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The paper is devoted to the analysis of high-frequency dispersion
properties of a dusty plasma with ferromagnetic grains in a strong
constant external magnetic field. The dispersion of the magnetic
permeability of the magnetic subsystem along with the dispersion
of the dielectric permittivity of the charged subsystem are taken
into account. The dispersion of the magnetic permeability tensor is
important only near the ferromagnetic resonance frequency of an
individual grain ωM that is related to the SHF range. Therefore,
in such a plasma, one more typical frequency ωM appears. The
magnetic subsystem strongly interacts with the eigenwaves of
the conventional magnetized electron-ion plasma and considerably
affects their dispersion near this frequency.

In particular, the presence of ferromagnetic grains opens
a transparency window in a magnetized dusty plasma with
ferromagnetic grains in the vicinity of ωM , ω ≈ ωM < Ωe (electron
plasma frequency) that does not exist in the conventional electron-
ion magnetized plasma. The group and phase velocity of these
new waves are opposite, and we can prescribe them a negative
refraction index. Their group velocity is much smaller than the
velocity of light.

We claim that the dusty plasma with ferromagnetic grains in
a strong constant magnetic field can be related to the left-handed
media or the negative refraction media in a narrow SHF band
near the frequency of the grain ferromagnetic resonance.

1. Introduction

For the last decade, a great deal of attention was
given to theoretical and experimental studies of
physical properties of the so-called left-handed media
(LHM) or media with a negative refraction index
(NRM). It may be useful to recall that, in the
ordinary right-handed media (RHM), the Poynting
vector and the wave vector have the same direction.
This means that the phase velocity of a wave
in RHM and its group velocity have the same
direction. The electromagnetic waves propagating in
LHM have the oppositely directed group and phase
velocities. This fact was firstly noted by Mandelshtam
in [1].

Later on, Veselago studied theoretically optical
properties of the media with negative dielectric
permittivity ε and magnetic permeability µ
simultaneously and showed that they can be described
phenomenologically with the help of a negative
refraction index η = −

√
(−ε)(−µ) < 0 [2].

The serious problem on the way of experimental
realizations of LHM is to find the frequency ranges
where ε(ω) and µ(ω) can be negative simultaneously.
Basically, a realization of this condition is limited by the
dispersion properties of the magnetic permeability. The
point is that µ(ω) practically equals to unity in natural
substances at frequencies much lower than the optical
one [3].

In [4], Pendry with colleagues considered the
electrodynamic properties of a lattice of wires (a low-
frequency plasma medium with negative permittivity at
frequencies lower than the plasma frequency) and split-
ring resonators (a medium with negative permeability)
and showed that this system can be treated as
LHM in some comparatively narrow SHF range. His
prediction concerning a realization of the perfect lens
with resolution beyond the diffraction limit on a parallel
slab with negative refraction index [5] stimulated the
intense study of the negative refraction phenomena
with the aim to pass to higher frequencies and to
optical ones. It was not surprising that the superlensing
effect was experimentally verified for some artificially
created metamaterials in a microwave frequency range
[6]. Manufacturing these artificial materials for the
time being requires modern technologies. A detailed
survey of recent results on the usage of metal-dielectric
nanostructures to develop NRM in the optic range is
given in [7].

There is a point of view that materials with
negative refraction do not exist in nature [8]. However,
the recent publication demonstrates experimentally
that materials with anomalous magnetoresistance like
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La2/3Ca1/3MnO3 possess the negative refraction in the
GHz range [9].

In our papers [10, 11], while studying the low-
frequency waves in a magnetized dusty plasma with
ferromagnetic grains (MDPFG), we obtained the
permeability tensor of the magnetized dusty plasma
with ferromagnetic grains. It possess a dispersion in
a very narrow frequency interval (in contrast to
a nonmagnetoactive dusty plasma with nonmagnetic
grains, where it is a scalar and equal to unity).
The dispersion was associated with small mechanical
rotational vibrations of the magnetic dipoles of grains
with respect to an external strong magnetic field H0

with a frequency ω0 =
√

dmH0/J , (dm and J are the
magnetic moment and the inertia moment of a grain,
respectively). In a very narrow frequency band near
ω0, the nonzero components of the permeability tensor
µxx(ω) = µyy(ω) can be negative. The ferromagnetic
grain subsystem affect the dispersion law of low-
frequency electromagnetic waves. In particular, the
dependence of a frequency ω on a wave vector k
of Alfven’s waves takes the form ω = kVA/

√
µ(ω)

(where VA is the velocity of Alfven’s waves that
remains unchanged). This means that the Alfven waves
with frequencies corresponding to µ(ω) < 0 cannot
propagate in MDPFG. There is no such opacity
band in the conventional magnetized plasma. The
dielectric permittivity tensor is controlled by the charged
components and is given by the standard formulas. By
varying the number densities of electrons, ions, and
grains and a magnetic field H0, one can realize ε(ω) < 0
and µ(ω) < 0 in this system simultaneously. For typical
parameters of ferromagnetic grains and typical magnetic
fields, ω0 corresponds to long radio waves. This means
that MDPFG can manifest properties of LHM in a low-
frequency range. Unfortunately, this claim cannot be
verified under laboratory conditions.

2. Dispersion Equation Of SHF Waves in
MDPFG

In this paper, we consider the high-frequency dispersion
properties of a dusty plasma with ferromagnetic grains
in a strong constant magnetic field. The high-frequency
magnetic permeability tensor of MDPFG is associated
with the ferromagnetic resonance of an individual
grain. The frequency of the ferromagnetic resonance is
determined by the frequency of precession of the electron
spin magnetization vector around a constant external
magnetic field H0 and corresponds to the cm range for
the fields of the order of 103 Gs.

As was mentioned above, the tensor of magnetic
permeability of MDPFG is completely controlled by
the magnetized grain subsystem. The high-frequency
tensor can be obtained on the base of the magnetic
susceptibility tensor of an individual ferromagnetic grain
χij [3]. Its nonzero components in the coordinate system
with the z-axis along H0 can be written in the form

χxx = χyy = − 1
β

ωM (ωM + ωH)
ω2 − (ωM + ωH)2

,

χxy = −χyx = i
1
β

ωωM

ω2 − (ωM + ωH)2
. (1)

We introduce the following notations:

ωM = γβM, ωH = γH0, γ = g/(2mc), (2)

g is the gyromagnetic ratio, e and m are the electron
charge and mass, respectively, c is the velocity of light,
and β is the anisotropy coefficient. Here, M is the static
magnetization in the constant field H0.The permeability
tensor of the grain subsystem µij is obtained according
to the relation

µij = δij + 4πvNgχij/β, (3)

where v is the volume of a grain, and Ng is the
grain number density. Using (1)and (3), we can write
the nonzero components of the permeabillity tensor of
MDPFG as

µxx = µyy = 1− ξ
ωM (ωM + ωH)

ω2 − (ωM + ωH)2
≡ µ1(ω),

µxy = −µyx = iξ
ωωM

ω2 − (ωM + ωH)2
≡ iµ2(ω),

muzz = 1. (4)

Here, we introduced the parameter ξ = 4πvNg/β. As one
may expect, ξ ¿ 1 for typical dusty plasmas. This allows
us to consider the magnetization of the grain subsystem
as a sum of magnetizations of individual ferromagnetic
grains and to neglect the interaction between the
magnetic dipoles. This inequality also results in that the
dispersion of (4) is important in a narrow frequency band
near ω ≈ ωM À ωH

The dispersion equation of monochromatic waves
that can propagate in a medium with arbitrary
permittivity ε̂(ω,~k) and permeability µ̂(ω,~k) tensors
can be obtained from the Maxwell equations. For plane
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electromagnetic waves exp(i~k·~r − iωt), they can be
written as follows:

εijlkjEl(ω,~k) =
ω

c
µis(ω,~k)Hs(ω,~k),

εijlkjHl(ω,~k) = −ω

c
εis(ω,~k)Es(ω,~k),

kiεij(ω,~k)Ej(ω,~k) = 0,

kiµij(ω,~k)Hj(ω,~k) = 0, (5)

where εijl is the completely antisymmetric tensor,
El(ω,~k) and Hs(ω,~k) are the Fourier components of the
electric and magnetic fields, respectively. Eliminating
the components of the magnetic field Hs(ω,~k) from
system (5), we obtain the system of linear equations for
Ej(ω,~k). To obtain ω(~k) for the eigenwaves, one has to
nullify the determinant of the following system of linear
equations:

Λij(ω,~k)Ej(ω,~k) = 0. (6)

The components of the tensor Λ̂(ω,~k) are given by the
formulas

Λxx = ε1µ̃
2 − η2µ1 cos2(θ),

Λxy = −Λyx = −i[ε2µ̃
2 − η2µ2 cos2(θ)],

Λxz = Λzx = η2µ1 sin(θ) cos(θ),

Λyy = (ε1 − η2 sin2(θ))µ̃2 − η2µ1 cos2(θ),

Λyz = −Λzy = iη2µ2 sin(θ) cos(θ),

Λzz = ε3µ̃
2 − η2µ1 sin2(θ). (7)

Here, we introduced the notation µ̃2 = µ2
1 − µ2

2. The
expressions for µ1 and µ2 are given by formulas (4).

The dielectric permeability tensor εij is controlled by
the charged components and is chosen according to the
model of cold electron-ion plasma [12]:

εxx = εyy = 1−
∑
α

Ω2
α

ω2 − ωHα2
≡ ε1,

εxy = −εyx = −i
∑
α

ωHα

ω

Ω2
α

ω2 − ωHα2
≡ −iε2,

εzz = 1−
∑
α

Ω2
α

ω2
≡ ε3. (8)

Summation is taken over all kinds of charged
particles α (electrons, ions, grains), and the notations

Ωα =
√

4πe2
αnα/mα, ωHα = |e|H0/mαc are introduced

for the plasma and cyclotron frequencies of the α-
kind charged particles. After the expansion of the
determinant of system (5) with account of (4), (7), and
(8), we obtain the following biquadratic equation for the
refractive index η = ck/ω:

Aη4 + Bη2 + C = 0, (9)

where

A = µ̃2[ε1 sin2(θ) + ε3 cos2(θ)][cos2(θ) + µ1 sin2(θ)],

B = µ̃2[µ1(ε2
2 − ε2

1) sin2(θ)− ε1ε3(2µ1 cos2(θ)+

µ̃2 sin2(θ)) + 2ε2ε3µ2 cos2(θ)],

C = µ̃4ε3[ε2
1 − ε2

2]. (10)

Here, θ is the angle between the z-axis and the direction
of the wave vector ~k which lies in the x − z plane.
This can be done due to the cylindrical symmetry of
the problem. At µ2 = 0, coefficients (10) coincide with
the corresponding coefficients obtained in [11]; at µ2 =
0, µ1 = 1, they are reduced to those in the case of the
conventional electron-ion magnetized plasma [12].

From solutions of (9),

η2
± =

−B ±√B2 − 4AC

2A
(11)

it follows that two waves with different refractive indices
can propagate in MDPFG (as in the conventional
magnetized electron-ion plasma) in the same direction.
The first wave with the refractive index η+ is called the
conventional wave, and the second one with the index
η− is the unconventional wave.

We now make some simplifications of the tensor
components (4) and (8), by basing on the physical
peculiarities of our problem. In strong fields H0

closely to the saturation, the static magnetization in
a ferromagnetic grain M À H0, and ωM À ωH . This
allows us to neglect ωH in (4) and rewrite these formulas
as

µxx = µyy = 1− ξ
ω2

M

ω2 − ω2
M

≡ µ1(ω),

µxy = −µyx = iξ
ωMω

ω2 − ω2
M

≡ iµ2(ω). (12)

The simplifications of the permeability tensor (8) are
dictated by the fact that, in the vicinity of the
frequencies ω ≈ ωM which are of interest for us and are
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Fig. 1. The typical behavior of the refractive index

related to the high-frequency band, we can neglect the
ion motion and the electron cyclotron frequency:

εxx = εyy = 1− Ω2
e

ω2
≡ ε1,

εxy = −εyx = −i
ωHe

ω

Ω2
e

ω2
≡ −iε2,

εzz = 1− Ω2
e

ω2
≡ ε3. (13)

Here, Ωe = 4πe2ne/me and ωHe are the electron
Langmuir and cyclotron frequencies, respectively. In this
approximation, we have

ε1 = ε3, ε1 À ε2. (14)

But even with these simplifications, the analysis of the
dispersion equation (11) for a wave propagating at an
arbitrary angle θ is very complicated. Below, we consider
two particular cases.

3. Negative Refractive Index in MDPFG

We now consider waves which propagate along the
external magnetic field (θ = 0). In this case, the
refractive index (11) takes a very simple form:

(
ck

ω

)2

= (ε1 ∓ ε2)(µ1 ± µ2). (15)

It follows from (6) that these waves are transverse Ez =
0 and circularly polarized Ey/Ex = ∓i ones. In the SHF
range, the pole ω = ωM corresponds to the resonance
associated with the grain subsystem. The frequency and

the direction of rotation of the vector ~E coincide with
those of the Larmor rotation of electrons and ions and
the rotation of the magnetization vector of an individual
grain.

Comparing (15) with the corresponding equation for
the conventional magnetoactive plasma [12], we see the
extra factor (µ1±µ2) that is related to the permeability
tensor of the grain subsystem. The propagation of
undamped electromagnetic waves is possible if

η2(ω) > 0. (16)

This condition in the conventional magnetized
electron-ion plasma reduces to

ε1 ∓ ε2 > 0. (17)

In the case of MDPFG, the transparency condition (16)
includes the term depending on the dispersion properties
of the ferromagnetic grain subsystem,

k2c2

ω2
= [1− Ω2

e

ω2
(1 +

ωHe

ω
)[1− ξ

ωM

ω − ωM
] > 0. (18)

The magnetoactive electron-ion plasma is opaque
for the electromagnetic waves with wave frequencies
ω lower than the plasma frequency Ωe. However, the
presence of the ferromagnetic magnetized grains makes
it transparent at frequencies

1− ξ
ωM

ω − ωM
< 0,

ω = ωM (1 + αξ), 0 < α < 1, (19)

which corresponds to the narrow frequency band (ξ ¿
1) in the vicinity of ωM . The appearance of this
transparency window is a property of MDPFG.

We now consider the refractive index of MDPFG as
a function of ω in the frequency band (19)

η(ω) = ±
√

[1− Ω2
e

ω2
(1 +

ωHe

ω
)][1− 1

α
]. (20)

Here, the sign “+” corresponds to the case where both
terms in brackets under the square root are positive
and is related to the usual positive refraction, whereas
the sign “−”, when both these terms are negative
simultaneously, is related to the negative refraction. In
Fig. 1, we show the typical behavior of the refractive
index in LHM (η < 0) and RHM (η > 0) transparency
bands. The graph of the refractive index versus the
reduced frequency (ω/ωM ) calculated according to (20)
for typical parameters of MDPFG is shown in Fig. 2.
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Fig. 2. Refractive index in the LHM transparency band in the case
where θ = 0, Ωe = 100 GHz, ωM = 10 GHz, and ξ = 2× 10−5

Let us consider the high-frequency electromagnetic
waves in the frequency band ω ≈ ωM provided that
Ωe À ωM À ωHe, where MDPFG has a negative
refractive index. The wave vector k(ω) of these waves
can written in the form

k = −Ωe

c

√
1
α
− 1. (21)

The phase and group velocities of a wave are obtained
according to the known formulas vph = ω/k and vg =
dω/dk that in our case has the next view:

vph = −c
ωM

Ωe

√
α

1− α
, (22)

vg = 2c
ωM

Ωe
ξ
√

α3(1− α). (23)

These formulas show that vph and vg are oppositely
directed. This situation is typical of LHM or NRM.

The energy flow of the electromagnetic wave
propagates with group velocity vg, and its direction
coincides with that of the Poynting vector. In the
frequency range where MDPFG has a negative refractive
index, the group velocity of electromagnetic waves turn
out to be considerably smaller than the velocity of light,

vg = c
ωM

2Ωe
ξ, ξ ¿ 1. (24)

Here, we use α = 1/2, which means that we are exactly
at the middle of the frequency band ∆ω = (1/2)ξωM

corresponding to a negative refraction index. At the

Fig. 3. Refractive index in the LHM transparency band in the case
where θ = π/2, Ωe = 100 GHz, ωM = 10 GHz, and ξ = 2× 10−5

same α, |vph| À vg because ξ ¿ 1. Thus, these waves
are related to slow electromagnetic waves.

Let us consider the electromagnetic waves
propagating transversally to the external magnetic field
H0 (θ = π/2). In this case, we have two roots of the
dispersion equation (9):

(
ck

ω

)2

= ε1 − ε2
2

ε1
,

(
ck

ω

)2

= ε3

(
µ1 − µ2

2

µ1

)
. (25)

The first root does not depend on the grain subsystem
and coincides with that for the conventional electron-ion
plasma. The second root describes the electromagnetic
waves with dispersion depending on the magnetic
subsystem µ1(ω) and µ2(ω). The refractive index of
these waves takes the form

η = ±ω

c

√(
1− Ω2

e

ω2

)
1− 2ξΦ(ω)
1− ξΦ(ω)

, (26)

where

Φ(ω) =
ω2

M

ω2 − ω2
M

≈ ωM

2∆ω
=

1
2αξ

. (27)

Here, we use definition (19), ∆ω = αξωM . Different signs
of the square root in (26) correspond to the cases of
positive and negative refraction indices. The graphs of
the refractive index versus a reduced frequency (ω/ωM )
calculated according to (26) for typical parameters of
MDPFG are shown in Fig. 3. As seen, the transparency
band in this case is twice as narrow, as that in the case of
the longitudinal propagation of electromagnetic waves.
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In the conventional electron-ion plasma ξ = 0, and
the wave dispersion is independent on the external
magnetic field H0:

ω2 = Ω2
e + k2c2. (28)

The wave propagates provided that ε3 = 1−Ω2
e/ω2 > 0

or ω >Ωe.
Let us consider MDPFG in the frequency domain

ω ≈ ωM +∆ω at Ωe À ωM , where both multipliers under
the square root (26) are negative, and the refractive
index is negative as well. The wave vector of this wave
reads

k = −
√

2
Ωe

c

√
1− α

2α− 1
. (29)

We note that 1/2 < α < 1 in this case, and the frequency
band corresponding to the negative refraction is two
times narrower than that in the previous case of waves
propagating along the magnetic field. The phase and
group velocities of wave (29) have opposite directions:

vph = −c
ωM

Ωe

√
2α− 1

2(1− α)
, (30)

vg =
√

2c
ωM

Ωe
ξ
√

(2α− 1)3(1− α). (31)

The last formulas show that the electromagnetic wave
propagating transversally to the magnetic field H0 is
slow and propagates with the velocity vg much smaller
than the velocity of light (ξωM/Ωe ¿ 1). We note
that formulas (22) and (30) have singularity points at
α = 1 and α = 1/2. This takes place when we pass
from the “normal” propagation of an electromagnetic
wave with positive refractive index to the propagation
with negative refraction index and vice versa at the
corresponding variation of the frequency. From (23),
it follows that, at α = 0 and α = 1, the group
velocity of a wave propagating along H0 turns out to
be zero. The same happens with the group velocity of
the wave propagating transversally to H0 at α = 0.
The α = 0 case corresponds to the exact resonance,
when the frequency of an electromagnetic wave coincides
with the frequency of the grain ferromagnetic resonance,
where the dissipation processes neglected in this model
becomes important. Apparently, the above described
phenomena exist if the following inequality holds true:
ξω2

Mτ2 > 1 (τ is the relaxation time of the high-
frequency magnetization).

It would be useful to evaluate numerically the
parameters of our theory for typical MDPFG. Let a size

of ferromagnetic grains be of the order of a ∼ 10−4

cm (this allows us to consider them as one-domain
particles), and let their number density Ng ∼ 106 cm−3.
Setting 3β ≈ 8, we obtain ξ = 16π2

3β a3Ng ≈ 2×10−5 ¿ 1.
The frequency of the ferromagnetic resonance at the
magnetic field H0 ' 5 × 102 Gs is ωM ∼ 1010 Hz.
Therefore, the frequency band ∆ω = ξωM , where the
dispersion of the magnetic permeability is important,
is of the order of 105 Hz. It is worth noting that the
results obtained hold true at temperatures of the grain
subsystem below the Curie temperature (Tc ∼ 103 K).

4. Conclusion

In this paper, we have analyzed the peculiarity
of eletromagnetic waves in the dusty plasma with
ferromagnetic grains in a strong constant magnetic
field H0. In such a plasma, one has to consider
the dispersion of the magnetic permeability tensor
connected with the grain subsystem. The precessing
magnetization vector of ferromagnetic grains interacts
with the high-frequency self-consistent plasma field. As
a result, we obtain variations of the high-frequency
magnetization of the grain subsystem, which results in
the dispersion of the magnetic permeability of the whole
system. This dispersion is important in the vicinity
of the ferromagnetic resonance frequency ωM and
can considerably affect the spectrum of high-frequency
electromagnetic waves in MDPFG as compared with
those waves in the conventional magnetized electron-ion
plasma.

On the base of the well-known permeability tensor
for a ferromagnetic obtained by Landau and Lifshits [3],
we have constructed the permeability tensor of MDPFG
µ̂(ω). Using it, the dielectric permittivity tensor of the
cold magnetized electron-ion plasma, and the Maxwell’s
equations, we have obtained the biquadratic equation for
the refractive index of conventional and unconventional
electromagnetic waves. It is obvious that the resonance
character of µ̂(ω) results in that the magnetized
component affects the spectrum of weakly damped waves
propagating in MDPFG only in the narrow frequency
band ∆ω ≤ ξωM . The point is that ξ a3Ng (a is the
grain size and Ng their number density). For typical
dusty plasmas, it is of the order of 10−5 ¿ 1. If we take
ωM ∼ 1010 Hz (the cm range), then ∆ω ∼ 104 Hz. The
analysis of high-frequency waves ω ≈ ωM (10 GHz) has
revealed some very interesting properties of MDPFG.

It is well known that high-frequency electomagnetic
waves cannot propagate in the electron-ion plasma, if
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their frequency ω is smaller than the Langmuir frequency
Ωe. The addition of magnetized ferromagnetic grains to
the electron-ion plasma in a strong external magnetic
field (103 Gs) creates the transparency window in the
frequency band ∆ω ≈ 104 Hz provided that ωM ¿ Ωe.
The group velocity of these waves is much smaller than
the velocity of light vg ≈ cξωM/Ωe. The refractive index
of these waves is negative.

This allows us to claim that the magnetized
dusty plasma with ferromagnetic grains manifests the
properties of the negative refractive or left-handed
medium. The above described dusty plasma with
ferromagnetic grains in strong magnetic fields can be
considered, in our opinion, as one more NRM and be
used as a comparatively simple system for studying the
physical properties of such media.
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МАГНIТОАКТИВНА ПИЛОВА ПЛАЗМА
З ФЕРОМАГНIТНИМИ ГРАНУЛАМИ ЯК СЕРЕДОВИЩЕ
З НЕГАТИВНОЮ РЕФРАКЦIЄЮ У ВУЗЬКIЙ НВЧ-СМУЗI

В.М. Мальнєв, Є.В. Мартиш, В.В. Панькiв

Р е з ю м е

Робота присвячена дослiдженню високочастотних дисперсiй-
них властивостей запорошеної магнiтоактивної плазми з фе-
ромагнiтними гранулами в сильному зовнiшньому магнiтному
полi. Враховуються дисперсiя магнiтної проникностi намагнi-
ченої пiдсистеми разом з дисперсiєю дiелектричної сприйнят-
ливостi зарядженої пiдсистеми. Дисперсiя магнiтної проник-
ностi є суттєвою лише поблизу частоти ωM феромагнiтного
резонансу окремої гранули, що належить НВЧ-дiапазону. То-
му в плазмi з’являється ще одна характеристична частота ωM .
Магнiтна пiдсистема сильно взаємодiє з власними коливання-
ми звичайної електрон-iонної плазми та суттєво впливає на
їх дисперсiю поблизу даної частоти. Зокрема, наявнiсть пiд-
системи гранул вiдкриває вiкно прозоростi поблизу частоти
ωM , ω ≈ ωM < Ωe (Ωe – електронна плазмова частота), яке
не iснує у звичайнiй електрон-iоннiй магнiтоактивнiй плаз-
мi. Групова та фазова швидкостi цих хвиль протилежно на-
правленi, i ми приписуємо їм вiд’ємний показник заломлення.
Групова швидкiсть цих хвиль значно менша за швидкiсть свiт-
ла. Ми стверджуємо, що запорошену магнiтоактивну плазму з
феромагнiтними гранулами в сильному зовнiшньому магнiтно-
му полi можна вiднести до лiвих середовищ, або середовищ з
негативною рефракцiєю у вузькiй НВЧ-смузi поблизу частоти
феромагнiтного резонансу гранули.
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