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In the frame of the Kohn–Sham self-consistent method, we have
calculated the electron work function, contact potential difference,
and surface stress of the elastically deformed faces of Al, Au, Cu,
and Zn crystals with a dielectric coating. The dielectric coating
decreases the work function and increases the contact potential
difference. The calculations showed the opposite behaviors of the
work function of electrons and the contact potential difference
under deformation. It is shown that the measurements of the
contact potential difference of a deformed face by the Kelvin
method correspond to a variation of the one-electron effective
potential on the plane of the virtual image behind the surface,
rather than to a change of the electron work function. The
calculated quantities are in agreement with the results of both
experiments for polycrystals and first-principles calculations.

1. Introduction

Till now, a certain bulk of the results of experimental
and theoretical studies of the field and thermoelectron
emissions, as well as the dependences of the work
function and the contact potential difference on a
deformation and a dielectric coating of metal specimens
[1–9].

The measurements based on the Kelvin method
have shown the dependence of the Volta potential ϕ
on a deformation of the surfaces of metal specimens.
By this dependence, one can estimate the parameters
of a stressed state of a metal: the value of residual
mechanical stresses, the structure of dislocations, and
corrosion resistance. The chemical activity related to a
value of the surface energy or the tension is also sensitive
to the surface deformation [6,7].

In connection with the perspective development
of nanotechnologies, for example, the formation of
nanoclusters on metal films with a dielectric coating, the
creation of molecular transistors on this basis [10,11],
and the diagnostics of such structures, the problem of
the interrelation of surface tension, work function, and
measured contact potential difference is urgent.

In the recent works [3–7], the direct measurements
of ϕ in the processes of uniaxial, two-axis, or bending

deformation of plane Al, Cu, steel, Zn, and Ni specimens
were performed (the references on earlier experiments
are given in [10]). The work function was calculated (as
it is accepted in the Kelvin method) by the formula

ϕ =
W −W⊥
−e

, (1)

where e is the elementary positive charge, and W⊥ is the
work function of electrons from a probe [6,7].

Despite the fact that similar measurements have been
carried on for a long time, there exists no unambiguous
opinion about the interrelation of the contact potential
difference and the work function up to now (see, e.g.,
[12]). The answers to some questions, including the
work function anisotropy which was numerically studied
within the method of density functional, are given in [13–
15].

The dependence of the work function on a dielectric
coating was calculated by the direct variational method
in the earlier works (see references in [16]) and by the
Kohn–Sham method for a Na nanowire in the model of
“ordinary” jellium [17].

The purpose of the present work is the calculation of
energy characteristics of the elastically deformed metal
surface coated by a dielectric and the interpretation
of the relevant recent experiments [3–7], in which the
dependence of the contact potential difference of the
stressed surface of Al, Cu, Au, and Zn in air or in various
gaseous media was measured.

2. Model of the Surface

In the frame of the method of density functional, the
total energy of a bounded metal crystal is a functional of
the inhomogeneous electron concentration n(r), n(r) →
n̄ in the metal bulk, n̄ = 3/4πr3

s , r0 = Z1/3rs, r0 and rs

are, respectively, the mean distances between ions and
electrons in the bulk of the unstressed metal, and Z is
the valency.

In the pseudopotential approximation (the model of
stable jellium), the total energy can be written in the
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form of a sum

E[n(r)] = Ts + Exc + EH + Eps + EM, (2)

where Ts is the kinetic energy of noninteracting
electrons, Exc is the exchange-correlation energy, EH

is the (electrostatic) Hartree energy, Eps is the
pseudopotential correction, and EM is the Madelung
energy. The sum of three first terms in (2) corresponds
to the energy of an “ordinary” (unstable) jellium.

The model of a deformed surface and the scheme of
a deformation (Fig. 1) are comprehensively presented in
[15]. Here, we consider only the necessary details which
arise mainly due to the presence of a dielectric coating.

As a rule, a semiinfinite metal is described with
the use of the elecron profile n(r) and the effective
potential veff(r) which vary only in the direction normal
to the face of the surface under study. The commonly
accepted approach admits the use of periodic boundary
conditions in the x- and y-directions. Hence, we assume
the presence of crystallographic planes normal only to
the z-direction. In this case, the system of Hartree–Fock–
Kohn–Sham equations looks as
[
− ~

2

2m

d2

dz2
+ veff [z, n]

]
ψk(z) =

~2k2

2m
ψk(z), (3)

n(z) =
1
π2

k̄F∫

0

dk
(
k̄2
F − k2

) |ψk(z)|2 . (4)

The effective potential

veff [z, n(z)] = eφ(z) + vxc(z) + 〈δv〉face θ(−z) (5)

is written in the approximation of local density. The
electrostatic potential

φ(z) = φ(∞)− 4πe

∞∫

z

dz′
∞∫

z′

dz′′
[n(z′′)− ρ(z′′)]

ε(z′′)
(6)

is obtained by the integration of the Poisson equation
with the boundary condition φ(z) → 0 at great distances
from the metal. For example, the function ε(z) for the
semiinfinite metal – semiinfinite dielectric contact is
equal to 1 inside the metal and ε behind its surface,
ε is the dielectric constant. The distribution of the
ionic charge is modeled by the jump-like function
ρ(z) = n̄θ(−z). The term 〈δv〉face (5) independent of
the coordinates allows one to distinguish different faces
of a crystal [13, 15, 18].

Fig. 1. Qualitative scheme of the elastic uniaxial tension of a
specimen under the action of a force F; d is the distance between
crystallographic planes

The model in use describes the structure of a metal
“on the average”, like in the model of “ordinary” jellium.
Therefore, we describe a dielectric on the surface only
with the use of the dielectric constant ε, as it is accepted
within the approximation of continuous medium.

The thickness of a dielectric на the surface of a
semiinfinite metal is foreseen to be less than the free path
of an electron (tens of Å) injected into this dielectric. As
will be shown in what follows, the electron profile drops
sharply (approximately at a distance of 10–15a0) in the
dielectric. For comparison, we recall that the diameter
of molecule О2 equals 6a0. Therefore, the calculations
are executed under the assumption that the dielectric
is semiinfinite. This simplifies the calculation of the
electrostatic potential by the iteration procedure.

The wave number vary in the interval (0, k̄F). In
order to find a self-consistent solution of the system of
equations (3), (4), and (6) for n(z) and φ(z), we used
the iteration procedure.

3. Self-Consistency Procedure

In the model of stable jellium, a metal i sdescribed
only by the parameters Z, rs, and d (d is the distance
between crystallographic planes which is the argument
of the function 〈δv〉face in (5)). By setting the relative
deformation uxx, we will calculate a change of the cell
volume with the use of the Poisson’s ratio. This leads to
a change of rs, n̄ as a consequence, and also d (values of
the parameters are taken from [15,21]).

By solving Eq. (6), the initial approximation was
taken in the form of a one-parameter trial function [19]

n(i−1)(z) = n̄f(z),
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f(z) =
{

1− 1
2 exp (z/L), z < 0,

1
2 exp (−z/L), z > 0,

(7)

whose optimality is determined by the condition
γ(L, [n̄]) → min for the surface energy at a given
value of n̄ (L is the variation parameter). For such a
function, the electrostatic potential is obtained by the
substitution of (7) in the Poisson equation with the
following integration:

φ(i−1)(z) = −4πn̄L2f(z), (8)

where i is the iteration number.
After the determination of the initial approximation

of the electrostatic potential by formula (8), we
calculated the effective potential (5). Then, by solving
the differential equation (3), we determined the wave
functions and substituted them after the normalization
in Eq. (4). In such a way, we determine the distribution
of the electron concentration n(i)(z). Then we again
calculated the electrostatic potential φ(i)(z). Such a
procedure was repeated until the electrostatic potential
φ(i)(+∞) at the i-th iteration step differs from
φ(i−1)(+∞) at the i− 1-th step less than by 10−8 eV.

In order to determine the electrostatic potential
φ(i)(z), it is necessary to solve the one-dimensional
Poisson equation at each i-th step of the iteration
procedure. To this end, the one-dimensional Poisson
equation is rewritten in the form

d2φ(z)
dz2

− q2φ(z) = − 4πe

ε(z)
[n(z)− n̄θ(−z)]− q2φ(z). (9)

We introduced the term q2φ as a small perturbation.
This is the standard procedure of the numerical solution
of such differential equations.

Equation (9) was solved by the Lagrange method.
The solution has the form

φ
(i)
1 (z) =

0∫

−∞
dz′ U1e

−q|z−z′|+

+C1e
qz + C2e

−qz, z ≤ 0, (10)

φ
(i)
2 (z) =

∞∫

0

dz′ U2e
−q|z−z′|+

+C3e
qz + C4e

−qz, z ≥ 0, (11)

where

U1 =
2πe

q
[n(i−1)(z′)− n̄] +

q

2
φ(i−1)(z′), (12)

U2 =
2πe

q

n(i−1)(z′)
ε

+
q

2
φ(i−1)(z′). (13)

The constants C1,2,3,4 remain unknown. The boundary
conditions

dφ
(i)
1

dz

∣∣∣
z=0

= ε
dφ

(i)
2

dz

∣∣∣
z=0

, φ
(i)
1

∣∣∣
z=0

= φ
(i)
2

∣∣∣
z=0

,

dφ
(i)
1

dz

∣∣∣
z=−∞

= 0,
dφ

(i)
2

dz

∣∣∣
z=+∞

= 0 (14)

give a system of four equations (14), whose solution has
the form

C1 =
2ε

ε + 1

b∫

0

dz′ U2e
−qz′ +

0∫

a

dz′ U1e
qz′ , (15)

C2 = e2qa

0∫

a

dz′ U1e
−qz′ , C3 = e−2qb

b∫

0

dz′ U2e
qz′ , (16)

C4 =
2

ε + 1

0∫

a

dz′ U1e
qz′ +

ε− 1
ε + 1

b∫

0

dz′ U2e
−qz′ , (17)

where a and b are the lower and upper limits of the
integration with respect to z, respectively. The result
can be simplified, because C2 → 0 as a → −∞ and
C3 → 0 as b →∞. It is convenient to take q = k̄F.

At ε = 1, formulas (10) and (11) can be rewritten in
the form

φ(i)(z) =

∞∫

−∞
dz′

{
e−k̄F|z−z′| 2πe

k̄F
[n(i−1)(z′)− ρ(z′)]+

+
k̄F

2
φ(i−1)(z′)

}
. (18)

[The self-consistent scheme in [20], which was used in
the calculation of the binding energy of a positron at
the vacancy of a metal, is also reduced to formula (18).]

Assuming the value of the electrostatic potential in
vacuum far beyond the scope of a metal coated by
a dielectric to be zero, φ(+∞) =0, we can calculate
the work function of electrons in the metal–dielectric–
vacuum system in the z-direction,

W ≡ −µ = −v̄eff − ε̄F, (19)

and a component of the surface tension

τxx = γ + dγ/duxx, (20)
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where µ is the chemical potential of electrons, γ is the
specific surface energy of a face, and uxx is the relative
deformation.

The bulk value of the effective potential v̄eff < 0 gives
the full height of a barrier on the metal face–vacuum
interface, and ε̄F = ~2k̄2

F/2m > 0 is the Fermi energy
reckoned from the planar bottom of the conduction
band.

4. Results of Calculations and Their
Discussion

As a test, we firstly calculated the characteristics of
pure and unstrained surfaces of polycrystalline metals
Cs, Rb, K, Na, Ba, Li, Sr, Ca, Pb, Mg, Al, and Cu. Our
results coincide with the data in work [18], where the
characteristics of these metals were calculated as well.

The quantity 〈δv〉face included in the effective
potential allows us to construct the profiles of electron
concentrations for planes with different indices which
were used in calculations of the observable quantities.
The greatest surface energy and the least work function
correspond to the face 〈110〉 of an fcc lattice.

In the Table, we compare the calculated and
experimental values of the specific surface energy γ and
the work function W for polycrystals of Al, Au, Cu, and
Zn. Both collections of the data are in a good agreement.
The ab initio calculations performed in [9] give γface =
1.114; 1.343; 1.372 J/m2 and W = 5.65; 5.56; 5.42 eV for
Au(111), (100), and (110), respectively (see also Table 1
in [9]).

Calculations of the characteristics for deformations
−0.04 ≤ uxx ≤ +0.04 display the almost linear
dependences of surface characteristics on deformations.
A positive/negative deformation uxx means the
decrease/increase of the mean concentration of electrons
n̄ and the tension/compression of the upper face of
a specimen, i.e. the decrease/increase of the package
density of atoms and the interplane distance in the
direction normal to the z axis.

Calculated/experimental values of the specific surface
energy γ and the work functionW for polycrystals of Al,
Au, Cu, and Zn

Metal Z rs (a0) γ (J/m2) W (еV)
Al 3 2.07 0.926/1.160 4.30/4.25a(4.28b)
Au 3 2.09 0.912/1.134 4.28/4.30a(5.10b)
Cu 2 2.11 0.893/1.351 4.26/4.40a(4.65b)
Zn 2 2.31 0.739/0.772 4.10/3.62a

N o t e: The experimental values of the specific surface energy γ

are taken from [21–23], and the experimental values of the work
function W : a – [24], b – [25].

Fig. 2. Dependence of the work function on the uniaxial
deformation: Al – solid lines, Cu – dashed lines

In the process of deformation, we observe the almost
linear growth of the surface energy. This means that
the quantity dγ/duxx is positive both for uxx > 0 and
uxx < 0. Relation (20) gives a value of the surface stress
τxx which is somewhat greater than γ(uxx = 0). For
uxx > 0, the value of τxx is also somewhat greater than
that for uxx < 0.

The value of surface tension τ = 1.376 J/m2

calculated for Al(111) by formula (20) well agrees
with the results of ab initio calculations (1.441 [26];
1.249 J/m2 [27]) and is significantly less than values
obtained in [28,29]. For example, dγ/duxx for trivalent
gold in [28] is much greater than γ. The calculations
performed in [9] gave significantly greater values τ =
3.317; 2.723; 2.020 J/m2 for Au(111), (100) and (110),
respectively, (see also Table 1 in [9]) which are not
strongly different from results in [30–32]. We note that,
in the calculation of τzz and τyy for a specimen stretched
or compressed along the x axis, it is necessary to use
dγ/duxx taken for uxx < 0 or uxx > 0, respectively. The
reason lies in that the tension along the x direction leads
to the compression of the specimen in the orthogonal
directions.

According to Fig. 2, the work function decreases
linearly with increase in uxx. The relative variation
if this quantity is approximately 1% for planes (111)
and (100) and 0.1% for (110). It turned out that the
dominant reason for the decrease in W with increase
in uxx is the change of 〈δv〉face. On the whole at the
tension, ∆W is determined by negative changes in the
values of the electrostatic eφ̄ and exchange-correlation
v̄xc components of the effective potential v̄eff = eφ̄+v̄xc+
〈δv〉face and by positive change of the quantity 〈δv〉face.
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Fig. 3. Results of self-consistent calculations of the electron profile
n(z) and the one-electron effective veff(z) and electrostatic φ(z)

potentials for face Cu(111) coated by the dielectric: ε = 10 (solid
lines) and ε = 1 (dotted line). z = z∗ shows the position of the
plane, on which a change of the effective potential as a result of the
deposition of a coating is zero. The position of the “image plane”
z = z0 < z∗ is shown conditionally

The dominant role is played by the change of 〈δv〉face,
whereas a change of the Fermi energy is insignificant.

We now carry on the comparison with experimental
data from [4,5]. It follows from Fig. 5 in [4] that the
change of the work function for the polycrystalline
surface of Cu at the uniaxial tension/compression is
−0.04/ + 0.02 eV on the boundary of the elastic and
plastic regions. Our result −0.03/ + 0.03 eV agrees by
sign and magnitude with these values. A good agreement
is also obtained for Al [5].

The results of calculations [9] in the interval uxx =
{−0.04, +0.04} demonstrated the change of the chemical
potential of electrons ∆µ = 0.08, 0.05, and 0.15 eV for

Fig. 4. Dependences of the work function of electrons on the
dielectric constant ε of the coating calculated for some faces of
monocrystals (solid lines) and polycrystalline surfaces (dashed
line)

Au (100), (110), and (111), respectively, which is
consistent by sign with our results but exceeds them
approximately twice. We recall that µ and W have
different signs [see (20)].

In view of the multimolecular thicknesses of dielectric
coatings or oxides on a metal surface and a rapid
fall of the electron distribution outside of a metal,
we can formally neglect the effect of a thickness of
this coating, whose minimum thickness must be much
greater than that of a monoatomic (molecular) layer
of a dielectric. Such an assumption allows us not to
consider the boundary conditions on the dielectric-
vacuum interface on solving the Poisson equation.
Therefore, for convenience of calculations, we set that
the thickness of a dielectric is infinite, and the coating
has the same elastic properties, as a metal. The last
circumstance is related to that a metal and a dielectric
have, in fact, different elastic properties. Therefore, the
metal-dielectric interface can be really warped, which
cannot be taken into account in our model.

The effect of a dielectric coating on the surface is
reduced to the “elongation” of the electron distribution
tail and the effective potential beyond the surface of
a metal (Fig. 3). On the boundary of the metal and
the coating, there occurs the jump of the derivative of
the electrostatic potential dφ(z)/dz which is absent if
the dielectric constant of the coating equals unity. The
calculations were performed for ε = 1, . . . , 5, 10, and 80.
In this case like in [17] for a nanowire of Na placed in
a dielectric, an increase in ε leads to a decrease in the
depth of the potential well (|v̄eff | decreases), in which the
electrons in the metal are positioned. For this reason,
the electron work function decreases (Fig. 4). The curve
W (ε) tends to the “saturation”. The calculations are
especially difficult for the (110) plane of a fcc lattice
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and plane (0001) of a hexagonal lattice due to the least
value of interplane distance d, on which the stabilization
potential 〈δv〉face depends.

The deformation gradient of the work function in the
presence of a dielectric coating is independent, in fact, of
ε. With increase in ε, the effect of a coating is reduced
to a shift downward on the energy scale of all curves
W (uxx) in Fig. 2 in the presence of a deformation.

The results obtained are in qualitative agreement
with experiments, in which one observed a decrease
of the work function due to the presence of an inert
dielectric: Kr on the W(112) surface [33] (see also Fig.
6.1 in [2]) and paraffin and polyethylene on Al or Zn [6].
However, if the reaction of oxidation is running on the
surface (Zn in humid air), the measurement of the Volta
potential (Fig. 1 in [6]) demonstrate an increase of the
work function according to formula (1) within the Kelvin
method. The replacement of humid air by dry one (see
the experiment in [6]) leads to the opposite change of
the Volta potential. We may assume that, in addition
to the oxidation of the surface, the water vapor brings
a negative charge. This charge firstly leaks partially
in a metal and then, after the formation of an oxide,
remains in the thin water layer on the surface. This
charge is removed then by dry air together with water.
The presence of a noncompensated charge is apparently
revealed in the measurements through a more negative
Volta potential and an increase of the work function.

By definition (1), a change of the Volta potential
due to a perturbation of the surface (the charging, a
deformation, or the coating with a dielectric) is

−e∆ϕ = ∆W. (21)

It was concluded in works [13,14] that the Kelvin method
allows one to register changes of the surface potential
due to a deformation; therefore, the interpretation of
the results of measurements of the Volta potential must
be based on the analysis of a change of the effective
potential v̄eff near the surface under the action of a
deformation rather than on a variation of the work
function. The Kelvin method fixes the potential beyond
the geometric surface of a body on the image plane,
relative to which the electrostatic image is constructed,
i.e. on the plane z = z0 (see Fig. 3). As distinct from the
work function W (to which 〈δv〉face directly contributes,
because its value is nonzero only in the interior of a
specimen), the effective potential at the point z = z0

“feels” a deformation with the help of the procedure of
self-consistency of the solution of the Kohn–Sham

Fig. 5. Variation of the effective potential ∆veff(ε) ≡ veff(z0, ε)−
veff(z0, ε = 1) on the virtual image plane as a function a dielectric
constant for three faces (solid lines) and the surface of a polycrystal
(dotted line)

equations. Therefore, we use, instead of (21),

∆ϕ = ∆veff(z0, ε, uxx)/e. (22)

For different faces of different metals, z0 ' 1 a0 [10]. The
calculations of veff(z) for Cu (111) executed at ε = 1 and
uxx = 0,+4 % gave the relation ∆veff(z = z0, uxx) ≡
veff(z0, +4%)−veff(z0, 0) = α∆veff(z = −∞, uxx), where
α ' −1.4. As a result of the fact that a change of the
Fermi energy is slight [see definition (19)], we have

∆veff(z = −∞, uxx) ' ∆W.

For Al (111), we get α ' −3. This means that,
in the process of deformation, values of the effective
one-electron potential in the bulk (a position of the
conduction band bottom) and beyond the surface are
shifted to the opposite sides on the energy scale. Thus,
∆ϕ (Fig. 5) and ∆W differ both by sign and absolute
magnitude.

As follows from Fig. 3, there exists such a plane
z = z∗, on which the difference veff(z∗, ε)−veff(z∗, ε = 1)
becomes zero. Because z∗ and z0 are close to each
other, and the real surface is far from the ideal one,
the measurements of the Volta potential can give the
values of ∆ϕ opposite by sign, which is indeed observed
in experiments.

For the quantitative comparison with the
data of experiments, the obtained values of work
function for different planes should be averaged,
since a polycrystalline specimen is the collection of
arbitrarily oriented monocrystallites. In this case, the
qualitative answer will not be changed, because the
deformation gradients have the same sign for different
crystallographic faces of metals.

The inhomogeneous distribution of the Volta
potential observed in [6,7] on the surfaces of stressed
planar and bent finite specimens shows, as if, the
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nonequipotentiality of the metal surface. According to
classical electrodynamics, the equipotentiality of the
surface is probably ensured on the much greater distance
than the gap between a probe and the surface.

5. Conclusion

The surface tension, electron work function, and contact
difference of the potentials of elastically strained faces
of crystals of Al, Cu, Au, and Zn are calculated in
the model of stable jellium. A dielectric coating causes
a decrease of the work function and an increase of
the contact difference of potentials. The calculations
demonstrated a decrease/increase of the work function
and a increase/decrease of the contact potential
difference on the homogeneous tension/compression of
the surface of a metal crystal. The results correspond
to the direct observation of a shift of the contact
potential: values of the effective potential beyond faces
of a specimen shift to the side of negative/positive values
if a tensile/compressive force acts. The result does not
depend on a metal and a crystallographic direction: the
change of the work function has the same tendency as ϕ,
but not the inverse one, as it was shown by calculations
based on the direct variational method and simple trial
functions [10].

The results obtained can be used in the diagnostics of
metal films in electronics for the presence of a dielectric
coating on the surface or dislocations in the metal
bulk. By determining the surface characteristics, one
can control the processes of formation of thin adsorbed
polymeric films on metals and the deposition of oxides.

As a very important point, we mention the problem
of the protection of metals against corrosion. The
determination of the surface energy or the surface
tension allows one to estimate the chemical activity of a
surface and, in particular, its corrosion resistance.
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ВПЛИВ ДIЕЛЕКТРИЧНОГО ПОКРИТТЯ МЕТАЛЕВОЇ
ПОВЕРХНI НА РОБОТУ ВИХОДУ ЕЛЕКТРОНIВ

А.В. Бабiч, В.В. Погосов

Р е з ю м е

Роботу виходу електронiв, контактну рiзницю потенцiалiв та
поверхневу напругу пружно деформованих граней кристалiв
Al, Au, Cu та Zn з дiелектричним покриттям розраховано
в рамках самоузгодженого методу Кона–Шема. Дiелектричне

покриття зменшує роботу виходу i збiльшує контактну рiзницю
потенцiалiв. Розрахунки демонструють протилежнi деформа-
цiйнi залежностi роботи виходу електронiв i контактної рiзни-
цi потенцiалiв. Показано, що вимiрювання методом Кельвiна
контактної рiзницi потенцiалiв деформованої гранi вiдповiда-
ють не змiнi роботи виходу електронiв, а змiнi значення одное-
лектронного ефективного потенцiалу на площинi уявного зоб-
раження за поверхнею. Розрахованi величини узгоджуються з
результатами експериментiв для полiкристалiв i розрахункiв iз
перших принципiв.
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