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The article presents a theoretical analysis of the splitting of the
energy levels of a charge (an electron, a hole) by group theory for
quantum dots of cubic, hexagonal, and tetrahedral shapes in the
cases where a particle spin equals 0 or 1/2. The energies and the
wave functions of states for quantum dots with different shapes
are evaluated by perturbation theory. As a basis, a quantum dot
with spherical symmetry is chosen, and an exact value of the
energy of a charge in it is found. The specific calculations are
performed for the GaAs/AlAs and InAs/GaSb heterostructures.

1. Introduction

Significant progress in nanotechnologies has stimulated
the beginning and intensive development of
nanoelectronics as a constituent part of the new field
of physical researches, namely the physics of low-
dimensional structures. Therefore, a great number
of reports focus in recent years on the growth and
investigation of nanoscale heterosystems of quantum
dots (QDs) and quantum wires (QWs) of different
shapes [1–10].

The attention was paid to QDs and QWs with
surfaces in the form of a sphere [4–6], cylinder [7,8], cube
[12], ellipsoid [13–15], regular six-facet prism [16,17], and
pyramid [18–21].

Experimental researches prove that the shape of a
quantum dot essentially influences the energy spectra
of an electron, hole, exciton, and phonon. In turn, the
optical and energetic properties of heterosystems depend
on the energy spectrum.

Theoretical studies which aim to treat the
experimental data consider real heterostructure models.
In the framework of these models, certain assumptions
were made concerning the shapes of QDs or QWs,

their size distribution, and the interaction with
a matrix and with each other. Even within the
model of noninteracting identical quantum dots
(wires), complex numerical calculations are frequently
required, because an analytical solution of the
Schrödinger equation is not available or is critically
simplified. In addition, the fact that the above-
mentioned QDs and QWs are characterized by
a certain symmetry of the shape is left beyond
attention.

The objective of the present investigation is
to examine the influence of a QD shape on the
splitting of energy states of charged quasiparticles
by using group theory and to determine the value
of splitting of these states in QDs with different
shapes by perturbation theory. A quantum dot with
spherical symmetry is taken as a basis, for which
an exact value of the energy of an electron or
a hole is found as a solution of the Schrödinger
equation.

2. Analysis of the Schrödinger Equation of a
QD Charge by Group Theory

First, we consider a quantum dot located in the domain
G, whose sizes in various directions do not differ
essentially. The Hamiltonian of a particle is

Ĥ = Ĥp + U(r). (1)

For an electron in the approximations of effective
mass and parabolic conduction band, we have

Ĥp = −~
2

2
∇ 1

m(r)
∇. (2)
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For a hole, the form of Ĥp depends on the number
of considered bands [10, 22–24]. In the six-band

approximation, provided one neglects the corrugation of
the energy surface,

Ĥp =
1

m0
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. (3)

The potential energy of a particle is

U(r) =
{ −U0, x, y, z ∈ G

0, x, y, z /∈ G .
(4)

By introducing a virtual spherical QD with radius R of
the same “volume”, we can write Hamiltonian (1) as

Ĥ = Ĥp + Usph(r) + (U(~r)− Usph(r)) ≡

≡ Ĥp + Usph(r) + W (r) = Ĥ0(r) + W (r), (5)

where W (r) is the correction and

Usph(r) =
{ −U0, x2 + y2 + z 2 < R,

0, x2 + y2 + z 2 ≥ R .

For the Hamiltonian Ĥ0(r), the Schrödinger equation

Ĥ0(r) Ψ0(r) = E0 Ψ0(r) (6)

possesses the exact solution, and the wave functions of
states Ψ0(r) are represented by products of the radial
and spherical functions Rn j(r) Yj m(ϑ, ϕ).

The functions Yj m(ϑ, ϕ) can be chosen as the basis
of a spherical symmetry group representation [25]. Since
the characters of irreducible representations of elements
of the same class are identical, it is sufficient to consider
a rotation around one of the axes, the z-axis. With a
turn around the z-axis by an angle ϕ, the wave functions
Yjm are multiplied by eim ϕ, and the matrix of the
representation looks as

Dj(ϕ) =




ei j ϕ 0 0 ... 0
0 ei(j−1) ϕ 0 ... 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 ... e−i j ϕ


 . (7)

It is seen from (7) that the character χj (ϕ) of the
representation Dj is defined as

χj (ϕ) =
∑
m

Dj, mm(ϕ) =
j∑

m=−j

eimϕ =
sin(j + 1

2 )ϕ

sin ϕ
2

.

(8)

For small angles of rotation ϕ, the character χj = 2 j+1
is equal to the dimension number of the representation
Dj .

First, we neglect a particle spin, which is completely
justified in a number of cases. If a particle spin is
zero, then j = l, l = 0,1,2,3 . . . We perform
the symmetry analysis of the Schrödinger equation for
the Hamiltonians with different symmetries. First, we
consider a QD with cubic shape. If one compares the
characters of representations of spherical and cubic
symmetry groups, it is seen that the states with l =0,1
(s- and p-states) of the Hamiltonian Ĥ0(r) with regard
for a perturbation W do not split. The account for
the cubic symmetry of a quantum dot changes only
the energy value of every state under consideration.
For states with l > 1, we observe the splitting
of levels, because the corresponding representations
become reducible if one takes into account the
cubic symmetry correction (W ). By expanding each
representation Dl into irreducible parts, one can define
the required splitting.

The calculations show that D0 = A1, D1 = F1,
D2 = E+F2, D3 = A2+F1+F2, where A1, A2, E, F1, F2

are the representations of the cube group.

Thus, in a cubic QD, d-states are split into two ones:
one twofold and one threefold degenerate, and f -states
are split into three ones: one twofold and two threefold
degenerate.

Consider the quantum dots with surfaces in the
form of a regular six-facet prism. Let the QD sizes
differ slightly in different directions. In this case, the
Hamiltonian of an electron can again be chosen in form
(5), where Ĥ0(r) is characterized by spherical symmetry.

The whole Hamiltonian of the system is characterized
with D6, whose symmetry is set by six irreducible
representations (four one-dimensional and two two-
dimensional ones).
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The calculation of the splitting of states for a QD
under consideration shows that D1 = A1 + E2, D2 =
A1 + E1 + E2, D3 = A2 + A3 + A4 + E1 + E2.

The consideration of the hexagonal lattice structure
of a quantum dot leads to the splitting of p-
states into two ones: one non-degenerate and one
twofold degenerate. States with l = 2 are also
split, but into three states: two twofold degenerate
and one non-degenerate. Meanwhile, f -states are split
into five ones: three non-degenerate and two twofold
degenerate.

As is known, heterosystems of quantum dots can
be obtained by different technologies. In particular, in
the heterosystems fabricated by the Stranski–Krastanow
technique, QD are assumed to have the form of a
pyramid or a truncated pyramid [18–21]. Consider the
transformation of spherical symmetry group states at the
transition to the tetrahedron symmetry group.

The calculations carried out for a QD of the
considered shape show that D1 = F , D2 = E1 + F ,
D3 = A + 2F . Therefore, the “inclusion” of a tetragonal
symmetry perturbation does not split degenerate p-
states; d-states are split into two non-degenerate states
and one threefold degenerate, and f -states are split
into one non-degenerate and two threefold degenerate
ones.

We now study how the splitting of energy levels in
QDs with different shapes changes under the condition
that a particle spin is s = 1/2. The characters χj (ϕ) of
the corresponding representations Dj(j = l + s, |l − s|)
are also defined by (8).

First, we examine a QD with cubic shape. Similarly
to the case where s = 0, we get that the states with
j = 1/2, 3/2 are not split: D1/2 = E′

1, D3/2 = G′.
For the states with j = 5/2, 7/2, we get the following
splitting of levels: D5/2 = E′

2 +G′, D7/2 = E′
1 +E′

2 +G′.
Thus, if a particle spin s = 1/2, then the states with
j = 7/2 are split into two ones: twofold degenerate and
fourfold degenerate; whereas the states with j = 1/2 are
split into three ones: two twofold degenerate and one
fourfold degenerate.

Consider a QD with its surface in the form of a
regular six-facet prism. We obtain that, in the QD under
study, the state with j = 1/2 is not split: D1/2 = E′

1,
i.e., taking the hexagonal lattice structure into account
changes only the energy of the state. For the states with
j > 1/2, the following splitting is observed: D3/2 =
E′

1 + E′
3, D5/2 = E′

1 + E′
2 + E′

3, D7/2 = E′
1 + 2E′

2 + E′
3.

Thus, the states with j = 3/2 are split into two twofold
degenerate; the states with j = 5/2 are split into three
twofold degenerate, and the states with j = 7/2 in a

hexagonal QD are split into four twofold degenerate
states.

For a pyramidal QD, the analysis of the splitting
of states by group theory results in the following: the
state D1/2 is not split (D1/2 = E′

1), the states with
j = 3/2 are split into two twofold degenerate states
(D3/2 = G′1 + G′2), the states with j = 5/2 are split into
three twofold degenerate ones (D5/2 = E′ + G′1 + G′2);
and the states with j = 7/2 are split into four twofold
degenerate states (D7/2 = 2E′ + G′1 + G′2).

3. Energy of Electron States in QDs with
Different Shapes

The present general analysis can be specified by
calculating the charged particle state energies in QDs
of different surfaces. With regard for the above
consideration concerning the “potential” W , it is possible
to use perturbation theory. In order to specify further
calculations, we will consider the electron energy
spectrum.

We calculate the electron state energy in QDs of
different shapes for two heterosystems: GaAs/AlAs and
InAs/GaSb. The Hamiltonian of the problem is given by
(5), and Ĥ0 has form (2). In this case, we can neglect
the electron spin. The solution of Eq.(6) is a function

Ψ0(r) = Rn l(r)Yl m(ϑ, ϕ). (9)

The radial wave function is written differently depending
on the region: r < R, r ≥ R. For the bound states, if
E0 < 0, we have

Rl(r) = Ajl(kr), r ≤ R,

Rl(r) = B h
(1)
l (xr), r > R, (10)

where k =
√

2m1
~2 (E0 + V0), x =

√
2m1
~2 E0, E0 < 0,

jl(x), h
(1)
l (x) are Bessel and Hankel functions [26].

The energy of quantum states is found from the
matching conditions for the wave function

Ajl(k R) = B h
(1)
l (xR),

1
m1

Aj′l(k R) =
1

m2
B h(1)′

l(x R). (11)

To determine the electron energy, we use perturba-
tion theory. We define the value of the first correction to
the energy caused by a perturbation W for QDs of cubic,
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tetrahedral, and hexagonal shapes. The formation of the
correction value is based on two competitive factors.
First, as the analysis shows, the function W = W (x, y, z)
is a complicated function of coordinates which takes both
positive and negative values in a small region at the
interface of the media. Outside this interval, W = 0.
A reduction of the QD volume leads to the effective
increase in the “capacity” of the potential W . Second,
the volume reduction is accompanied by an increase in
the energy of a charge and, hence, by a decrease of the
particle location probability density in the actual region
of space where W 6= 0.

Consider first a QD with cubic shape. Note that
states with l =1,2 (p- and d-states) are degenerate.
Therefore, in order to calculate the first correction to the
energy ∆El, it is necessary to find the matrix elements
of (W − ∆E′

l) on the corresponding wave functions of
the Hamiltonian Ĥ0 and to equate the determinant of
the matrix obtained to zero.

According to group theory [25], the spherical
functions are transformed as partners in the bases
of irreducible representations of the cube group O.
In particular, the functions Y1,−1, Y1, 0,−Y1,1 form the
basis of the representation F1; the representation E is
attributed to the basis: 1√

2
(Y2, 2 + Y2,−2), Y2, 0, and the

functions 1√
2
(Y2, 2 − Y2,−2), Y2,1, Y2,−1 form the basis of

the representation F2.
The calculation of matrix elements made for the

heterostructures GaAs/AlAs and InAs/GaSb has shown
that, according to group theory, only the diagonal
matrix elements differ from zero on the considered
functions. This result shows that the numerical
calculations of integrals are performed with a necessary
degree of accuracy.

In case l = 2 , the matrix 5 × 5, as one would
expect, is also diagonal and contains two elements of
one magnitude (E-state) and three elements of other
magnitude (F2-state). Thus, we obtain two energy
correction values, and the difference between them
defines the splitting of d-states in a cubic QD.

Figure 1 illustrates the results of calculations of
the dependence ∆E′

l on the volume of a QD for
both heterostructures and for the states with l =
0,1,2. The calculations show that the corrections are
small in comparison with the energy level values and
the difference between energy levels of the initial
(“zero”) problem. In particular, for the heterostructures
InAs/GaSb, we have E0

nr=0, l=0 = −0.5 еV,
E0

nr=0, l=1 = −0.176 еV, ∆El=1 = 0.04 еV, ∆El=0 =
0.035 еV if V = 600 nm3; E0

nr=0, l=0 = −0.66 еV,

Fig. 1. Dependence ∆El = ∆El(V ) for a QD with cubic shape.
Solid curves stand for the InAs/GaSb heterosystem, and dashed
curves correspond to GaAs/AlAs

E0
nr=0, l=1 = −0.49 еV, ∆El=1 = 0.05 еV, ∆El=0 =

0.033 еV if V = 2050 nm3. For the heterostructures
GaAs/AlAs, we obtain E0

nr=0, l=0 = −0.188 еV,
E0

nr=0, l=1 = −0.083 еV, ∆El=1 = 0.017 еV, ∆El=0 =
0.015 еV if V = 600 nm3; E0

nr=0, l=0 = −0.23 eV,
E0

nr=0, l=1 = −0.178 eV, ∆El=1 = 0.022 eV, ∆El=0 =
0.014 eV if V = 2050 nm3. It is seen that, in the case
of large sizes of a QD, the corrections to the energy of
both s- and p-states are small. A reduction in the volume
leads to an increase in ∆El (l = 0, 1), which is caused
by increase in W . The value of ∆El decreases slightly
with the further reduction of the volume because the
matrix element given by corrections decreases due to the
electron tunneling. The energies ∆El=3

(1), ∆El=3
(2) not

only essentially differ in value (at V = 7 × 103 nm3

of a QD of the heterosystem InAs/GaSb ∆El=3
(2) −

∆El=3
(1) = 110 meV), but change differently with

change in the volume. The reduction of V leads to an
increase of the splitting of the d-level, but, at V < V0

(V0 for the present heterostructures is different), the
splitting decreases with V . If we compare the values of
the splitting of the d-level for two different types of QDs,
it is seen that the splitting is smaller in the GaAs/AlAs
system than that in InAs/GaSb. This effect, as well as
the correction values for s- and p-states, is explained by
the difference of electron masses in QDs of the respective
nanoheterosystems. For the InAs/GaSb heterostructure,
the mass of a particle inside a QD is smaller than that
in the GaAs/AlAs structure.

Analogous calculations were done for a QD with
surface in the form of a tetrahedron. For the states
with l = 0,1,2, the first correction to the energy ∆El

is calculated for the heterostructures InAs/GaSb and
GaAs/AlAs. The states with l = 1,2 are degenerate like

ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 9 897
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Fig. 2. Dependence ∆El = ∆El(V )) for the GaAs/AlAs
heterosystem (solid curves) and the InAs/GaSb heterosystem
(dashed curves) for a QD with pyramidal shape

Fig. 3. Dependence ∆El = ∆El(V )) for the GaAs/AlAs
heterosystem (solid curves) and the InAs/GaSb heterosystem
(dashed curves) for a QD with hexagonal form

the case of a cubic QD. Therefore, in order to calculate
the correction to the energy, the matrix elements of
(W −∆E′

l) have been found on the corresponding wave
functions of the Hamiltonian Ĥ0.

Figure 2 presents the dependence of the first
correction to the energy on the volume of a QD with the
surface in the form of a regular triangular pyramid. The
qualitative dependences are analogs to the corresponding
data on a QD with cubic shape. The obtained splitting of
energy levels completely agrees with the results obtained
within group theory. Thus, a change of the QD shape in
this case leads only to a change of the value of respective
corrections to the energy ∆El.

A slightly different picture is got for a QD with the
surface in the form of a regular six-facet prism. For the
present quantum dot, the splitting of energy levels begins
with the state l = 1, which is split into two energy levels
(E1 and F -state). In both heterosystems, the level with
l = 2 is split into three levels (A-state and two F -states),
which perfectly agrees with group theory.

The results of calculations of the dependence of the
correction to the energy ∆E′

l on the volume of a QD
under consideration are given in Fig. 3. Since, in this
case, there are a lot of energy levels and they are located
close to one another, the state with l = 0 for both
heterostructures is not presented. The figure shows that,
for a hexagonal quantum dot, the correction value also
increases with decrease in the QD volume. It is worth
to note that, for the heterostructure InAs/GaSb, the
corrections for the states with l = 1 and l = 2 at large
QD volumes are close. At V = 2.1×103 nm3, the values
of ∆E′

l for these states practically coincide.
The higher the energy state, the larger the energy

correction for each heterostructure, the splitting of both

p- and d-levels in the GaAs/AlAs heterosystem being
smaller than that in InAs/GaSb, which was discussed
above.

Thus, we have investigated the influence of the
symmetry of a QD shape on the splitting of energy states
of charges, by using group theory. In particular, the
splitting of states for cubic, hexagonal and tetrahedral
QDs is analyzed in the cases where a particle spin is zero
or different from zero.

By perturbation theory, the energies and the wave
functions of states for QDs with surfaces in the form
of a cube, pyramid, and six-facet prism are determined.
By using perturbation theory and symmetry analysis,
the charge energy corrections have been calculated for
the s-, p-, and d-states. The specific calculations have
been performed for the GaAs/AlAs and InAs/GaSb
heterostructures.
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ЕНЕРГЕТИЧНИЙ СПЕКТР ЗАРЯДУ КВАНТОВИХ
ТОЧОК РIЗНОЇ ФОРМИ

В.I. Бойчук, I.В. Бiлинський, I.О. Шаклеiна

Р е з ю м е

Засобами теорiї груп детально проаналiзовано розщеплення
енергетичних рiвнiв заряду (електрона, дiрки) для квантової
точки (КТ) кубiчної, гексагональної та тетраедральної форм.
Проведено аналiз розщеплення рiвнiв для випадкiв, коли спiн
частинки дорiвнює нулю та 1/2. За допомогою теорiї збурень
знайдено енергiї та хвильовi функцiї станiв КТ рiзної форми.
За основу взято квантову точку сферичної симетрiї, для якої
енергiя заряду знаходиться точно. Конкретнi обчислення про-
ведено для гетероструктур GaAs/AlAs та InAs/GaSb.
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