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The liquid-vapor coexistence curve of a two-dimensional Coulomb
gas was found to belong – in the phase diagram of the system
– to the region in which the ensemble of quadrupole clusters is
diluted by a small amount of dipole pairs. The results of computer
experiments for the critical temperature and density are well
consistent with their analytical dependences. The destruction
of quadrupole clusters owing to their thermal excitation and
the electrostatic interaction between them has been considered
at a qualitative level. The location of the insulator–conductor
transition curve in the phase diagram has been analyzed.

1. Introduction

Systems in liquid and vapor-like states with Coulomb
interaction between particles comprise important objects
of studying in the molecular physics and the physics
of liquids. Among such systems, a distinguished
place is occupied by a two-dimensional Coulomb
gas formed by oppositely charged disks. Despite an
extreme simplicity of this system, its thermodynamic
and dielectric properties, as well as its conductivity,
remain insufficiently studied to date. This circumstance
is a consequence of the fact that the zeroth-order
approximation, in which the forces of Coulomb
interaction are taken into account in a way [1–4] that is
standard for plasma researches, is not effective enough.
Such an approach to the description of Coulomb gas
properties can be considered substantiated enough only
for a high-temperature conducting phase of the system.
At temperatures corresponding to a liquid dielectric
phase, its application is not justified, because, in this
case, it is electrically neutral clusters that govern
properties of the system.

Really, owing to the Coulomb interaction, disks
with opposite charges should attract one another and
form electrically neutral dipole pairs. Then, the dipole-
dipole interaction and collisions between dipole pairs
give rise to their association in quadrupole and hexapolar
clusters; and the lower are the temperature and the
density of the system, the more stable are those

clusters. One should expect that the thermodynamic and
electrophysical properties of the gas in the vicinity of the
liquid-vapor coexistence curve in the phase diagram of
the system would be of a cluster origin.

The binodal position can be described most naturally
by specifying a position of the liquid-vapor critical point.
In works [5–7], it was shown that, in the systems
formed by dipole pairs D and quadrupole clusters Q,
the coordinates of the liquid-vapor critical point are
determined by the relations
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One can see that the values t
(1)
c = 0.056 and t

(2)
c =

0.085 for the critical temperature obtained in computer
experiments in works [8] and [9], respectively, fall within
the interval from t

(D)
c and t

(Q)
c . On the other hand,

a comparison of Eq. (2) with the results n
(1)
c = 0.21

and n
(2)
c = 0.16 given in work [8] and [9], respectively,

demonstrates that the agreement between analytical and
numerical values for the critical density is much better in
the case of the system composed of quadrupole clusters.

In this work, we are going (i) to prove that the
liquid-vapor coexistence curve for the system under
investigation is located in the region in which quadrupole
clusters are diluted by a small amount of dipole pairs,
(ii) to determine the stability limit for quadrupole pairs,
and (iii) to construct the insulator-conductor transition
curve at a qualitative level.

2. Clusterization in Coulomb Gas

The most stable among clusters that are formed in a
Coulomb gas are dipole pairs and quadrupole clusters.
The values of their equilibrium concentrations can be
calculated making use of the chemical kinetics methods
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[10–12]. To simplify calculations, we take advantage
of an additional assumption that dipole pairs and
quadrupole clusters are in their ground energy states. As
to the interaction between clusters, it will be considered
in the same approximation, as the van der Waals
equation for a dipole-quadrupole mixture is derived.

The equation of “chemical” equilibrium among dipole
pairs and quadrupole clusters reads

(1− c)(2− c)
c2

=

= 0, 1× 2T∗/T n∗

(
T0

T

)1/2

exp

(
2µ

(ex)
d − µ

(ex)
Q

T

)
, (3)

where c = nd/(nd + nQ) is the relative concentration
of dipole pairs; nd and nQ are the concentrations
of dipole pairs and quadrupole clusters, respectively;
T∗ = q2 is the characteristic dissociation temperature of
isolated dipole pairs, T0 is the temperature of quantum-
mechanical degeneration for the system of hard disks;
and n∗ = 2n+σ2 (n+ = n−) is the dimensionless density
of a system of disks, whose diameters are equal to σ. The
total concentration n = nd+nQ, which is connected with
the dimensionless density of ions n∗ by the relation

n =
1

2(2− c)
n∗
σ2

, (4)

is also taken into account. The quantities µ
(ex)
d and

µ
(ex)
Q are contributions to the chemical potentials of

components due to the cluster–cluster interaction (these
are the so-called excess values of chemical potentials
with respect to those in a perfect mixture). It can be
demonstrated (see works [7, 10]) that those quantities
are determined by the formulas
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Here, P is the pressure in the mixture of interacting
dipole pairs and quadrupole clusters, Pid = nT is the

pressure in the same mixture but in the ideal-gas
approximation, and υ = 1/n is the specific volume (the
Boltzmann constant was put equal to unity). By its
sense, the quantity

υ0(c) = υdc + υQ(1− c)

has the meaning of the average characteristic volume
(characteristic area, in the two-dimensional geometry) of
particles in the mixture, while the quantities υd = 2πr2

d

and υQ = 2πr2
Q are the doubled areas of disks that

are formed by dipole pairs and quadrupole clusters as
a result of their rotation. It is easy to see that the radii
of those disks are equal to rd = σ and rQ = σ

2 (1 +
√

2),
respectively. The coefficients aij (i, j = d,Q) are defined
by the formula

aij = π

∞∫

(ri+rj)

|Uij(r)|rdr,

where Uij(r) are the potentials of the interaction
between dipole pairs and quadrupole clusters averaged
over their orientations (see works [5–7]), rd + rd = 2σ,
rd + rQ = σ

2 (3 +
√

2), and rQ + rQ = σ(1 +
√

2). In the
van der Waals approximation,

P =
nT

1− nυ0(c)
− a(c)n2, (7)

where

a(c) = addc
2 + aQQ(1− c)2 + 2adQc(1− c)

is the effective constant of interaction.
The applicability region of formula (3) coincides

with that of the van der Waals equation and, as a
consequence, is confined by the density

n∗ < 1/π. (8)

The distribution of the dipole pair concentration in
the plane of Coulomb gas states (n∗, t) is naturally
described making use of isoconcentration curves which
are defined by the equations c(n∗, t) = c0 for various
c0-values (0 < c0 < 1). The separatrices, which were
calculated in such a way by Eq. (3), are presented in
Fig. 1. Their sections beyond the region (n∗ < 1/π,
t < tc = 0.25) are depicted by dotted curves. It was done
because, owing to the excitation of internal vibrations
[13] and the electrostatic interaction between particles,
the existence of quadrupole clusters beyond the specified
region in the phase diagram becomes impossible. One
can see that the critical points (D and Q) calculated
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in works [5–7] in the framework of the dipole pair
and quadrupole cluster approximations are located in
the ensemble of quadrupole clusters diluted by a small
amount of dipole pairs (c < 0.1).

We may assert that the branches of the liquid-vapor
coexistence curve are also related to a weak solution of
dipole pairs and hexagonal clusters in the quadrupole
phase of the system. The same conclusion can be drawn
as well by analyzing the data obtained in molecular
dynamic experiments [8, 9]. A natural way to construct
the binodal and the spinodal of such a system is the
thermodynamic perturbation theory.

3. Spinodal and Binodal Positions for a
Mixture of Quadrupole Clusters
and Dipole Pairs

For the determination of the liquid-vapor coexistence
curve position, let us take advantage of the Gibbs
equation

µ
(l)
Q (t, nl, cl) = µ

(υ)
Q (t, nυ, cυ) (9)

for the chemical potentials of quadrupole clusters in the
liquid and vapor phases (i = l, υ), as well as the equality
between pressures which are determined by the van der
Waals equation,

P (l)(t, nl, cl) = P (υ)(t, nυ, cυ). (10)

Here, we take into account that µQ = µ
(id)
Q + µ

(ex)
Q ,

where µ
(id)
Q is the chemical potential of clusters in the

ideal-gas approximation. Note that the equality between
the chemical potentials of dipole pairs, µ

(l)
d (t, nl, cl) =

µ
(υ)
d (t, nυ, cυ), is a consequence of Eq. (9), because the

condition of chemical equilibrium between them and
quadrupole clusters yields µQ = 2µd.

The equation of chemical equilibrium (3), which is
used to determine the concentrations cl and cυ in the
liquid and vapor phases, respectively, at small total
concentrations looks like
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Fig. 1. Family of separatrices c(n∗, t) = c0 corresponding to
formula (8) at T0 = 0.1T∗. Curves 1 to 5 correspond to c0 = 0.1,
0.3, 0.5, 0.7, and 0.9, respectively
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In the zeroth-order approximation with respect to the
concentration c, the binodal of the mixture coincides
with that of the quadrupole phase. In the latter, the
density values nυ and nl for the vapor and liquid,
respectively, branches of the binodal are determined by
the equation

nl∫

nυ

(
t

(1− nυ0)2
− 2an

)
dn

n
= 0,

which is related to Eq. (7) by means of the Maxwell rule.
In contrast to the binodal position, that of the

spinodal is determined in a much easier way. The
stability of the system in either the liquid or gaseous
state becomes broken at points which satisfy the
equation (∂P/∂n)t = 0. Taking the dependence of the
pressure on the dipole pair concentration into account,
this equation transforms into the following one:

∂P

∂n

∣∣∣∣
t,c

+
∂P

∂c

∣∣∣∣
t

∂c

∂n

∣∣∣∣
t

= 0. (12)

A comparative behavior of spinodals for the system of
quadrupole clusters and for the mixture of quadrupole
clusters and dipole pairs is presented in Fig. 2. The
critical point for the mixture can be found as a point,
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Fig. 2. Comparative behavior of spinodals for the mixture of
quadrupole clusters and dipole pairs (S1 ) and the system of
quadrupole clusters (S2 )

where the left and right branches of the spinodal merge
together. In such a way, we find that

tc ≈ 0.04, nc ≈ 0.148, cc ≈ 0.01.

Hence, taking dipole pairs into account brings about
a certain growth of critical parameters. Note that the
largest discrepancy between the spinodal branches is
observed in the vicinity of the critical point – in a total
agreement with the arrangement of isoconcentration
curves in the phase diagram (Fig. 1).

Binodal branches become shifted in a similar manner.

4. Destruction of Quadrupole Clusters as a
Result of the Electrostatic Interaction
Between Them

Quadrupole clusters are not rigid particles and can be
destroyed as a result of collisions between them. Cluster
collisions also excite internal degrees of freedom inside
clusters. The distribution of isoconcentration curves
in Fig. 1 corresponds to the simplest case, where all
quadrupole clusters are in the ground vibrational state
only. The account of the excited vibrational states
should be accompanied by a reduction of the quadrupole
cluster existence region in the plane of states (n∗, t).
However, of five vibrational degrees of freedom, two have
essentially nonlinear character [13], which makes the
corresponding calculations more complicated. Therefore,
we confine ourselves to the qualitative analysis of the
influence of thermal excitations and the electrostatic
particle-particle interaction on the cluster integrity.

Owing to the interaction with neighbor clusters, the
vibrational energy levels of a quadrupole cluster become

broadened. In the zeroth-order approximation, the level
width can be estimated as (see work [14])

|∆E| ∼
√
〈U2

QQ〉,

where UQQ is the energy of the quadrupole-quadrupole
interaction of the cluster with all its near and far
neighbors. According to the results of work [7], the
square of the pair interaction energy between clusters
averaged over all their possible orientations is equal to

U2
QQ(r) = 18T 2

∗
(σ

r

)8

.

Summation over all the neighbors in the formula〈
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QQ

〉
=

∑
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2
QQ′(r) can be replaced by integration:
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= 2πnQ

∞∫

Rm

〈U2
QQ(r)〉g(r)rdr,

where the lower limit of integration Rm = 2 (πnQ)−1/2 is
identified with the average distance between quadrupole
clusters, and nQ is their density. Since the Coulomb
gas is rarefied enough in the vicinity of the liquid-vapor
critical point, the binary correlation function g(r) can be
admitted equal to unity. In such a way, we obtain that

〈U2
QQ〉 =

3π4

2× 44
n4
∗T

2
∗ ,

where n∗ = 4nQσ2 is the dimensionless density of ionic
system (the ions are supposed to be located at their
equilibrium positions). Therefore,

|∆E| ∼
(

3
2

)1.2
π2

16
n2
∗T∗.

The quadrupole cluster becomes unstable, if the sum of
its vibrational energy Eυ and the level width is of the
same order as the energy of the cluster in the ground
state E

(0)
Q = −T∗ ln 2:

Eυ + |∆E| ∼ E
(0)
Q . (13)

In work [7], it was shown that the vibrational energy
of a cluster is approximately equal to Eυ ≈ 2.75T∗t.
Therefore, it follows from Eq. (13) that the quadrupole
cluster destruction temperature td is equal to

t
(1)
d (n∗) ≈ 0.25−

(
3
2

)1/2
π2

16
n2
∗. (14)
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However, it is more reasonable that the lower limit of
integration in Eq. (4) should be taken smaller, which
is caused by significant fluctuations of the distance
between the nearest neighbors. If Rm is identified with
half of the distance between clusters, we obtain

t
(2)
d (n∗) ≈ 0.25−

(
3
2

)1/2
π2

2
n2
∗. (15)

5. Discussion of the Results Obtained

The most important result of this work is the proof of
the fact that, in the case of a two-dimensional Coulomb
gas, the liquid-vapor coexistence curve is located in that
region of the phase diagram in which properties of a
Coulomb gas are determined by quadrupole clusters
diluted by a small amount of dipole pairs.

The values obtained for the critical temperature and
the density are in good agreement with the results of
computer experiments.

We have also considered, at a qualitative level, the
influence of thermal excitations of quadrupole clusters
and the electrostatic interaction between them on
their existence as integral objects. The destruction of
clusters is associated with the formation of a plasma-
like state of the system, i.e. with the transition of
the insulator–conductor type in it. Formulas (14) and
(15) can therefore be regarded as the equation for the
insulator–conductor transition curve on the phase plane.
They quite correctly reproduce the dependence of the
transition temperature on the density. It is easy to
make sure that formula (15) rather successfully describes
the transition curve that was obtained in the computer
experiment [8]. One may hope for that a more exact
calculation of Rm and the account of fluctuation dipole
moments of quadrupole clusters will allow the insulator–
conductor transition curve to be reproduced not only
qualitatively, but quantitatively as well.
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ВЛАСТИВОСТI ДВОВИМIРНОГО КУЛОНIВСЬКОГО
ГАЗУ В ОБЛАСТI ДОМIНУВАННЯ
КВАДРУПОЛЬНИХ КЛАСТЕРIВ

Л.А. Булавiн, М.М. Маломуж

Р е з ю м е

Доведено, що крива спiвiснування рiдина–пара у двовимiрному
кулонiвському газi розташована в областi, в якiй квадрупольнi
кластери розбавленi невеликою кiлькiстю дипольних пар. Зна-
чення критичних температури i густини добре узгоджують-
ся з результатами комп’ютерних експериментiв. Якiсно розг-
лянуто вплив теплових збуджень квадрупольних кластерiв i
електростатичної взаємодiї мiж ними на їх iснування як цiлiс-
них об’єктiв. Обговорюється положення кривої дiелектрик–
провiдник.


