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We propose a possible explanation of the nature of the
temperature-independent component of the entropy of He II,
whose existence was assumed by E.A. Pashitskii and S.M.
Ryabchenko [Fiz. Nizk. Temp. 33, 12 (2006)] on the consideration
of the polarization of superfluid helium during the propagation of
a second-sound wave. The ground state of He II is considered in
the random phase approximation (RPA), and it is shown that the
energy of this state can be rewritten in terms of the distribution
function of virtual quasiparticles (phonons or rotons), rather than
that of particles, as it is made in the impulse approximation limit,
because the proposed representation seems to be more general.
With this distribution function, the temperature-independent
contribution to the entropy of superfluid helium is calculated.
This part has sense of the Shannon entropy as a measure of a
quantum mechanical uncertainty, because the given quasiparticles
are quantum mechanical fluctuations against the background of
the ground state of superfluid helium.

1. Introduction

The investigation of the relationship of a microstructure
of He II to its macroscopic properties is one of the
central problems of low-temperature physics. Recently,
a previously unknown phenomenon has been observed:
the appearance of electric polarization in superfluid
4He upon the excitation of a periodic relative motion
of the normal and superfluid components in it [1,2].
In particular, on the radiation of the second sound,
the appearance of the electric polarization directed in
parallel to the vector of velocity of the superfluid
component vs has been observed [1]. It was established
that the amplitude of oscillations of the temperature ∆T
in a second-sound wave and the variation of the electric
potential ∆U have the same frequency and are connected

to within ±25% by the relation

∆T

∆U
≈ 2e

kB
= 2, 32× 104K·B−1, (1)

where e is the electron charge, and kB is the Boltzmann
constant. In the interval of temperatures T ≤ 2 K,
relation (1) is independent of the temperature in the
limits of the indicated accuracy.

In some theoretical works, the attempts were
undertaken to explain the causes of the appearance of
electric polarization in He II, but the results obtained
poorly fit the experimental data. However, one of the
possible mechanisms of this phenomenon was proposed
in work [3]. Relation (1) was explained by the inertia
mechanism of the appearance of electric polarization on
the excitation of second-sound waves in the assumption
that the superfluid component has the contribution
in entropy which is independent of the temperature.
The authors of the mentioned paper considered the
superfluid component as a superposition of contrarily
charged coherent condensates: the nuclear condensate
(sN) and the pair electron one (se). These systems
are connected with each other by forces of Coulomb
attraction under conditions of electroneutrality of the
environment 〈vsN〉 = 〈vse〉 = vs (the brackets mean
the space and time averages). In the frame of two-liquid
hydrodynamics, taking the big difference of electron’s
and nucleus’s masses me ¿ mN ≈ m4 into account,
the authors obtained the equation which determines
the electric potential gradient ∇ϕ in terms of changes
of the pressure 4P (first sound) and the temperature
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4T (second sound):
(

1
ρ
4P − σ

m4
4T

)
= − 4e

m4
∇ϕ, (2)

where ρ = ρs + ρn is the helium density (the sum of
densities of the normal and superfluid components), and
σ is the entropy per one atom with the dimension of kB.

In the case of the second-sound waves, one can
neglect by variations in the pressure, 4P = 0, and
obtain the analog of expression (1):

∆T

∆U
≈ 4e

σ
. (3)

This means that the amplitude of small oscillations of
the electric potential in the second sound is determined
by the entropy per one atom, and the condition of
conformity to each other of Eqs. (1) and (3) is σ = 2kB.
That is, the nonzero contribution σ0 = 2kB to the
entropy exists at low temperatures and dominates in the
interval of temperatures T ≤ 2 K.

Proceeding from the aforesaid, the problem of our
paper is reduced to the elucidation of the physical
nature of the constant contribution σ0 to the entropy
of the superfluid state of helium. It is obvious that
the von Neumann entropy is equal zero in the ground
state. However, as was mentioned above, the superfluid
component of 4He can be represented as a superposition
of contrarily charged coherent condensates due to
the quantum-mechanical spreading (uncertainty). This
means that this case must be characterized by the
entropy which plays the role of the degree of such an
uncertainty and is present in the equations of generalized
hydrodynamics of the superfluid liquid [3].

2. The Ground State of He II and Its Entropy

Let’s consider the boson system with average density
n = 1/υ = N/V which consists of particles interacting
via the pairwise repulsive potential Φ(|ri − rj |) ≡ Φ(r),
because a Bose-gas with attraction is unstable [4]. The
quantum equation for the operator which corresponds to
the collective variable of fluctuations of the local density

of particles ρk = 1√
N

N∑
j=1

e−ikrj in RPA has the form

ˆ̈ρk + ω2
kρ̂k = 0, (4)

where νk =
∫

e−ikrΦ(r)dr is the Fourier transform of
the interaction potential of particles, the operator of

fluctuations of the density ρ̂k satisfies the commutation
relations

ρ̂−k
ˆ̇ρk − ˆ̇ρkρ̂−k = i~

k2

m
(5)

and ωk is the frequency of the k-th oscillator with the
energy quantum

εk = ~ωk =

√(
~2k2

2m

)2

+
νk

m

N

V
~2k2. (6)

It is seen that, in RPA, a degenerate system of
interacting Bose-particles, e.g. liquid helium below the
λ-point, is equivalent to the collection of harmonic
oscillators with frequencies ωk and independent random
phases for different values of the wave vectors k. Then
the possible values of the energy of a quantum liquid can
be defined as

E =
∑

k

~ωk

(
nk +

1
2

)
, nk = 0, 1, 2, ... (7)

We consider the ground state of such a system as that, in
which the quantum numbers of all aforesaid oscillators
are zero: nk = 0 for ∀k. It is obvious that this state
corresponds to the absolute zero temperature. Then, the
energy of the ground state of a weakly unideal Bose-
gas is

E0 =
∑

k

1
2
~ωk =

1/d∫

0

1
2
~ω (k)

4πk2dk

(2π)3
≈ 2π~2aN2

mV
, (8)

where d ∼ 3
√

V/N is the average distance between
liquid’s particles, and a is the scattering length. If, for
some k 6= 0, the occupation numbers nk 6= 0, then n
elementary excitations with the energy spectrum ε (k) =
~ω (k), which consists of the phonon and roton parts in
the case of He II, exist in the system.

For the subsequent calculations, we need an
expression for the free energy at zero temperature T = 0.
For a system of interacting bosons in RPA, it has the
form [5]

F0 = Fid +
N2

2V
ν0 −

∑

k 6=0

~2k2

8m
(αk − 1)2 , (9)

where

αk =

√
1 +

2N

V
νk

/
~2k2

2m
≡ εk

/
~2k2

2m
≡ 1

Sk
, (10)

and Sk is the structure factor of the quantum Bose-liquid
at T = 0. The average value of kinetic energy K0 can
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be calculated by differentiating the free energy (9) with
respect to the particle’s mass m as a parameter [5]:

K0 = −m
∂F

∂m
=

∑

k 6=0

~2k2

2m

(αk − 1)2

4αk
. (11)

Thus, the kinetic energy in the ground state of a
nonideal Bose-gas is different from zero, which allows
the following interpretation: unlike the ideal gas of
Bose-particles, the above-condensate particles exist in
superfluid 4He at T = 0 with the dispersion εk = ~2k2

2m
and the occupation numbers

Nk =
(αk − 1)2

4αk
+ N0δ (0) . (12)

This dispersion law is typical of free particles. However,
the obtained distribution function is sufficiently close to
zero already at k ≈ 2 Å−1 [6,7], which is situated in the
area of the wavevectors of elementary excitations k < 2.4
Å−1 with dispersion ε (k). Moreover, at k > 2.4 Å−1,
the wave functions of quasiparticles are damped, i.e.
quasiparticles are decaying. Thus, in the general case,
we cannot speak about the above-condensate particles
as about free particles like those in the ideal gas, but we
must built a more adequate representation.

The experiments [6–8] on deep-inelastic neutron
scattering in He II allowed one to determine both
the distribution function which corresponds to the
occupation numbers (12) with a typical condensate
peak and the condensate density. The estimates showed
that the condensate comprises 6–12% of the total mass
at absolute zero temperature. However, the energy of
neutrons (or the transferred momentum) is much greater
than the energy of elementary excitations. That’s why
the neutrons are scattered by liquid helium as by a
system of noninteracting particles: each atom plays
the role of s density fluctuation, and, what’s more, it
has no time to interact with its environment. Thus,
we can imagine the picture, as if the scattering of
neutrons takes place in the ideal Bose-gas at a certain
effective temperature. Such a picture is named “impulse
approximation”. The above-mentioned condensate peak
disappears on the passage to lower energies.

In view of the aforesaid, in order to obtain the
entropy of the ground state, it is necessary to have
expression for the distribution function of a more
general view than (12) corresponding to the impulse
approximation. To this end, we rewrite the expression
for the kinetic energy of the ground state through the
dispersion law for quasiparticles (6). Then, after simple

transformations with the help of (6) and (10), expression
(12) becomes

K0 =
∑

k 6=0

εk
(αk − 1)2

4α2
k

≡
∑

k 6=0

εkn0
k, (13)

where

n0
k =

1
4

(
1− 1

αk

)2

=
1
4

(
1− ~

2k2

2m

1
εk

)2

(14)

are already the occupation numbers of quasiparticles,
and ~k plays the role of quasimomentum. Such a
transformation gives a basically new picture of the
ground state of He II. As was mentioned above, the
system is in the ground state, if all oscillators are at
the zero level. This state is pure, since the system is
described by the wave function Ψ which is a solution
of the Gross–Pitaevskii equation in the model of weakly
nonideal gas [9]. In the first approximation for He II, it
has the form [14, 15]

lnΨ0 (r1, ...rN ) =
∑

k

1
2

(1− αk) ρkρ−k. (15)

Due to the principle of uncertainty, the quantum
fluctuations, which are displayed as elementary
excitations distributed by law (14) with the spectrum
εk, exist in the system. However, we know that the
quasiparticles are not in the ground state. That’s why
the given quasiparticles are virtual phonons and rotons,
rather than real ones. In order to transform them into
real quasiparticles, the system must be heated or driven
to the critical speed. In the virtual state, such excitations
do not cause friction. However, they can bring to a
number of effects, one of which is electrical activity, as
it will show below. We want to emphasize once more
that the existence of the given quasiparticles is due to
the principle of quantum mechanical uncertainty, rather
than to thermal or mechanical excitations.

It is not difficult to notice that the occupation
numbers of virtual quasiparticles (14) are related to
the wave function of the ground state (15). If ln Ψ0 =∑
k

a (k), then n0
k = 〈a (k)〉20, where

〈a (k)〉0 =
1
2

(1− αk) 〈ρkρ−k〉0. (16)

Using the definition of the structure factor ST=0
k =

〈ρkρ−k〉0 and formula (10), we can write

〈a (k)〉0 =
1
2

(1− αk) Sk =
1
2

(1− αk)
1
αk

. (17)
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Squaring this expression, we can obtain the distribution
of virtual quasiparticles in the form (14).

The given description of the ground state of the
system is more general than that with the help of the
conception of Bose–Einstein condensation, because the
latter has a clear physical sense only in the case of
the ideal Bose-gas. For systems with interaction, the
Bose–Einstein condensation is valid only in the impulse
approximation, which is not always convenient.

We now pass to the calculation of the temperature-
independent contribution σ0 to the entropy. At the
absolute zero temperature, all processes are running so
that an entropy is constant. It is believed that this
value is equal to zero. However, in our representation
of the superfluid component 4He as a superposition
of contrarily charged boson condensates, this constant
contribution can be nonzero and will play a decisive
role in the explanation of electric activity. As was
mentioned above, the quantum mechanical fluctuations
caused by the principle of uncertainty give the nonzero
kinetic energy of the ground state and the distribution
function of virtual quasiparticles. In work [13], various
quantum mechanical states were described with the
use of the Shannon entropy [12] which has sense of
the degree of quantum mechanical uncertainty and is
calculated on the modulus square of a wave function as
on the distribution function. Moreover, the Heisenberg
principle of uncertainty can be reformulated in terms of
the entropy of a given state.

Let’s present an example. Let an oscillator be in the
ground state which is described by the known wave
function. It is obvious that the von Neumann entropy
is equal to zero. However, there exist the coordinate
distribution |ψx|2 ∼ e−x2mω/~ and the momentum
distribution |ψp|2 ∼ e−p2/mω~, with which the nonzero
Shannon entropy can be calculated as

σx = −
∫
|ψx|2 ln|ψx|2dx, (18)

σp = −
∫
|ψp|2 ln|ψp|2dp. (19)

The uncertainty relation for the ground state of an
oscillator in the terms of the Shannon entropy can be
written as

σx + σp = ln (πe) . (20)

The given entropy has a simple physical sense, because
it is expressed through the dispersion Dξ of the oscillator
dimensionless coordinate ξ as follows: σξ = Dξ + ln

√
π.

That’s why the Shannon entropy is the degree of
quantum mechanical uncertainty.

The quantity |ψp|2 plays the role of the distribution
function of virtual quasiparticles corresponding to
the occupation numbers n0

k. On the other hand,
the superfluid component can be represented as
a superposition of contrarily charged coherent
condensates, the nuclear condensate (sN) and the
pair electron one (se) due to the quantum mechanical
spreading, whose degree is the Shannon entropy. Then
we can calculate it as

σ0 = −kB
1
N

∑

k

n0
k

Ξ
ln

n0
k

Ξ
, (21)

where σ0 is the entropy per atom, and Ξ is such
normalization multiplier that

∑
k

nk

Ξ = 1. Since the

spectrum of quasiparticles is continual and no special
states of the Bose-condensate type, as in the distribution
function of particles (12), exist, we can pass from the

summation to the integration,
∑
k

→V
+∞∫
0

d3k
(2π)3

, and get

σ0 = −kB
V

N

+∞∫

0

n0 (k)
Ξ

ln
n0 (k)

Ξ
4πk2dk

(2π)3
, (22)

where the normalization multiplier is

Ξ =
V

N

+∞∫

0

n0 (k)
d3k

(2π)3
. (23)

The value of σ0 on the distribution n0 (k) is nonzero and
corresponds to the pure state. The overlapping of the
wave functions of atoms (as that for de Broglie waves)
disappears above the λ-point. Hence, the superposition
of contrarily charged coherent states of the system stops
to exist. This manifests itself mathematically in that the
Shannon entropy (22) tends to zero. As a result, the
effect is not present above the λ-point.

We now pass to specific calculations with the use
of different model potentials with the corresponding
collections of parameters. In the first approximation, we
use the pseudopotential of hard cores

νk ≈ ν0 =
4π~2a

m
, (24)

where νk is the Fourier transform of the interaction
potential expressed via the scattering length a > 0.
Substituting (24) in the expression for the spectrum εk

648 ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 7



ENTROPY OF THE GROUND STATE AND THE ELECTRIC ACTIVITY

Fig. 1. Theoretical spectrum of He II for the Brueckner–Sawada
model potential with the parameters a = 2.3 Å and β = 50, 60,
80. The experimental curve is shown by points

(6) and then in (14), we obtain the distribution function
of virtual qusiparticles in the form (see Fig. 2)

n0 (k) =
1
4

(
1−

(
1 +

16πNa

V

1
k2

)−1/2
)2

. (25)

It is worth noting that the distribution function
k2n0 (k) has maximum at the point

k2
max ∼

N

V
a (26)

that coincides with the maximum of the distribution
function of above-condensate particles in the field-
theoretic method of Bogolyubov. The relevant value of
the energy gap in the first approximation corresponds
to that of the ordinary perturbation theory in the same
approximation (in the second approximation, the gap is
filled by the phonon spectrum) for the Bose-gas of hard
cores [10].

Now we can calculate entropy (22) knowing the
average equilibrium density N/V = 0.02185 Å−3 and
the typical scattering lengths for a He atom (Table 1).

We consider our result as quite satisfactory in view
of both the fact that liquid helium is strongly nonideal
and the roughness of our approximation

The spectrum εk calculated on pseudopotential (24)
doesn’t correspond to the well-known spectrum of
superfluid helium. Therefore, our next step will be the
further consideration of peculiarities of the interaction
T a b l e 1. Values of the Shannon entropy of superfluid
helium corresponding to the scattering lengths a of atoms
in the model with pseudopotential

a (Å) 2.30 2.40 2.50 2.60 2.70
σ0k−1

B 6.50 6.58 6.65 6.72 6.80

Fig. 2. Distribution function of virtual quasiparticles in superfluid
helium. Curve (1) corresponds to the approximation by the
pseudopotential with a = 2.3 Å. Curve (2) corresponds to the
Brueckner–Sawada model potential with a = 2.3 Å and β = 55

potential for helium atoms (the presence of attraction).
With this purpose, we use the Brueckner–Sawada
potential [16], whose Fourier transform is

νk = V0
sin(ka)

ka
, (27)

where V0 is the potential amplitude, and a is its
characteristic length. Then the spectrum is determined
by the expression

εk =
~2

2m

√
k4 +

β sin (ka)
a3

k, (28)

where the dimensionless parameter β = 4nma2V0

/
~2.

The approximation of helium’s spectrum by function
(28) is presented in Fig. 1.

Within this model, we can construct the distribution
function of virtual quasiparticles:

n0 (k) =
1
4


1−

(
1 + β

sin ka

(ka)3

)−1/2



2

. (29)

The plot of the given function has a characteristic
maximum corresponding to elementary excitations of the
roton type (Fig. 2), unlike the earlier considered function
in the model with a pseudopotential. The left part of the
plot corresponds to phonons.

Now we can calculate entropy (22) on the
distribution function (29), by taking such parameters
which ensure a satisfactory agreement of the theoretical
spectrum of quasiparticles and the experimental data
(Table 2).
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On this stage of approximations, the dispersion of
obtained values of the Shannon entropy for the ground
state is situated in the limits of experiment’s errors
on the variation of the parameters of the spectrum of
elementary excitations.

3. Conclusion

We have shown that the Shannon entropy as the
degree of quantum mechanical uncertainty gives the
temperature-independent contribution to the entropy,
which induces quantum fluctuations of the superfluid
state’s density. For this reason, the kinetic energy of
He II (as a part of the internal energy) isn’t equal to
zero in the ground state. This energy can be written
in terms of the energy of virtual quasiparticles with
the Bogolyubov spectrum, rather than in terms of the
energy of particles, as it is made in many papers
in the impulse approximation limit. The quantum
fluctuations, which have a form of virtual phonons
and rotons, make a background of the ground state
and give the above-mentioned temperature-independent
contribution to the entropy. The entropy can be
calculated in the random phase approximation with the
help the model potentials such as the pseudopotential
and the Brueckner potential. The obtained result
〈σ0〉 = 2.3kB is in good agreement with experimental
data (2± 0.5) kB. This representation corresponds to
the ideas of quantum field theory, where there exist
the vacuum fluctuations which cause such phenomena
as the Lamb shift, Casimir effect, etc. The electric
activity in helium (the appearance of polarization in
the second-sound field and, conversely. the generation
of the second sound by the induced polarization) is an
analogous effect. We may assume that the mechanism
of polarization in He II is the ordering of virtual
dipole moments in the coherent medium (the medium
with strong quantum correlations) by a second-sound
wave.

T a b l e 2. Values of the Shannon entropy σ0 · k
−1
B

of superfluid helium in the model with the Brueckner–
Sawada potential as a function of the interaction length
a and the intensity β = 4nma2V0

~2 . The values of
the parameters which give the best agreement with
experiment are distinguished with a frame

a (Å) 2.10 2.20 2.30 2.40 2.50
β

50 2.60 2.46 2.32 2.19 2.10
55 2.58 2.44 2.31 2.18 2.06
60 2.53 2.39 2.26 2.13 2.00
65 – 2.30 2.17 2.04 1.91

The authors thank A.O. Semenov and E.A. Pashits-
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ЕНТРОПIЯ ОСНОВНОГО СТАНУ I ЕЛЕКТРИЧНА
АКТИВНIСТЬ НАДПЛИННОГО ГЕЛIЮ
ПРИ ЗБУДЖЕННI ХВИЛЬ ДРУГОГО ЗВУКУ

К.В. Григоришин, Б.I. Лев

Р е з ю м е

Запропоновано можливе пояснення походження температурно-
незалежної частини ентропiї He II, iснування якої припускаєть-
ся у роботi Е.А. Пашицького та С.М. Рябченка (ФНТ 33, 12
(2006)) для пояснення ефекту поляризацiї надплинного гелiю
пiд час проходження хвилi другого звуку. З даною метою роз-
глянуто основний стан He II у наближеннi випадкових фаз.
Показано, що енергiя цього стану може бути переписана через
функцiю розподiлу вiртуальних квазiчастинок (фононiв та ро-
тонiв), а не частинок, як це роблять у наближеннi iмпульсної
апроксiмацiї. Запропоноване представлення уявляється бiльш
загальним. З функцiї розподiлу обчислюється температурно-
незалежний внесок в ентропiю надплинного гелiю, який має
змiст ентропiї Шеннона як мiри квантово-механiчної невизна-
ченостi, оскiльки данi квазiчастинки являють собою квантово-
механiчнi флуктуацiї на фонi основного стану надплинного
гелiю.
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