(22)
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If there is an external field h in the direction of the z-axis
(h can be, of course, a function of time), we can put

Hx = −4πsx, Hy = 0, Hz = h (23)

if we remember that, inside the crystal far from the
intermediate regions, i.e. where sx = 0, the field H must
be equal to the external field h. If sx were everywhere
equal to zero, and no external field were present, H
would also be equal to zero, as in § 1.

We suppose that the field h is small (compared with
sβ). When the field is absent, s is determined by (3) and
(9). In the presence of the field, sx is no longer equal to
zero. But if h is small, sx is also small, being proportional
to h. Inserting now (20) and (23) in (21) and neglecting
the terms of the second order in sx and h everywhere,
we obtain the equations

ṡx/μ0 = α(szs
′′
y− sys′′z )− βsysz− syh+λ(αs′′x− 4πsx)−

− λ

s2
[α(sys′′y + szs

′′
z )sx + βsxs2

z],

ṡy/μ0 = α(sxs′′z − szs
′′
x) + (4π + β)sxsz + λαs′′y−

− λ

s2
[α(sys′′y + szs

′′
z )sy + βsys2

z + hsysz],

ṡz/μ0 = α(s′′xsy − sxs′′y) − 4πsxsy + λ(αs′′z + βsz + h)−

− λ

s2
[α(sys′′y + szs

′′
z )sz + βs3

z + hs2
z] (24)

for the components of s. In the absence of the field,
ṡx = ṡy = ṡz = 0, h = 0, sx = 0, and if we put (3)
into (24), we obtain just equation (5). The quantities
xx, sy, sz in (24) are functions of x and the time t. We
suppose that both variables enter only in a combination
x − υt, υ being the velocity of propagation of the whole
distribution along the x-axis. Then ṡx = −sυ′

x, and
the same for sy, ṡz, if the prime now denotes the
differentiation with respect to x − υt. To solve (24), we
put

sx = sx, sy = s sin(θ + ψ), sz = s cos(θ + ψ). (25)

Here, θ is determined from (9) [and satisfies (5) or (6)],
where we must introduce (x− υt) instead of x. We note
that ψ is small as compared with θ; sx and sψ are both
proportional to h (and are equal to zero when h = 0),
and we can neglect the terms of the second order in sx

and ψ. We presume, as is verified by the result, that the
velocity υ is also proportional to h; therefore, we neglect

such terms as υsx or υsψ as well. Equations (24) now
become

s(αsψ′′ − βsψ cos 2θ − h sin θ)+

+λ[αs′′x − (4π + β cos 2θ)sx] = 0,

λ(αsψ′′ − βsψ cos 2θ − h sin θ)−

−s[αs′′x − (4π + β cos 2θ)sx] = −sυθ′

μ0
.

The third equation is identical with the second one.
Hence, we find

αsψ′′ − βsψ cos 2θ − h sin θ =

= − sυλθ′

μ0(s2 + λ2)
= − υλs

μ0(s2 + λ2)

√
β

α
sin θ,

αsx − (4π + β cos 2θ)sx =

=
υθ′s2

(s2 + λ2)μ0
=

υs2

μ0(s2 + λ2)

√
β

α
sin θ, (26)

because, according to (9),

θ′ =
√

β/α sin θ.

If we introduce θ as an independent variable instead
of x − υt, relation (26) yields

1
sin θ

d

dθ

(
sin θ

dψ

dθ

)
+

(
2 − 1

sin2 θ

)
ψ =

=
1

sβ sin θ

(
h − υλs

μ0(s2 + λ2)

√
β

α

)
,

1
sin θ

d

dθ

(
sin θ

dsx

dθ

)
+

(
2 − 1 + 4π/β

sin2 θ

)
sx =

=
υs2

μ0β(s2 + λ2)

√
β

α

1
sin θ

. (27)

Both of these equations are of the type

1
sin θ

d

dθ

(
sin θ

dy

dθ

)
+

(
2 − m2

sin2 θ

)
y = f(θ).

This equation has a solution only in the cases: 1) if m =
1, 2... and f(θ) is zero [the solution is then Pm

1 (cos θ)] or
orthogonal to the solutions of the homogeneous equation;
2) if m is not an integer and f(θ) is not zero. Hence, we
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see that Eqs. (27) can have a solution only if the right-
hand side of the first one is equal to zero, i.e. if

υ =
μ0(s2 + λ2)

λs

√
α

β
h. (28)

But λ � s; therefore, we can write

υ =
μ0s

λ

√
α

β
h. (29)

This determines the velocity of motion of the boundaries
between the layers in an external magnetic field directed
along the axis of easiest magnetization.

If the external field h is a periodic field of the form

h = h0e
iωt, (30)

the magnetization of the crystal is equal to zero on the
average. The magnetic susceptibility is then defined as
the ratio of the magnetization as a function of time
to h(t). For the time t, the boundary between any
two layers passes a distance [we put (30) in (29) and
integrate]

μ0s

iλω

√
α

β
.

There are l1/d layers in the crystal (notations are the
same as in § 2). Therefore, the total magnetization of
the crystal is

μ0s
2

iωλ

√
α

β

ll1l2
d

h.

Hence, the magnetic susceptibility χl of a unit volume
in the longitudinal field is

χl =
μ0s

2

iωλd

√
α

β
. (31)

The magnetic permeability is

μl = 1 − 4πiμ0s
2

ωλd

√
α

β
. (32)

The expression for d can be taken from (16) or (18).
It is possible then to check the dependence of d on the
dimensions of the crystal, if we determine experimentally
the dependence of μl on these dimensions.

Hence, as a function of ω, χl or μl has no proper
frequencies, but a mere damping. They become infinite
for ω = 0 in accordance with the fact that we took
into consideration no hysteresis effects. For large ω, the
variation of the absolute value of s (which is neglected

here) can prevail, and the formula for μl can become
insufficient.

§ 4. We shall determine now the magnetic
permeability in a transverse field, i.e. when the field h
is directed along the x-axis. The effect of intermediate
regions is now of no importance, and we can assume that,
in the absence of the field, all the moments are directed
in parallel or antiparallel (in the different layers) to the
z-axis, i.e. sz = ±s and sx = sy = 0. For the same
reason, the term αs′′ in (20) is now of no importance,
and we must put

f = H + βszn (33)

for the effective field. The components of H are now

Hx = h, Hy = Hz = 0. (34)

and For the components of ṡ, Eq. (21) gives

ṡx/μ0 = −βsysz + λh − λ

s2
(hsx + βs2

z)sx

ṡy/μ0 = βsxsz − hsz − λ

s2
(hsx + βs2

z)sy

ṡz/μ0 = hsy + λβsz − λ

s2
(hsx + βs2

z)sz, (35)

sy and sx are proportional to h. If we assume, as in § 3,
that h is small, we can neglect the terms of the second
order in sx, sy, and h. Instead of sz, we can now put ±s,
and relation (35) yields

ṡx/μ0 = ∓sβsy + λh − λβsx,

ṡy/μ0 = ±sβsx ∓ hs − λβsy. (36)

The third equation becomes an identity.
If h is determined by (30), we can solve (36) with

sx = sx0e
iωt, sy = sy0e

iωt.

We then obtain

sx =
μ2

0β(s2 + λ2) + iωλμ0

(iω + βλμ0)2 + β2s2μ2
0

h (37)

and

sy = ±μ2
0βsλ − μ0s(iω + μ0βλ)
(iω + βλμ0)2 + β2s2μ2

0

. (38)

sy has opposite directions in different layers and
therefore gives nothing for the magnetization of
the whole crystal. From (37), we get the magnetic
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susceptibility (for unit volume) for the magnetization
in the direction of the x-axis in a transverse field:

χt =
μ2

0β(s2 + λ2) + iωλμ0

(iω + βλμ0)2 + β2s2μ2
0

.

But λ � s, and we can write

χt =
μ2

0βs2 + iωλμ0

β2s2μ2
0 − ω2 + 2iωβλμ0

. (39)

The magnetic permeability is

μt = 1 + 4π
μ2

0βs2 + iωλμ0

β2s2μ2
0 − ω2 + 2iωβλμ0

. (40)

Hence, as a function of ω, χt or μt has a proper frequency

ω0 = μ0βs (41)

and the damping with a decrement

γ = μ0βλ. (42)

Evidently, γ � ω0, because λ � s. With the same
numerical values as in § 1, we find the proper frequency
for deformed nickel to be 1.5 × 1010 s−1, corresponding
to a wavelength of 12.6 cm. In (40) which can be also
written as

μt = 1 + 4π
ω2

0 + iωγ

β(ω2
0 − ω2 + 2iωγ)

, (43)

we can distinguish some different cases according to the
value of the frequency:

a) ω � ω2
0

γ
μt = 1 +

4πω2
0

β(ω2
0 − ω2)

, (44)

b) ω − ω0 ∼ γ μt = 1 +
2πω0

β(ω0 − ω + iγ)
, (45)

c) ω � ω0 μt = 1 − 4π
ω2

0 + iωγ

βω2
. (46)
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