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Equilibrium magnetization states of thin nanoparticles of various
forms are studied theoretically, using the approximation of the
effective anisotropy caused by the magnetic dipolar interaction.
The magnetization distributions near a plane angle and for dots,
which have form of regular polygons, are predicted theoretically
for magnets with weak exchange interaction. The sizes of
magnetization inhomogeneities near the angle vertex are estimated
theoretically. The analytic results are in a good agreement with
the results of micromagnetic simulations for square prisms.

1. Introduction

In recent years, a growing interest in the study of
static and dynamic properties of nm-sized magnetic
particles. This interest is caused by unusual physical
properties of objects and various practical applications
[1–3]. Magnetic properties of nanoparticles are well
described in the macrospin approximation [4] only if
the size of a particle does not exceed 10 nm [1]. For
particles of a greater size, the ground state stops to be
homogeneous. In magnetics, there appear the domain
structures whose characteristic size is determined by
the “magnetic length” l =

√
A/K (A is the exchange

interaction constant, and K is the single-ion anisotropy
constant). Magnetic anisotropy is a reason for the
appearance of a domain structure in massive specimens.
In small particles made of magnetically soft materials
with a small factor of quality Q = K/4πM2

s ¿ 1
(Ms is the saturation magnetization), the magnetic
dipolar interaction turns out to be the dominant
mechanism of appearance of a domain structure [1,
5]: the typical “exchange length” ` =

√
A/4πM2

s is
about 5–10 nm for typical magnetically soft materials.

Inhomogeneous states in such magnetics, in particular
a domain structure, are determined, in the first turn,
by the form of a magnet. The reason for such states
to appear is the anisotropy of a form which is due
to the magnetic dipolar interaction [5]. In particular,
the plane-parallel distribution of the magnetization
with magnetic flux closure patterns is observed in
the magnetic elements of µm-sized thin films [1].
The magnetization distribution in such structures is
described by the van den Berg method [6–9]. The
idea consists in the determination of a two-dimensional
(plane-parallel) magnetization field ensuring the full
absence of a demagnetization field, which is possible
only in the absence of bulk (~∇ · ~M = 0) and surface
( ~M ·~n = 0) magnetostatic charges. It was shown in [6–9]
with the use of the methods of differential geometry that,
for a one-connected region, a corresponding solenoidal
distribution of the magnetization is possible only under
the appearance of a domain structure. It is worth noting
that the van den Berg domains do not include a thin
structure (the zero thickness of a domain wall) due to
the neglect of the exchange interaction. Though the
idealized model of van den Berg explains the reason for
the appearance of inhomogeneous states in elements of
magnetically soft films of micron size, it stops to be valid
for smaller systems of submicron size due to the possible
turning of the magnetization vector from the plane,
the inhomogeneous distribution over thickness, etc. [10].
But just particles of submicron size are actual now for
numerous appliocations. In particular, in particles of the
disk form, the ground state can be vortex one [1, 11].
Particles in the vortex state are promising candidates
for fast gages of magnetic fields and data-storage devices
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with high density [11] and for the study of fundamental
properties of magnetic substances.

As was already noted, the basic reason for an
inhomogeneity of the magnetization distribution in
magnetically soft nanomagnetics is the magnetic dipolar
interaction, whose account is the necessary condition for
the adequate description of inhomogeneous structures
of the magnetization. The nonlocal character of the
magnetic dipolar interaction significantly complicates
the theoretical analysis of properties of magnetic
nanostructures which is usually performed numerically,
e.g., with the use of micromagnetic modeling [12]. By
now, the analytic analysis of the magnetic dipolar
interaction was carried out for certain limiting relations
between the parameters of a system: the length L,
thickness h, and exchange length `. In particular,
it was proved in [13] that, for infinitely thin films
under the conditions h/L → 0 and `/L → const,
the magnetostatic energy has a local form of the
anisotropy energy of the “easy plane” type; in this
case, the homogeneous ground state is realized in the
plane of a film. The magnetostatic interpretation of
the mentioned effective anisotropy is reduced to the
influence of surface magnetostatic charges: the surface
charges along a film create a magnetostatic capacitor
with energy 2πM2

s [14]. The magnetostatic charges of the
edge surface cause the surface anisotropy [14–16] that
leads to the appearance of surface nonlinear excitations,
in particular, half-vortices or boojums [17–19]. The
analytic description of the effective anisotropy caused
by the magnetic dipolar interaction was constructed
recently in work [20] for magnetics of finite thickness
under the conditions

h/L ¿ 1, `/L ¿ 1. (1)

In this approach, it is assumed that the magnetization
~M = Ms(sin θ cosφ, sin θ sin φ, cos θ) depends only on
the coordinates (ρ, χ) in the plane of a magnet.
Such plane-parallel distribution of the magnetization
is adequate for magnetics of constant thickness under
conditions (1). According to [20], the energy of the
magnetic dipolar interaction looks as

E = πM2
s h

∫
Wd2x,

W = A[1− 3 cos2 θ] + sin2θ Re
[
Be2ı(φ−χ)

]
. (2)

The quantities A ≡ A(ρ, χ) and B ≡ B(ρ, χ) are
functions of the coordinates and determine the

Fig. 1. Designations for the calculation of the effective anisotropy
for an angle

coefficients of spatially inhomogeneous anisotropy:

A =
1
2π

2π∫

0

G(P/h)dα− 2
3
, G(x) =

√
x2 + 1− x, (3a)

B = − 1
2π

2π∫

0

[G(P/h) + 2 ln G(h/P )] e−2ıαdα. (3b)

Here, P ≡ P (ρ, χ|α) denotes the distance from a point
(ρ, χ) to the lateral surface of a specimen in the direction
α (see Fig. 1).

It is worth noting that the form of the functions
A(ρ, χ) and B(ρ, χ) is completely determined by the size
and form of a specimen. In this case, h plays the role
of a length unit. The coefficient A is real-valued in all
the cases and plays the role of the constant of effective
uniaxial anisotropy (directed normally to the plane of
a specimen). Under the conditions A > 0 and A < 0,
the anisotropies of the “easy axis” and “easy plane” are
realized, respectively. We note that, for thin specimens,
we have always the easy-plane anisotropy [20]. In thin
specimens where the magnetization lies mainly in the
XY -plane, the direction φ in the plane is determined by
the second term in the formula for the energy in (2),
namely by the expression Re

[Be2ı(φ−χ)
]
. By minimizing

the energy, this direction is determined as

φ(ρ, χ) = χ +
π

2
− 1

2
ArgB(ρ, χ). (4)

We now consider the lines of effective anisotropy, the
tangents to which at points (ρ, χ) have the slope angle

ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 8 803



V.P. KRAVCHUK, D.D. SHEKA

Fig. 2. Dependences A(ξ) (thin line) and B(ξ) (bold line) along the
bisectrix for different values of the angle Ω: solid line – Ω = π/3,
dashed line – Ω = 5π/6

φ(ρ, χ) [20]. These lines determine the magnetization
distribution for a purely two-dimensional distribution
and the neglect by both the exchange interaction
and the single-ion anisotropy. We note that, at large
distances from the surface (the quantity |B| tends
to 0 with increase in the distance from the surface,
see Fig. 2 and Fig. 2b in [20]), the calculation of
the magnetization distribution requires to account all
magnetic interactions. In this case, the lines of effective
anisotropy are a means to approximately account the
magnetostatic interaction as a local one. But, as was
shown in work [20], the method describes very precisely
the magnetization distribution in inhomogeneous states
of real nanomagnetics under conditions (1).

In the present work within the indicated approach,
we study the magnetization distribution in magnetics
of various geometries. In this case, we neglect specific
features of the surface layer of a magnetic, by assuming
that the state of magnetic ions of the surface layer does
not differ from the state of internal ions. In Section 2, we
study the distribution of the lines of effective anisotropy
near a planar angle. The results are generalized to the
analysis of such a distribution in magnetics that have
form of regular polygons (Section 3). In Section 4, we
analyze the size of inhomogeneities near the vertices of
angles.

2. Effective Anisotropy Near a Planar Angle

We now consider an infinite plane ferromagnetic plate
with thickness h which has the form of an angle ∠Ω (see
Fig. 1). In this case, the distances P1 and P2 to the angle

sides are defined as

P1(ρ, χ|α) =
ρ sin(Ω− χ)

sin(χ + α− Ω)
, P2(ρ, χ|α) = − ρ sin(χ)

sin(χ + α)
.

Let us consider the behavior of the effective
anisotropy along the angle bisectrix χ = Ω/2. The
calculation by formulas (3) indicates that the coefficients
A and B are real-valued along the angle bisectrix:

A =
1
π

π∫

Ω/2

G(P/h)dα− 2
3
,

B = − 1
π

π∫

Ω/2

cos 2α [G(P/h) + 2 ln G(h/P )] dα,

P ≡ P1(•|α) = P2(•| − α) =
ρ sinΩ/2

sin(α− Ω/2)
. (5)

According to (4), the lines of effective anisotropy are
parallel to the bisectrix at B < 0 and normal to it at
B > 0. At the point of the bisectrix, where B = 0, we
have a saddle point. Moreover, the density of the linear
part of the magnetostatic energy at this point will not
depend on the orientation of the magnetization in the
plane of a specimen φ. The straightforward calculation
of expressions (5) for angles Ω ∈ (0; π) gives

A(ξ) = − 1
π

[
arctg

(
ξ sin

Ω
2

)
+ arctg

(√
1 + ξ2 tg

Ω
2

)
+

+ξ sin
Ω
2

ln

√
1 + ξ2 − ξ cos Ω

2

2ξ sin2 Ω
4

]
+

1
3
,

B(ξ) = −3
4

cos Ω +
cosΩ

π

[
arctg

(
ξ sin

Ω
2

)
+

+
1
2

arctg
ξ2 tg Ω

2 − 2 ctg Ω

2
√

1 + ξ2
−

−ξ sin Ω
2 ln

2ξ sin2 Ω
4

(√
1 + ξ2 + ξ cos Ω

2

)

1 + ξ2 sin2 Ω
2

]
+

+
sinΩ

π

[√
1 + ξ2 − ξ + ln

ξ√
1 + ξ2 + 1

]
,

where ξ = ρ/h. The dependence A(ξ) is always
monotonously decreasing (see Fig. 2). The dependence
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Fig. 3. Distribution of the lines of effective anisotropy for different
angles: a: Ω = π/3, b: Ω = π/2, c: Ω = 2π/3, d: Ω = 3π/4

B(ξ) qualitatively changes its form on the passage
through the critical value

Ωcr =
2π

3
. (6)

For angles Ω ∈ (0; Ωcr), the function B(ξ) takes only
negative values and monotonously increases. However,
at Ω ∈ (Ωcr; π), there appears a maximum of the
dependence B(ξ). In this case, the function changes
its sign at some value ξcr (see Fig. 2). Calculating
numerically the coefficient B(ρ, χ) for the whole area
of the angle by formula (3b), we can construct a
characteristic distribution of the lines of effective
anisotropy for various angles (see Fig. 3). The main
peculiarity of angles Ω ∈ (Ωcr; π) is the appearance of a
saddle point on the bisectrix which is shown in Fig. 3,d
as a circle.

The position of a saddle point ξcr is determined
by the condition B(ξcr) = 0 (see Fig. 4). For angles
Ω ∈ (Ωcr; π) that have a saddle point, one may
expect, in the case of weak exchange interaction
and strong magnetic dipolar interaction, the presence
of a domain wall along the angle bisectrix which
starts at the angle vertex and terminates at the
point ξcr.

Analytic estimates of the position of a saddle point
can be executed in two limiting cases. If Ω . π,
then the critical distance ξcr ¿ 1, and the asymptotic
estimation

ξcr ≈ 2
e
e(π−Ω/2)ctgΩ (7)

Fig. 4. Distance from the angle vertex to the saddle point as a
function of the angle. The dashed and dash-dotted lines show
estimates (7) and (8), respectively

is valid. In the opposite case Ω & Ωcr, the characteristic
distance ξcr À 1, for which we have

ξcr ≈ C1√
Ω− Ωcr

+ C2

√
Ω− Ωcr,

C1 ≈ 0, 31, C2 ≈ −0, 882. (8)

It should also be noted that the continual calculation
presented in this section can turn out erroneous for
the vertices of very acute angles; such problems require
a sepaarte consideration with regard for the discrete
structure of a magnetic.

3. Effective Anisotropy for Regular Polygons

The above-executed analysis of the effective anisotropy
near angles can be generalized to the solution of the
problem concerning the effective anisotropy for regular
polygons. Such an analysis is key for solving the problem
on the distribution of magnetization in nanomagnetics
in the form of polygons with regard for the magnetic
dipolar interaction.

Let us consider a regular N -gon with thickness h, for
which the distance from the center to an angle vertex is
a. The calculation by formula (3b) gives the following
expression for the coefficient of effective anisotropy:

B(ρ, χ) = − 1
2π

[ ψ0∫

ψ0−ϕ0

F (P0/h) e−2ıαdα+
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Fig. 5. Numerically calculated lines of effective anisotropy for
certain regular polygons. The calculation is executed by formulas
(9). The bold line shows the separatrix curve which passes through
saddle points and separate the regions with different distributions
of the lines of effective anisotropy, which can induce, in the
presence of the strong magnetic dipolar interaction, different
magnetization patterns: a state of the vortical type and a domain
structure will be formed inside and outside, respectively. For all
polygons, h = a/2

+
N−1∑

k=1

ψk∫

ψk−1

F (Pk/h) e−2ıαdα

]
,

F (x) = G(x) + 2 ln G(1/x);

Pn =
anan+1b

−1 sin ϕn

cos[α + χ− (2n + 1)π/N ]
, n = 0, N − 1;

ψ0 = − arcsin
[a0

b
sin ϕ0

]
, b = 2a sin(π/N),

ψj = ψ0 +
j∑

i=1

ϕi, j = 1, N − 1;

ϕm = arccos
a2

m + a2
m+1 − b2

2amam+1
, m = 0, N − 1;

ak =
√

ρ2 + a2 − 2ρa cos(χ− 2πk/N), k = 0, N. (9)

In the calculation of (9), it was assumed that the
origin of the system of coordinates (ρ, χ) coincides with

Fig. 6. Distance rcr from the saddle point to the vertex of a polygon
as a function of its thickness by the results of the numerical
integration of relations (9). Different lines correspond to different
polygons. The number of angles is denoted by a number on the
right

the polygon center, and the angle χ is reckoned in
the positive direction from the line connecting the
polygon center with one of its vertices. Lines of effective
anisotropy numerically calculated by formulas (9) for
certain regular polygons are presented in Fig. 5.

In the previous section, it was established that a
saddle point arises for planar angles Ω > Ωcr = 2π/3,
which coincides with the angle of a regular 6-gon.
However, the calculation by formulas (9) testifies that,
for bounded polygons, a saddle point appears already in
5-gons (Ω5 = 3π/5) (see Fig. 5). The saddle points are
positioned on the bisectrices of angles of an N -gon. The
distance rcr from the saddle point to the vertex depends
on the thickness of a polygon, and this dependence for
N > 5 is the same: for infinitely thin magnetics, rcr → 0,
and rcr → a for thick ones (see Fig. 6). For 5-gons,
rcr → 0.49a as h → 0, which is obviously a consequence
of the fact that the angle of a 5-gon Ω5 < Ωcr (see Fig. 6).
These results are obtained numerically.

It should be recalled that the presented distributions
of the lines of effective anisotropy are true only in the
absence of a dependence of the magnetization on the
coordinate normal to the plane of a magnetic. This
condition can be violated at h À `.

Figures 5 and 6 show the distributions of directions
of the lines of effective anisotropy. The quantitative
values of the quantity B, being the coefficient of effective
uniaxial anisotropy whose direction is determined from
the indicated figures, are given in Fig. 7 (case N = 6).

It is worth noting that if the distance from the
saddle point to a vertex equals several interatomic
distances, then the models accounting the discreteness
of a crystalline structure and surface effects of a magnet
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Fig. 7. Values of the coefficient B as a function of the distance
from the 6-gon center along different directions. The solid line –
along the diagonal, and the dashed line – in the direction normal
to a side. The circle denotes the saddle point

should be used in the calculation of the magnetization
distribution near the angle vertex.

4. Estimation of Sizes of the Magnetization
Inhomogeneity Near Inhomogeneities of a
Surface

The magnetization distribution in a nanoparticle
near its lateral surface is very sensitive to surface
roughnesses, which affects the dynamics of the process of
remagnetization [21, 22]. This hampers the development
of memory devices on the base of nanomagnetics,
because it is quite difficult to control surface roughnesses
on the fabrication of particles with submicron sizes.
Therefore, it is practically interesting to estimate the
sizes of a region near the lateral surface of a particle,
where the state is essentially different from that in the
bulk.

In this section, we consider particles which are in a
vortex state. For simplicity, we will analyze a purely
planar vortex state with

θ = π/2, φ = χ± π/2. (10)

The energy density of the magnetic dipolar interaction
in approximation (2) for a planar vortex (10) along the
angle bisectrix W vor = A(ξ) − B(ξ). Analogously, the
energy density in a particle which is homogeneously
magnetized normally to the plane of a specimen (θ = 0)
has the form W uni = −2A(ξ). The analysis testifies that
the homogeneous state is energy-gained as compared
with the vortex one near the lateral surface (ξ ¿ 1)
for any angles Ω ∈ (0; π) (see Fig. 2). On the contrary,

Fig. 8. Numerical solution of Eq. (11) as the upper bound for the
size of the region in an angle Ω, where the magnetization goes
out from the angle plane. The dash-dotted and dotted lines show
estimates (12) and (13), respectively

as the distance from the angle vertex grows (ξ À 1),
the vortex state becomes energy-gained (W vor < W uni).
Thus, there exists the critical distance ξ̃ such that,
at ξ < ξ̃, the quasihomogeneous orientation of the
magnetization normally to the plane of a specimen
becomes more favorable. The value of ξ̃ can be obtained
as a solution of the equation W vor = W uni or, what is
the same,

3A(ξ̃) = B(ξ̃). (11)

This equation can be analytically solved only in
the limiting cases. For small angles (Ω ¿ 1), the
characteristic size of inhomogeneities turns out to be
significant (ξ̃ À 1) and is approximately described by
the formula

ξ̃ ≈ 1
Ω

f−1
(

1
2π(1− Ω2/2)

)
, f(x) = x

(
1− ln

x

2

)
, (12)

where f−1 denotes the function inverse to the function
f . In the opposite case (Ω . π), we have ξ̃ ¿ 1:

ξ̃ ≈ 2 exp
(
− 1

1− Ω/π

)
. (13)

The numerical solution of Eq. (11) is given in Fig. 8.
It is necessary to note that the obtained dependence

ξ̃(Ω) gives only a rough upper bound for the size of the
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Fig. 9. (a) – the vortical distribution of the magnetization in a square prism (the degree of darkness characterizes the value of Mz ;
(b) – the magnetization component Mz normal to the plane of the prism; (c) – the characteristic size of the inhomogeneity in the
prism angle versus the prism thickness: symbols (filled circles) correspond to the results of micromagnetic modeling, the straight line
r̃ = hξ̃(π/2) presents the theoretical upper bound obtained from the solution of (11). In the insert, we show the quantity Mz along the
prism diagonal (see the parameters in the text)

region near an angle on the surface, where the
magnetization goes out from the particle plane. To
obtain a more exact solution, it is necessary to solve
the variational problem of minimization of the functional
of energy. But the account of the exchange interaction
energy in such a functional will lead to a decrease of the
size of the region under consideration.

For the sake of illustration, we consider a right
square prism. With the use of the software for
micromagnetic modeling OOMMF [12], we obtained the
vortex distributions of magnetization for prisms with
different thicknesses. It is revealed that, in the angles of
the prism, the magnetization component normal to the
specimen plane (Mz) is nonzero. The maximum value
of such a deviation of the quantity Mz, as well as the
size of a region in which this deviation is concentrated,
increases with the prism thickness. The values of Mz/Ms

along the diagonal of the prism are given in the insert in
Fig. 9. In the modeling, we took square prisms with the
material parameters of permalloy (A = 2.6×10−12 J/m,
Ms = 8.6 × 105 A/m), the side length of 200 nm, and
the thicknesses of 60, 70, 80, 90, and 100 nm. In Fig. 9,
the profile with a greater amplitude of the deviation at
the ends corresponds to a prism with greater thickness.

The filled circles in Fig. 9 show the distance from
the angle vertex of the prism to a point on the bisectrix,

where the deviation of Mz is equal to Ms/e. Such a
criterion is chosen due to the assumption about the
Gauss form of deviations of Mz(r). For the angle Ω =
π/2, the solution of Eq. (11) ξ̃(Ω) ≈ 0.278. In Fig. 9,
we drew the straight line r̃ = hξ̃(π/2). As is seen,
even within such a rough model which does not account
the exchange interaction and does not take a specific
form of the inhomogeneity of Mz(r) into account, we
have obtained the upper bound of the inhomogeneity
size which coincides by the order of magnitude with the
values obtained by modeling.

5. Conclusions

By using the method of effective anisotropy caused
by the magnetic dipolar interaction, we have
theoretically studied the equilibrium distributions of
the magnetization in thin magnetic nanoparticles of
various forms. In particular, for a plane specimen
in the form of an angle, we have revealed that the
distribution of the lines of anisotropy is qualitatively
changed on the passage through the critical angle
Ωcr = 2π/3. For angles Ω ∈ (Ωcr; π), there appears
a saddle point which can be joined with the angle
vertex by a domain wall in the case of weak exchange
interaction.
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For the magnetics with finite sizes, a closed
separatrix curve arises instead of a single saddle point.
In the interior region of this curve, a vortex state
can be formed under the condition of weak exchange
interaction, whereas an N -domain structure arises
outside it. It is established that the separatrices appear
in the polygons, the number of angles in which is
not less than 5. The sizes of a separatrix depend
on the thickness of a magnetic. We have also shown
that, near the angle vertex, the appearance of the
magnetization component normal to the specimen plane
is energy-gained. The comparison with the results of
micromagnetic simulations for square prisms indicates
that the obtained theoretical estimates can be considered
as the upper bound of the sizes of inhomogeneities of
the magnetization which are observed near the angle
vertices.
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Studies of Ukraine.
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ЕФЕКТИВНА МАГНIТОДИПОЛЬНА АНIЗОТРОПIЯ
НАНОМАГНЕТИКIВ: РIВНОВАЖНI КОНФIГУРАЦIЇ
НАМАГНIЧЕНОСТI

В.П. Кравчук, Д.Д. Шека

Р е з ю м е

Теоретично дослiджено рiвноважнi розподiли намагнiченостi
в тонких магнiтних наночастинках рiзноманiтної форми в на-
ближеннi ефективної анiзотропiї, зумовленої магнiтодиполь-
ною взаємодiю. Передбачено розподiл намагнiченостi побли-
зу плоского кута та для тонких магнетикiв у формi правиль-
них багатокутникiв за умов слабкої обмiнної взаємодiї. Прове-
дено теоретичний аналiз розмiрiв неоднорiдностей у розподiлi
намагнiченостi поблизу вершини кута. Аналiтичнi результати
добре узгоджуються з даними мiкромагнiтного моделювання
для квадратної призми.
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