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Noise-induced phase transitions in systems with conserved
and nonconserved dynamics with both internal and external
multiplicative fluctuations are considered. On the basis of the
mean-field analysis, the reversible course of the ordering on a
change of the internal noise intensity is revealed. With increase in
the external noise intensity, a system moves to an ordered state.
It is shown that internal and external fluctuations render opposite
statistical actions.

1. Introduction

The contemporary development of the statistical theory
of complicated systems requires the comprehensive
investigation of the influence of a nonequilibrium
medium, in which the system under study is positioned.
For two last decades, a wide circle of nonequilibrium
mechanisms, which can essentially change the states of
physical systems and induce the processes of ordering of
various types, is revealed [1]. Basically important is the
problem to clarify the role of fluctuating sources which
are generated not only by the internal processes running
in the system itself (internal noises), but also to study
the action of the nonequilibrium fluctuating medium
(the external noise). Such problems are urgent not only
in statistical physics [2]. They arise naturally in the
physics of lasers and electronics [3–5], the investigations
of the action of radiation on the structure of materials
[6], the solid-state physics on the description of the
reconstruction of a defective structure [7, 8], chemistry,
biology [9], etc.

After the discovery of the governing role of
a fluctuating medium, the powerful progress in
the statistical physics of nonequilibrium processes
stimulated the reevaluation of fluctuations as a
desorganizing factor. Beginning from the 1980s, it has
been proved that, by controlling the properties of
stochastic sources, the system can be transferred to a
state unattainable in the deterministic case [2,3]. Despite

the nondecreasing interest in the study of a contribution
of fluctuating forces to the processes of self-organization,
till now there exists a large growing circle of problems,
where the fluctuations basically change the behavior of
nonlinear systems. In the present work, we consider one
of such problems, where the internal noises, which were
not even considered at all, can significantly vary the
states of a system. We will consider both the influence
of spatial correlations of two above-mentioned types of
stochastic sources and their joint action.

It is known that, from the theoretical viewpoint, the
physical systems are separated into relaxation-involved
systems (models of classes A, B, and C), liquid (D),
symmetric and asymmetric planar magnetic systems (E
and F , respectively), and isotropic antiferromagnetic
and ferromagnetic (G and H) ones [10]. In the present
work, we will separately analyze two classes of stochastic
models, where the physical field x(r, t) is not conserved
(model A: ∫

drx(r, t) 6= const) and is conserved (model
B: ∫

drx(r, t) = const). The first class of models
concerns systems of the magnetic type. The effect of
external fluctuations on the course of ordering in such
systems is quite known (see [2] and references therein).
However, the contribution of the internal noise, whose
intensity depends on the field variable (multiplicative
noise), as well as the joint action of such two noises,
remains insufficiently understandable. As for model B
which describes the processes of phase stratification,
it was comprehensively analyzed in the deterministic
and stochastic cases only for the additive (with field-
independent intensity) internal noise. We will show that
the role of the internal multiplicative noise is critical for
such a class of models.

The purpose of this work is the detailed study
of the influence of two multiplicative (internal and
external) noises which are realized in the presence
of nonvanishing fluctuations on the transition to the
ordered state and under the fluctuation character of
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the nonequilibrium medium. We will also consider the
influence of the correlation characteristics of fluctuations
on the character of reversible phase transitions. First
of all, the mentioned situation and the posed problems
arise in the study of polymers and their compounds
[11]. Moreover, in view of the experimental data on
the behavior of Seignette salt, we believe that the
results of the present work will find applications to
magnetic systems [12]. In addition, the proposed model
can be used in the description of the processes of
phase stratification [13], decay of solid solutions at the
radiation-involved processing of materials, etc.

The analysis carried out in the present work is based
on the mean-field theory which allows one to adequately
predict the main modes of a behavior of the system.
The method of our studies is standard. First, we develop
a necessary formalism; then we will perform the linear
analysis of the stability, apply the mean-field theory
for finite values of the parameter of spatial interaction,
and finally pass to the macroscopic approximation. We
will show that the internal multiplicative noise can lead
to the reversible pattern of ordering and, moreover,
that the joint action of noncorrelated noises of two
types causes also the reversible behavior of the order
parameter, despite the fact that stochastic sources act
oppositely to each other. Separately, we will study the
influence of spatial autocorrelations of the external noise
on the character of the ordering.

The structure of the present work is as follows. In
Section 2, we present the models of stochastic systems
and basic approximations. Section 3 gives the mean-field
theory and its development for systems of the classes
A and B. The results of studies of the influence of the
internal noise and two stochastic sources are presented
in Section 4. Section 5 includes the results based on the
macroscopic approximation. The conclusions concerning
the results obtained are presented in Section 6.

2. Stochastic Models with Relaxation Flows

The dynamics of a system is determined by a
behavior of the collective variable/variables x(r, t)
in the presence of the Lyapunov functional which
sets, in many cases, the functional of free energy
F [x] for statistical/thermodynamical systems [7]. On
the relaxation of the system to the state of a
thermodynamical equilibrium, the evolution equations
for the field x(r, t) take the form ∂x/∂t = −ΓδF [x]/δx,
where the kinetic coefficient Γ is related in the simplest
cases to the dissipation at Γ =const (model A) and
to the diffusion at Γ = −const∇2 (model B). The

equilibrium state is set by the global minimum of the
functional of free energy; the corresponding condition
is δF [x]/δx = 0. It is worth noting that, for such
systems, the relaxation occurs along the steepest descent
lines of a local potential. Such dynamical equation
describes, in fact, the relaxation to local minima of the
free energy F [x], where the system can remain forever,
if it does not undergo the action of forces which can
transfer it to a global minimum. In order to prevent
the presence of the system in a metastable state, we
consider the fluctuations ξ(r, t) which are Gaussian in
the simplest case, describe the thermostat, and transfer
the system in the equilibrium state for a certain time.
Such fluctuations are added to the evolution equations
for the field, and, instead of the deterministic equation,
we have the stochastic one ∂x/∂t = −ΓδF [x]/δx +
ξ(r, t). Statistical properties of the noise are as follows:
〈ξ(r, t)〉 = 0, 〈ξ(r, t)ξ(r′, t′)〉 = 2Γσ2δ(r − r′)δ(t −
t′), where the presence of the delta-singularity in the
correlator means that the noise ξ(r, t) is white in space
and time; and σ2 is the intensity. The presence of the
kinetic coefficient in the correlator indicates that the
noise is internal, which is related to the fulfillment of
the fluctuation-dissipation theorem. As follows from the
standard approach, the equilibrium distribution of the
field x has the Boltzmann form P[x] ∝ exp(−F [x]/σ2)
and is independent of the choice of the kinetic coefficient
[10].

A separate place in the theory of dynamical systems,
synergetics, and statistical physics is occupied by the
systems with relaxation along the trajectories which do
not coincide with steepest descent lines. In such systems,
it is possible to form temporal, spatial, and spatio-
temporal structures. Such models are characterized by
the functional dependence of the kinetic coefficient on
the field x(r, t) or, in the general case, on the spatial
derivatives of this field. In the frame of the standard
formalism, the kinetic coefficient can be considered a
function or an operator of the type Γ = M(x,∇)
and be determined as the mobility in different phases
corresponding to different values of the field x(r, t →
∞). For such systems, basically important is the fact
that the fluctuation-dissipation theorem allows one to
identify the corresponding fluctuations as the internal
multiplicative noise.

Despite the fact that such a noise is internal
and multiplicative, its influence on the statistical
peculiarities of a behavior of systems is studied
insufficiently. For the first time, the attention to the
problem of the influence of internal fluctuations on a
behavior of distributed systems was paid in work [11].
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There, it was shown that the action of the internal noise
is a source of variability of the entropy which promotes,
in its turn, the running of the processes of ordering in
the system, where the local potential does not allow a
similar behavior. Such phase transitions in systems of
the class A known as entropy-driven phase transitions
are a generalization of noise-induced transitions in the
zero-dimensional systems [3] to the case of distributed
systems. For systems of class B, the influence of the
internal multiplicative noise was not studied sufficiently,
except for the numerical modeling of the initial and late
stages of the phase stratification [14]. The statistical
approaches to the description of such a mechanism of
the ordering are based on the use of the mean-field
theory which gives a qualitatively proper result. This
theory was sufficiently developed on the description of
both equilibrium deterministic systems of class A and
nonequilibrium ones with external fluctuations [2,15,16],
was generalized to the case of a correlated action of two
stochastic sources [17,18], and was further elaborated for
the systems with internal multiplicative noise [11,19,20].
For systems of class B, it was modified with regard for
the action of the external multiplicative and internal
additive noises [21].

In the classes of models considered in the present
work, the functional of free energy corresponds to the
Ginzburg–Landau model

F [x] =
∫ (

V (x) +
D

4d
(∇x)2

)
dr, D = const, (1)

with a local potential

V (x) = −ε

2
x2 +

x4

4
, (2)

where ε is the controlling parameter characterizing the
influence of the medium, and d is the dimension of the
space. We assume that the mobility which determines
the field-dependent kinetic coefficient is given as

M(x) =
1

1 + αx2
, α ≥ 0. (3)

Such a choice follows the well-known mathematical
models of mobility [23] which meet the following physical
conditions: in the disordered state (x = 0), the
fluctuations are great, whereas they are small in an
ordered state (x 6= 0). A variation of the parameter
α allows one to separately consider the influence of an
additive noise at α = 0 and that of a multiplicative one
at α 6= 0.

We assume the presence of the nonequilibrium
medium which sets external fluctuations. Since the

influence intensity of the medium is determined by the
controlling parameter, we may consider the assumption
about its fluctuations to be suitable for the description of
real situations: ε → ε0 + ζ(r, t). We endow the Langevin
source ζ(r, t) by the Gauss properties

〈ζ(r, t)〉 = 0, 〈ζ(r, t)ζ(r′, t′)〉 = σ̃2C(r− r′)δ(t− t′),
(4)

with the spatial correlation function

C(r− r′) =
(
λ
√

2π
)−d

exp
(
−|r− r′|2

2λ2

)
, (5)

where λ is the correlation length of the external noise;
and σ̃2 is the intensity.

3. Mean-Field Theory

Consider the principles of the use of the mean-
field theory on the basis of a stationary distribution
function, the evolution equation for which must take the
corresponding peculiarities of the classes of models into
account.

3.1. Model A
The general form of the initial model with internal
multiplicative noise is as follows:

∂x

∂t
= −M(x)

δF [x]
δx

+
√

Mξ(r, t). (6)

In the simplest case, the internal fluctuations ξ(r, t) are
assumed to be Gaussian

〈ξ(r, t)〉 = 0,

〈ξ(r, t)ξ(r′, t′)〉 = 2σ2δ(r− r′)δ(t− t′). (7)

The external fluctuations are set by correlator (4).
For the further analysis, we pass to the lattice
representation, by considering the dynamics on a lattice
with the spatial scale ` = 1, where the continual field
x(r, t) is replaced by the collection {xi}Nd

i=1 from Nd

dynamical variables xi(t), and i enumerates elements of
the lattice. The functional of free energy takes the form

F =
Nd∑

i=1


Vi +

D

4d

∑

j∈nn+(i)

(xj − xi)2


 , (8)
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where nn+(i) denotes the nearest neighbors in the
positive direction of each of the axes. Finally, the
Langevin continual equation with two noises (internal
ξ and external ζ ones) is replaced by the collection of
equations for each element of the lattice

dxi

dt
= −Mi


 ∂V

∂xi
− D

2d

∑

j

∆ijxj


 + miξi(t) + giζi(t),

(9)

where xi(t) ≡ x(ri, t), m2
i = Mi ≡ M(xi), gi = xiMi;

and the discrete Laplacian is set by the standard formula

∆x →
∑

j

∆ijxj =
∑

j

(δnn(i),j − 2dδi,j)xj (10)

with the summation over the nearest neighbors of the
i-th element. The corresponding correlators

〈ξi(t)ξj(t′)〉 = 2σ2δijδ(t− t′),

〈ζi(t)ζj(t′)〉 = 2σ̃2C|i−j|δ(t− t′) (11)

are written with the help of the discrete representation of
the spatial correlation functions δij , C|i−j|. It is obvious
that, at rc = 0, we have a white noise in the space with
C0 = 1, C1 = 0. But, at λ À 1, we get C0 ∝ λ−d.

In order to perform the statistical analysis, we use
the standard positions of stochastic dynamics [4,22]. By
interpreting the corresponding Langevin equations by
Stratonovich, we get an evolution equation for the total
probability density P = P ({xi}, t) in the form

∂P
∂t

=
∑

i

∂

∂xi

[
Mi


 ∂V

∂xi
− D

2d

∑

j

∆ijxj


+

+σ2mi
∂

∂xi
mi + σ̃2gi

∑

j

C|i−j|
∂

∂xj
gj

]
P. (12)

The evolution equation for the one-point probability
density Pi(t) =

∫ [∏
m 6=i dxm

]
P under the condition

that the distribution tends to zero in the limit ±∞,
which gives

∫ 
∏

m6=i

dxm


 ∂

∂xj
gjP = 0, i 6= j, (13)

can be obtained by the direct integration over all
variables, except for xi. Then, in view of both the
definition of a conditional mean

∑

j∈nn(i)

∫ 
∏

m6=i

dxm


Pxj =

=


 ∑

j∈nn(i)

∫
dxjP (xj |xi, t)xj


 Pi(t) = 2d〈x〉Pi(t) (14)

and the positions of the mean-field theory
∑

j

∆ijxj → 2d(〈x〉 − x), (15)

we get an evolution equation for the one-point
probability density in the form

∂Pi

∂t
=

∂

∂xi

[
Mi

(
∂V

∂xi
−D(〈x〉 − x)

)
+

+σ2mi
∂

∂xi
mi + σ̃2C0gi

∂

∂xi
gi

]
Pi, (16)

where the mean-field quantity 〈x〉 in models of class
A plays the role of the order parameter and can be
calculated in a self-consistent way. To obtain it, we need
know the stationary probability density.

In the stationary case in the absence of flows, the
required distribution takes the form

Ps(x; 〈x〉) = N exp
{
−

∫
dx′

D1(x′; 〈x〉)
D2(x′)

+
1
2

lnD2(x)
}

,

(17)

where N is the normalization constant, and the functions

D1(x; 〈x〉) = M(x)
[
∂V (x)

∂x
+ D(〈x〉 − x)

]
,

D2(x) = σ2M(x) + σ̃2C0g
2(x) (18)

are terms of the Kramers–Moyal series and set the
effective drift and the effective coefficient of diffusion,
respectively [4]. Despite the fact that the obtained
solution is formal, because the mean field 〈x〉 depends
on just the probability density, we use the condition of
self-consistency

〈x〉 =
∫

xPst(x; 〈x〉)dx ≡ Φ(〈x〉) (19)

and determine each of these two quantities in terms of
another.
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We note that two stochastic sources do not correlate
with each other, and the conditions of symmetry V (x) =
V (−x), M(x) = M(−x), g(x) = −g(−x) are valid.
Then, as follows from [2, 17, 18], the function Φ(〈x〉)
is a monotonously increasing one. Hence, in the given
system, we may expect the presence of phase transitions
of the second kind [19]. The critical values of parameters
of the system, which set the lines of a phase transition,
are determined from the condition

dΦ(〈x〉)
d〈x〉

∣∣∣∣
〈x〉=0

= 1. (20)

It is considered that the disordered phase is
characterized by the trivial value of the mean field
〈x〉 = 0, whereas the ordered one — by 〈x〉 6= 0. Since
Φ(〈x〉) possesses the central symmetry, it is obvious
that the ordered phase is characterized by two identical
values of 〈x〉 which differ by their signs. Since model
A corresponds to systems of the magnetic type, it is
expedient to define, in what follows, the order parameter
as the “mean magnetic moment” η = |〈x〉|.

3.2. Model B
On the description of stochastic models with the
conserved order parameter, we use the equation of
continuity for the field x(r, t),

∂x

∂t
= −∇J, (21)

where J is the flow. This equation is exact and cannot
be modified directly. However, assuming the flow to be
dynamical, we can use and modify the Fick law as

J ' −M∇δF [x]
δx

+ ξ(x; r, t), (22)

where we introduced the fluctuations of the flow ξ which
are assumed Gaussian and can be, in the general case,
a function of the field x. For the x-dependent kinetic
coefficient M = M(x), the fluctuation-dissipation
theorem yields

〈ξ(x; r, t)〉 = 0,

〈ξ(x; r, t)ξ(x; r′, t′)〉 = 2σ2M(x)δ(r− r′)δ(t− t′). (23)

Then the substitution of expression (22) in (21) leads
to the stochastic equation of continuity. Assuming the

presence of fluctuations of the controlling parameter, the
Langevin equation takes the form

∂x

∂t
= ∇ ·

(
M(x)∇

[
δF [x]

δx
+ xζ(r, t)

])
+∇m(x)ξ(r, t),

(24)

where the autocorrelators of the sources ξ and ζ are given
in (7) and (4), respectively. The presented model is a
stochastic generalization of the well-known model of the
phase stratification of binary systems [24].

In what follows, we again pass to a discrete space, by
presenting the continual equation (24) in the form

dxi

dt
= (∇L)ijMj(∇R)jl

[
∂F

∂xl
+ xlζl(t)

]
+ (∇L)ijmjξj(t),

(25)

where we introduced the left- ((∇L)ij = δi,j − δi−1,j)
and right-side ((∇R)ij = δi+1,j−δi,j) gradient operators
with the following properties: (∇L)ij = −(∇R)ji,
(∇L)ij(∇R)jl = ∆il.

The construction of the evolution equation for the
distribution density is based on certain peculiarities of
the operation with discrete gradient operators. In the
frame of the standard positions, the total probability
density P([x], t) satisfies the Fokker–Planck equation in
the form [2,4, 21,22]

∂P
∂t

=
∑

ij

∂

∂xi
∆ij

(
Mj

[
− ∂V

∂xj
+

D

2d

∑
r

∆jrxr

]
−

−σ2mj
∂

∂xj
mj + σ̃2gj

∑
m,n

∂

∂xn
∆mnC|j−n|gn

)
P. (26)

The evolution equation for the one-point probability
density is obtained by the integration of (26) over all
variables except for xi. As a result, we get the equation

∂Pi(t)
∂t

=
∂

∂xi

∑

j

∆ij〈M̂j〉Pi(t), (27)

where we used the notation

M̂j = Mj

[
− ∂V

∂xj
+

D

2d

∑
r

∆jrxr

]
−

−σ2mj
∂

∂xj
mj + σ̃2gj

∑
m,n

∂

∂xn
∆mnC|j−n|gn. (28)

Assuming the stationary distribution to be flowless,
〈M̂j〉 should satisfy the equation
∑

j

∆ij〈M̃j〉Ps(xi) = 0. (29)
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For the further consideration, we take the
deterministic evolution equation for the field x(r, t)
in the form ∂x/∂t = ∇M∇δF/δx. For such systems,
the important point is the limitation imposed by the
conservation law x0 =

∫
drx(r, t), where x0 is the

initial value given by the initial conditions. Just the
latter influence essentially the character of the phase
stratification in the system. By positions of the theory of
phase stratification for such systems, we can introduce a
transition point εT (x0): at ε < εT (x0), the homogeneous
state x0 is stable; at ε > εT (x0), the system is stratified
into two phases with x1 and x2. The transition point
will coincide with the critical one only at x0 = 0, i.e.
εT (x0 = 0) = εc. It is known that, in the deterministic
case, the kinetic coefficient affects only the dynamics of
phase transitions, not changing the stationary states
of the system. Hence, the stationary states can be
calculated by solving the reduced equation ∇δF/δx = 0.
Therefore, the restricted solution will be δF/δx = h,
where h is a constant which represents generally the
effective field. In equilibrium systems, this field is
reduced to the difference of the chemical potentials
of two phases. For a homogeneous system, the field
h depends on the initial conditions x0. Above the
transition point, the homogeneous state is unstable,
and the system is stratified into two phases with the
values of the field x1 and x2, and the corresponding
share u is given by the rule ux1 + (1− u)x2 = x0. Since
the specific potential of the free energy is symmetric,
x1 = −x2. Therefore, we have h = 0, i.e. the two phases
have the identical chemical potentials [21].

The presented consideration can be used also in the
stochastic case. Assuming 〈M̂j〉 = −h, we can set i = j
and carry out the averaging by rule (14). As a result, we
get the equation

−hPs(x) =
(

M(x)
[
−∂V

∂x
+ D(〈x〉 − x)

]
−

−σ2m(x)
∂

∂x
m(x) + +2dσ̃2g(x)×

×
[
C1g(〈x〉) ∂

∂x
− C0

∂

∂x
g(x)

])
Ps(x), (30)

where we took 〈g(x)〉 ' g(〈x〉) following [21] as a result
of the mean-field averaging of the function g(x) over the
nearest neighbors. This equation has the solution

Ps(x, 〈x〉, h) = N exp
(∫

dx′
Ω(x′; 〈x〉;h)
Θ(x′; 〈x〉)

)
, (31)

where

Ω(x; 〈x〉; h) = M(x)
[
−∂V (x)

∂x
+ D(〈x〉 − x)

]
−

−σ2

2
∂M(x)

∂x
− dσ̃2C0

∂g2(x)
∂x

+ h,

Θ(x; 〈x〉) = σ2M(x) + 2dσ̃2g(x)(C0g(x)− C1g(〈x〉)).
(32)

It should be noted that the stationary distribution
depends now on two parameters, namely: on the
mean field 〈x〉 and on the effective field h which
are determined, in their turn, through the stationary
distribution in a self-consistent way.

In order to calculate these unknown parameters,
we note that the presented mean-field theory is truly
local and leads to the determination of the distribution
function in terms of h and 〈x〉 only in the vicinity of
a given element of the spatial lattice. Hence, in the
homogeneous case, the mean field is the same over the
whole system and coincides with the initial value, i.e.
〈x〉 = x0. Then, due to the substitution of the given
value x0 for 〈x〉 into the stationary distribution (31), the
quantity h will be calculated by solving the equation

〈x〉 =
∫

xPs(x, 〈x〉, h)dx (33)

at Ps = Ps(x;x0; h). Behind the transition point, where
the system is separated into two phases with 〈x1〉 and
〈x2〉, the equality 〈x1〉 = −〈x2〉 holds due to the
symmetry of the specific potential V (x). Therefore, h
is now the same for both phases, and we can set h = 0
in such ordered state. Hence, the distribution function
becomes dependent on a single parameter 〈x〉 which is
determined by solving the equation of self-consistency
(33) at Ps = Ps(x; 〈x〉; 0).

4. Results

4.1. Influence of the internal multiplicative noise

Model A. The fact that the stationary distribution
can be obtained exactly is basically important for
systems with internal multiplicative noise. Indeed,
assuming that σ̃2 = 0, we get a stationary distribution
in the continual form

Pst[x] ∝ exp
(
−Ueff [x]

σ2

)
, (34)
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where the effective functional of free energy Ueff [x] can
be written as

Ueff [x] = F [x] + σ2Seff [x] (35)

and is set by the effective entropy

Seff [x] =
1
2

∫
dr ln M(x) (36)

defined in terms of the mobility M(x). It is characteristic
that, despite the invariability of the functional of free
energy, the states of the system will be determined by
the variability of the entropy caused by the internal
multiplicative noise.

In addition, while analyzing the stability of the first
moment, the corresponding Langevin equation implies
that the internal multiplicative noise does not lead to the
loss of the stability of a homogeneous state. Indeed, we
have in the linear approximation for the first moment:

∂〈x〉
∂t

= (ε− ασ2)〈x〉+
D

2d
∆〈x〉. (37)

As seen, the loss of the stability in the linear
approximation is influenced only by the controlling
parameter, whereas the noise stabilizes the disordered
state.

These two signs (the variability of the entropy at
the invariable free energy and the stabilization of the
disordered state by the noise) are those of the so-called
entropy-driven phase transitions. For their detailed
study in the frame of the mean-field theory, we introduce
the effective-energy function

Ueff(x; η) = V (x) +
D

2
(η − x)2 +

σ2

2
ln M(x) (38)

which allows us to trace a behavior of the function
Φ(〈x〉). In this case, the analysis of its properties is
simplified. For example, the differentiation with respect
to the argument gives

dΦ(〈x〉)
d〈x〉 =

2D

σ2

(〈x2〉 − 〈x〉2) , (39)

which is the definition of generalized susceptibility χ,
whose divergence must indicate the points of phase
transitions. By applying the Schwartz inequality to the
obtained derivative, 〈ψ2(x)〉〈φ2(x)〉 ≥ |〈ψ(x)φ(x)〉|2,
and taking ψ(x) = x and φ(x) = 1, we get the result
indicating the monotonous behavior of Φ(〈x〉). In this
case, lim〈x〉→±∞ Φ(〈xn〉) → Φn(〈x〉) and, respectively,

lim〈x〉→±∞ dΦ(〈x〉)/d〈x〉 → 0, where Φ(〈xn〉) ≡ 〈xn〉.
Thus, we arrive at the conclusion [19]

lim
〈x〉→∞

Φ(〈x〉) < 〈x〉, lim
〈x〉→−∞

Φ(〈x〉) > 〈x〉. (40)

Because Φ(〈x〉) = −Φ(−〈x〉), the even derivatives will
be trivial. In this case, the additional condition for the
transition between the disordered and ordered states
is d3Φ(〈x〉)/d3〈x〉

∣∣
〈x〉=0

< 0. The obtained relations
for the derivatives can be rewritten in terms of the
cumulants (semiinvariants) µn = 〈(x− 〈x〉)n〉, by using
the expansion in the Taylor series

Φ(〈x〉) =
∞∑

n=0

〈x〉2n+1

(2n + 1)!

∫
∂2n+1Ps(x, 〈x〉)

∂〈x〉2n+1

∣∣∣∣
〈x〉=0

xdx.

(41)

The integration in quadratures yields the conditions for
a realization of phase transitions of the second kind in
the form [19]

dΦ(〈x〉)
d〈x〉 =

2D

σ2
µ2, µ2 =

σ2

D
;

d3Φ(〈x〉)
d3〈x〉 =

(
2D

σ2

)3

µ4, µ4 < 0. (42)

In order to carry out the quantitative analysis,
we determine the region of variations of the main
parameters of the system. The controlling parameter is
related to the dimensionless temperature counted from
the critical one. Therefore, we take ε ∈ [−1, 1], the
coefficient D > 0, and the noise intensity σ2 ≥ 0. As
for the parameter α, we note that it sets a character
of the relaxation of the system to a certain state xs,
in the vicinity of which the fluctuations are infinitely
small, but nonvanishing. Therefore, the function M(x)
can be written in dimensionless units for model A in the
form M(x) = 1/(1+ (x/xs)2), where α = x−2

s . Since the
quantity xs can vary from xmin

s → 0 to xmax
s = const,

we set α ≥ 0 without any loss of generality.
We now consider the pattern of the ordering on the

basis of solutions of the equation of self-consistency (19)
and the definition of susceptibility (39). The mean-field
values of the order parameter |〈x〉| and the susceptibility
χ = dΦ/d〈x〉|〈x〉=0 are given in Fig. 1. It is seen from
Fig. 1,а that, in the case of a two-well initial potential
V (x) with ε > 0, an increase of the multiplicative noise
intensity causes the decrease of the order parameter to
zero (the transition to the disordered state). The basic
peculiarity of the behavior of the order parameter as a
function of the noise intensity consists in the realization

ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 9 923



D.O. KHARCHENKO, A.V. DVORNICHENKO, I.O. LYSENKO

a

b
Fig. 1. Mean-field values of the order parameter |〈x〉| (а) and
the susceptibility χ = dΦ/d〈x〉|〈x〉=0 (b) versus the internal noise
intensity σ2 at various values of α, D, and ε. Curves in part (b)
correspond to the curves in part (а) at the same values of the
parameters

of a reversible phase transition at ε < 0, which
corresponds to a one-well potential V (x). Here, the
system is disordered at small intensities of the internal
noise σ2. On the transition through the critical
value of σ2

1c, the order parameter becomes nontrivial,
and the ordered state is conserved to the value
of σ2

2c such that the internal noise suppresses the
processes of ordering on the passage through this
value. The corresponding dependences of the generalized
susceptibility χ demonstrate the specific features of the
behavior of the order parameter: for the two-well local
potential, we observe one peak on the corresponding
curve (solid line), which testifies to one critical value of
the noise intensity; but, for the one-well local potential
(dotted line), we see two characteristic peaks, which
indicates the existence of two critical points σ2

1c and σ2
2c.

Fig. 2. Phase diagram of the system at α=10 and 30. The
corresponding solid lines bound the regions of the ordered and
disordered states. The dashed line separates the unimodal and
bimodal stochastic distributions Ps(x; 〈x〉 > 0), and the dotted
line separates the stochastic distributions at 〈x〉 = 0

The comparison of the mentioned dependences allows
us to conclude that the increase of α (a decrease of
fluctuations at the deviation of x from zero) reduces
significantly the region of ordering; whereas the increase
of the interaction parameter D extends the interval of
the intensities σ2 ∈ [σ2

1c, σ
2
2c], where the ordered state

exists.
We obtained the phase diagram by solving Eq. (20).

Because the disorganizing role of the noise is not of
interest, we present only a diagram illustrating the
reversible course of a phase transition in the plane
(σ2, D) (see Fig. 2). It is seen that, in the case of a
one-well local potential V (x) and great α, the reversible
course of the process of ordering is possible on a large
interval of the intensities σ2; whereas the region of
ordering narrows at smaller α (curves with the notations
30 and 10, respectively). The increase in α causes the
increase in the critical values of D, by conserving the
topology of the phase diagram.

To illustrate the running of entropy-driven phase
transitions in the given system, we show the behavior
of a stochastic stationary probability density Ps(x; 〈x〉)
at 〈x〉 = 0 (at points a and b) and at 〈x〉 > 0 (at
points c and d) in the inserts in Fig. 2. First, we consider
the disordered state, 〈x〉 = 0. In the region containing
point a, we have the unimodal probability density
centered at zero. On the passage through the dotted
line, we have the noise-induced transition related to the
entropy contribution to the effective potential Ueff [x].
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On the line, there occurs the threefold degeneration of
the extremum of the distribution of the stochastic field
x. Behind the line (point b), the distribution becomes
bimodal. By moving from point a into the region
containing point c, we see the appearance of a nonzero
value of the mean field 〈x〉 on the passage through
the solid line, which causes the loss of a symmetry
of the distribution function. On the passage through
the dashed line (we fall into the region containing
point d), there appears the additional maximum of
the distribution, which is the sign of a noise-induced
transition. With the subsequent growth of the noise
intensity, the ordered state is destroyed (the symmetry
of the distribution is renewed), and we fall into the region
containing point b, where the distribution is bimodal
and symmetric, because 〈x〉 = 0 there. Thus, we possess
the following pattern of the ordering: with increase of
the noise intensity, the unimodal symmetric distribution
becomes asymmetric, then the asymmetric distribution
is transformed into a bimodal one, and, finally, the
bimodal distribution becomes symmetric.

Model B. By considering the model with a conserved
dynamics, we note that the parameter α is bounded by
the values α ∈ [0, 1], because it is now related to the
coefficients of surface diffusion Ds and bulk diffusion
Db by the formula α ≈ 1 − Db/Ds [26]. In the case
where α ¿ 1, we get the approximation formula M(x) ≈
1−αx2 which is frequently used in the descriptions of the
processes of phase stratification with a bounded value of
the field x(r, t) ∈ [−1, 1].

Like the previous case, we consider the pattern of
the ordering for positive and negative values of the
controlling parameter ε. First, we will show that the
internal multiplicative noise within model B also does
not lead to the loss of the stability of a disordered
state. Since the condition

∫
x(r, t)dt=const is satisfied

in the given model, we consider the dynamics of
the structural factor S(k, t) = 〈xk(t)x−k(t)〉, where
xk(t) =

∫
x(r, t)eikrdr. In the linear approximation,

the evolution equation for the spherically averaged
structural factor looks as [27]

dS(k, t)
dt

= −ω(k)S(k, t)+

+2σ2k2 − 2ασ2k2 1
(2π)d

∫
dqS(q, t), (43)

where the dispersion relation is as follows:

ω(k) = k2

(
D

2d
k2 − ε + ασ2

)
. (44)

The exponential solution implies that, on the early stage,
the unstable modes with the wave vector k < kc =√

2d(ε− ασ2)/D grow. With increase in α and σ2,
the size of the spinodal region with k < kc decreases.
The unstable modes which promote the development
of structures are not realized at ε < ασ2. Therefore,
the increase of the parameters α and σ2 suppresses
the creation of spatial structures and promotes the
stabilization of the disordered state.

First, we note that model B with an internal
noise inherits certain peculiarities of the statistical
representation of the corresponding model A. Indeed,
under the condition of the absence of flows, the formal
stationary distribution at h = 0 is set by relations (34)–
(36) and (38). However, the calculation of mean-field
values and the phase transition points must use the
additional condition that different forms of a behavior
of the system are set by the initial conditions.

For this purpose, we will determine, first of all,
the behavior of the effective field h by solving the
equation of self-consistency at the initial concentration
x0 = 0.2 and the mean field 〈x〉. The corresponding
dependences on the noise intensity are given in Fig. 3.
Figure 3,a shows that, at ε > 0, the field h increases
from zero value starting from the point, where σ2 = σ2

T .
Prior to this point, the field h = 0. This allows us to
calculate the mean-field value of 〈x〉 from the equation
of self-consistency. The noise-induced effect is clearly
seen from the dependence h(σ2) at ε < 0. Here, the
effective field behaves itself nonmonotonously. For small
σ2, it drops to zero and remains trivial in the interval
σ2 ∈ [σ2

1T , σ2
2T ]. The last fact means that, in the given

interval, the phase stratification with 〈x1〉 = −〈x2〉
occurs. At σ2 > σ2

2T , we have a growth of h, which
indicates that the system is now homogeneous with
〈x〉 = x0. The dependence of the mean field 〈x〉 on the
noise intensity under the condition h = 0 is presented
in Fig. 3,b. Since the quantity 〈x〉 is determined from
the solution of the equation of self-consistency at h = 0
and x0 = 0, the bifurcation points are the critical ones
σ2

1c and σ2
2c. It is seen from Fig. 3 that the value of 〈x〉

drops to zero for the two-well local potential V (x). But,
for the one-well local potential, the reversible behavior of
〈x〉 is realized. Thus, the above-presented results imply
that, like the previous case, a reversible phase transition
caused by the action of the internal multiplicative noise
for the negative values of the controlling parameter
occurs in the system.

The phase diagrams were calculated under the
condition that the effective field h takes the zero value.
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a

b

Fig. 3. Effective field h at a fixed initial value x0 = 0.2 (a) and
the mean field 〈x〉 at D = 10 and α = 0.8 obtained by solving the
equation of self-consistency (33) at h = 0 (b) versus the internal
noise intensity σ2

In the plane (σ2, D), the phase diagram has the form
shown in Fig. 4 (dash-dotted line — the line of transition
points, solid line — the line of critical points). First,
let us consider the dash-dotted line obtained at the
fixed intial value x0 = 0.6. As above, at ε < 0 and
low noise intensities σ2 < σ2

T , we have the condition
〈x〉 = x0 which is satisfied up to σ2 > σ2

T . In the region
σ2 ∈ [σ2

1T , σ2
2T ], we have h = 0 and 〈x〉 6= x0. The growth

of the parameter α decreases the value of ε, at which the
state with 〈x〉 6= x0 is realized, and extends the region
of existence of such ordered state. The line of critical
points is positioned at less values of the parameter of
inhomogeneity D and shifts along the direction to low
intensities of the noise. The presented result indicates

Fig. 4. Phase diagram at ε = −0.2, λ = 0.0: solid line — the line of
critical points (x0 = 〈x〉 = 0.0); dotted line — the line of transition
points (x0 = 〈x〉 = 0.6). Dashed line — the line where the modality
of the stationary distribution Ps(x; 〈x〉, h = 0) is changed

that, for a given nonzero initial concentration x0, the
phase transition is possible at enhanced values of the
parameter of inhomogeneity D, whereas the region of
existence of the heterogeneous phase along the axis of the
noise intensity decreases. The influence of the parameter
α on the position of the transition points and the critical
points is analogous to that seen in Fig. 2. The dashed line
sets the points, where the topology of the corresponding
stationary stochastic distribution Ps(x; 〈x〉 > 0, h = 0)
is changed, i.e. we have the noise-induced transition.
Thus, on the phase stratification, we are also faced
with a generalization of noise-induced transitions (with
a changing topology) to the case of distributed systems.

4.2. Influence of the internal and external noises

We now consider the case of two noises and clarify
the character of an influence of the external noise with
intensity σ̃2 on the course of reversible phase transitions.

Model A. In the case of the nonconserved order
parameter, the presence of an external noise with
intensity σ̃2 leads to the destabilization of the disordered
phase in the linear approximation. Indeed, the linear
evolution equation for the first moment looks as

∂〈x〉
∂t

= (ε− ασ2 + C0σ̃
2)〈x〉+

D

2d
∆〈x〉. (45)

It is seen that the internal and external noises become
competitive in the processes, where the stability of a
disordered state is lost.

926 ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 9



MEAN-FIELD APPROACH TO NONEQUILIBRIUM PHASE TRANSITIONS

The solutions of the equation of self-consistency are
shown in Fig. 5,a. It is seen that, at a fixed value of the
internal noise intensity σ2, the system becomes ordered
with increase of the intensity of external fluctuations.
Thus, the external noise is a source of the ordering in the
system. We note that the noise also favors the extension
of the region of intensities of the internal noise, at which
the order parameter is nonzero, by suppressing processes
of the reversible type. For example, at great σ̃2, the
reversible behavior of the order parameter as a function
of the intensity σ2 disappears. As a result, we arrive at
the known pattern of disordering by the internal noise.

The corresponding phase diagram is given in Fig.
5,b. It is seen that the reversible course of the phase
transition without external noise is possible at high
intensities of the spatial interaction D (solid curve). A
decrease in the quantity D leads to that the ordering
becomes possible only in the presence of two noises
(dotted line). An increase in the spatial correlation
length of fluctuations λ enhances the critical values of
the external noise intensity, by narrowing the region of
existence of the ordered phase along the σ2 axis.

Model B. Within the model with a conserved order
parameter, the linear analysis of the stability of the
structural factor allows us to write the equation in the
form

dS(k, t)
dt

= −ω(k)S(k, t) + 2σ2k2−

−2ασ2k2

(2π)d

∫
dqS(q, t) +

2k2σ̃2

(2π)d

∫
dqG(q)S(q, t), (46)

where G(q) is the Fourier transform of the correlation
function C(r − r′). The dispersion law is given by the
formula [27]

ω(k)=k2

([
D

2d
− σ̃2C1

]
k2−ε ++ασ2−σ̃22d(C0−C1)

)
.

(47)

The above-presented consideration implies that the
critical value for the point, where the stability of the
homogeneous phase is lost, is renormalized due to the
spatial correlations of the external noise.

The dependence of the mean field on the intensities
of the internal and external noises is presented in Fig. 6,a
at h = 0. It is seen that the increase of the external noise
intensity at negative values of the controlling parameter
suppresses the reversible course of the phase transition

a

b
Fig. 5. Order parameter versus the intensities of the internal and
external noises at α = 5.0, D = 1.5, ε = −0.2, λ = 0.0 (a) and the
phase diagram of model A in the presence of two noises at α = 5.0,
ε = −0.2 and various values of D and λ (b)

along the axis of the internal noise intensity σ2. The
first critical point σ2

c1 shifts to the left, and, without
internal noise, the system is ordered due to the external
fluctuations on the passage through the critical value.
The critical point σ2

c2 moves to the right, so that the
increase of σ̃2 extends the region of the internal noise
intensity, where two equivalent phases of the system
with 〈x1〉 = −〈x2〉 are realized. Let us consider the
influence of spatial correlations of the external noise λ on
positions of the critical points. The corresponding phase
diagram is shown in Fig. 6,b for various values of the
parameter of inhomogeneity D, the parameter α (curves

ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 9 927



D.O. KHARCHENKO, A.V. DVORNICHENKO, I.O. LYSENKO

a

b
Fig. 6. Dependence of the mean field on the intensity of noises at
α = 0.4, ε = −0.2, and D = 10 (а) and the phase diagram (b) for
various values of the correlation length λ, the parameter of spatial
inhomogeneity D, and the parameter α (curves 1, 2, 3 correspond
to λ = 0.0, and 1′, 2′, 3′ — λ = 1.0: 1, 1′ — D = 8.3, α = 0.4; 2,
2′ — D = 10.0, α = 0.4, 3, 3′ — D = 8.3, α = 0.6)

1, 2, 3 ), and the lengths of spatial correlation of the
noise λ (for comparison of the influence of λ at the
corresponding D and α, we present the curves with
primes). It is seen that the increase in D leads to both a
decrease of the critical intensities σ̃2 and the realization
of the reversible course of the phase transition (compare
curves 1 and 2 ). An analogous situation is observed on
the growth of the parameter α (compare curves 1 and
3 ). The increase of the correlation length of the external

noise induces the increase of the critical values of its
intensity (compare curves 1′, 2′, 3′). In this case, the
region of reversible behavior of the mean field along the
intensity axis of the internal noise is narrowed.

5. Macroscopic Approximation

Let us consider, finally, the macroscopic approximation,
by setting D → ∞. This allows us to neglect the
correlations, by representing the averaging in the form
〈φ(x)〉 ' φ(〈x〉). In such a case, the stationary
distribution takes the form Ps(x, 〈x〉) = δ(x−〈x〉). This
allows us to write the stationary equation used for the
determination of the critical values of parameters of the
system for models of class A in the form

−M(〈x〉)V ′(〈x〉) +
σ2

2
M ′(〈x〉)+

+
C0σ̃

2

2
(〈x〉2M2(〈x〉))′ = 0. (48)

For class B, we have

h = M(〈x〉)V ′(〈x〉)− σ2

2
M ′(〈x〉)+

+
2d(C1 − C0)σ̃2

2
(〈x〉2M2(〈x〉))′, (49)

where the prime means the differentiation with respect
to the argument. The presented equations were obtained
by the integration of Eq. (16) in the stationary case and
Eq. (30), respectively.

For class A, the solution of Eq. (48) gives the root
〈x〉 = 0 which exists always, whereas the nontrivial
roots 〈x〉1,2 6= 0 set the critical value of the controlling
parameter εc determined by the formula

εc = ασ2 − C0σ̃
2. (50)

Thus, at ε > εc, the ordered phase is formed, which
follows from the analysis of the stability. Thus, the
fluctuating forces are competitive: the internal noise
leads to the growth of the critical value of the controlling
parameter, whereas the external noise decreases it.

For models of class B, we should consider again the
influence of initial conditions which set a value of the
effective field h. At ε < εT , the field is homogeneous.
Therefore, we should set 〈x〉 = x0 in Eq. (49), which
gives h as a function of x0. At ε > εT , we have h = 0.
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Then Eq. (49) is solvable relative to 〈x〉. The transition
line corresponds to the condition 〈x〉1 = x0 and, in a
relevant manner, determines the transition point εT .
The critical point εc = εT (x0 = 0) is set now by the
relation

εc = ασ2 − 2dσ̃2(C0 − C1). (51)

The above consideration implies that we are faced, as
earlier, with the competition between the internal and
external noises. However, as distinct from (50), we have
the displacement of the critical point with a factor of
2d, which is related to not only the noise intensity
σ̃2C0 but to spatial correlations (the term C1) of the
first neighbors. It is characteristic that, in model A,
the correlation contribution from the adjacent sites of
the lattice disappears, whereas it becomes significant for
models of class B. In addition, it is worth to note that,
in the case of the influence only of the internal noise,
the critical value of the controlling parameter is the
same for both classes of models. Finally, we note that,
the controlling parameter has only one critical value in
the macroscopic approximation, which corresponds to a
single point of the phase transition. This is related to
the fact that we used the assumption D →∞. The two
points of the phase transition and hence the reversibility
of a behavior of the order parameter are possible only
at finite values of the intensity of a spatial interaction
[16–18].

6. Conclusions

We have carried out the theoretical study of the
processes of ordering in systems of classes A and B in the
presence of internal and external multiplicative noises.
In the frame of the developed mean-field theory, we
have shown that the action of the internal multiplicative
noise leads to the reversible course of phase transitions
on changing its intensity. The obtained bifurcation and
phase diagrams illustrate the presence of two points
of the phase transition only at finite values of the
parameter of spatial interaction.

While considering the joint influence of internal
and external noises, we have established that they
reveal the opposite statistical actions: the internal noise
stabilizes the disordered state, and the external one
promotes its destabilization. It is fiound that, at a fixed
value of the external noise intensity, an increase of the
intensity of internal fluctuations leads to a realization
of a transition of the order–disorder type, whereas
the external fluctuations at a fixed intensity of the

internal noise promote the appearance of an ordered
state. The obtained results are in agreement with both
the linear analysis of the stability and the macroscopic
approximation. We have revealed that the points of
phase transitions within the models under study in the
presence of the internal noise coincide, whereas they
differ from one another in the presence of an external
noise, which is related to the influence of the spatial
correlation length.

The obtained results can be used in the further
theoretical study of systems of the magnetic type,
polymers, and the processes of phase stratification and
decay under the active interaction of the system and the
external medium. The use of the proposed theoretical
approaches will allow one to predict the behavior of solid
solutions surrounded by a nonequilibrium medium.

Here, we have considered the case of a noncorrelated
action of two stochastic sources; therefore, the
perspective of further studies is the analysis of the role
of temporal correlations of two processes. Moreover,
while considering models of class B, we have used
the approximation of a thermodynamical equilibrium,
whereas the study of the processes of spinodal decay
in the limit case of a dynamical flow, and not just the
study of the concentration-related problems, seems to be
urgent and promising.
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СЕРЕДНЬОПОЛЬОВИЙ ПIДХIД ДО НЕРIВНОВАЖНИХ
ФАЗОВИХ ПЕРЕХОДIВ У СИСТЕМАХ IЗ ВНУТРIШНIМ
ТА ЗОВНIШНIМ МУЛЬТИПЛIКАТИВНИМИ ШУМАМИ

Д.О. Харченко, А.В. Дворнiченко, I.О.Лисенко

Р е з ю м е

Розглянуто iндукованi шумом фазовi переходи за наявностi
внутрiшнiх та зовнiшнiх флуктуацiй мультиплiкативного ха-
рактеру у системах iз динамiкою, яка зберiгається та не зберi-
гається. На основi середньопольового аналiзу виявлено ревер-
сивний хiд упорядкування при змiнi iнтенсивностi внутрiшньо-
го шуму. Iз зростанням iнтенсивностi зовнiшнього шуму систе-
ма переходить до упорядкованого стану. Встановлено, що внут-
рiшнi та зовнiшнi флуктуацiї мають протилежну статистичну
дiю.
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