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For a satisfactory concordance of low-energy parameters for two
nucleons and the energies of three- and four-nucleon nuclei,
a version of the nucleon-nucleon potential is proposed. The
construction scheme for such potentials is described. The precise
calculations of the energies and radii of three- and four-nucleon
nuclei are carried out using both the variational method with
optimized Gaussian bases for different interaction potentials and
the representation without isospin. The structure functions of T
and 3He nuclei are analyzed.

1. Introduction

The successes in study of few-nucleon problem owe to
powerful variational methods, which give possibility to
investigate bound states of few-nucleon systems, as well
as few-nucleon scattering processes, and to study the
finest structure of such systems [1–6]. The representation
without isospin [4] can significantly reduce the number
of independent equations for the spatial components of
wave functions in few-nucleon problems, which greatly
simplifies the calculations. Variational methods with
Gaussian bases are very efficient and convenient for
problems concerning few different particles, because
the results for energy levels and corresponding wave
functions can be obtained within these methods in a
simple form with high accuracy.

The construction of nuclear interaction potentials
to concord all the main characteristics such as
binding energies, radii, structure functions, and low-
energy scattering parameters for as many as possible
nuclear systems is an important unsolved problem
in nuclear theory. The presence of such nuclear
potentials would allow to forecast more surely the

finest structure properties of the already existing and
hypothetic nuclides, bounds of nuclear stability, and
other fundamental characteristics. At present, there
are many effective realistic potentials of interaction
fitted by the large number of two-nucleon scattering
data [7–9], which describe the energies and other
parameters of three- and four-nucleon systems only
in rather rough approximations. Even if one uses the
simple two-parameter potentials, then it would be
expected that few-nucleon nuclei will be sufficiently
overbound in precise calculations. Thus, there are two
outermost possibilities – simple potential models with
the unsatisfactory description of complicated nuclei and
awkward realistic models faced with the problem of
reliable calculations. The development of prospective
variational schemes of analysis of complicated many-
body systems gives an opportunity to fill the available
niche and to solve the problem of construction of realistic
and yet simple NN-potentials, which could concord all
the main low-energy few-nucleon parameters.

In the present work, the attempt of construction
of a nucleon-nucleon interaction potential is carried
out for the joint precise description of low-energy two-
nucleon parameters, binding energies of a deuteron
and three- and four-nucleon nuclei, and some structure
functions. The general scheme of construction of such
potentials is analyzed and a certain version of the
potential is constructed. The bound-state energies, r.m.s
radii of T, 3He, and 4He nuclei, density distributions,
and formfactors are calculated with high precision. The
analysis of the density distributions and formfactors
for three-nucleon systems is carried out depending on
properties of NN-potentials.
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2. Statement of the Problem

Consider the ground states of three-nucleon nuclei
3He (2p,n) and T (p,2n) with the two-nucleon central
exchange potentials of interaction. The Hamiltonian of
the system 3He looks as

Ĥ =
1

2mp
(~̂p

2

1 + ~̂p
2

2 ) +
1

2mn
~̂p

2

3 +

+
3∑

i>j

V̂ij +
e2

|~r1 − ~r2| . (1)

We take nuclear NN-potentials of interaction in the
Majorana form

V̂ij = [V +
s (rij)P̂s(σ) + V +

t (rij)P̂t(σ)](1 + P̂r)/2+

+[V −
s (rij)P̂s(σ) + V −

t (rij)P̂t(σ)](1− P̂r)/2 , (2)

where P̂s and P̂t – spin operators in the singlet and
triplet states of two nucleons, P̂r – the Majorana
operator of permutation of the spatial nucleon
coordinates, V ±

s,t(r) – the singlet and triplet spherically
symmetric NN-interaction potentials in even (+) and
odd (-) states of the orbital moment.

For three-nucleon systems, we use the representation
without isospin, where neutrons and protons are
treated as different particles. The advantage of
the representation without isospin is the essential
simplification of the system of equations [4, 6] for the
spatial components of the wave functions in comparison
with the equivalent representation with isospin. Thus,
for the concerned three-nucleon systems, we have two
equations, whereas we have the systems of four spatial
equations (T) and even of six equations for 3He nucleus
by using the isospin formalism. The representation
without isospin gives possibility of achieving a high
controllable accuracy. The total wave function of 3He
nucleus with spin S = 1/2 has the form

Ψ =
1√
2
(ζ ′Φ1 + ζ ′′Φ2), (3)

where ζ ′ and ζ ′′ are the components of the spin wave
function for the doublet state S = 1/2 with the
Young scheme [2,1], and the spatial components Φ1

and Φ2 are, respectively, symmetric and antisymmetric
under the permutations of proton coordinates (1↔2).
Similarly (3), we have the wave function for T nucleus

with the replacement of protons by neutrons. The
system of equations for the spatial components of the
wave function of 3He nucleus in the framework of the
representation without isospin has the form [4]

[K̂ +
e2

r12
+ V +

s(pp)(r12)− E]Φ1(123)+

+
1
8

∑

ij=13,23

∑
+,−

[3V ±
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×[1± P (ij)]Φ1(123)+

+
√

3
8

∑

ij=13,23

∑
+,−

(−1)i+j [V ±
s(np)(rij)−

−V ±
t(np)(rij)][1± P (ij)]Φ2(123) = 0,
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e2

r12
+ V −

t(pp)(r12)− E]Φ2(123)+

+
1
8

∑

ij=13,23

∑
+,−

[V ±
t(np)(rij) + 3V ±

s(np)(rij)]×

×[1± P (ij)]Φ2(123)+

+
√

3
8

∑

ij=13,23

∑
+,−

(−1)i+j [V ±
s(np)(rij)−

−V ±
t(np)(rij)][1± P (ij)]Φ1(123) = 0. (4)

Here, K̂ is the kinetic energy of three nucleons, P̂ (ij)
– the permutation operator of spatial coordinates of
nucleons with numbers i and j. For T (2n,p) nucleus
with spin S = 1/2, the system of equations without
isospin is similar, but it is necessary to permute indices
n↔p in every potential and to eliminate the Coulomb
potential. It should be noted that the system of two
equations (4) for the spatial functions is complete for
the three-nucleon problem for bound states, as well as for
scattering with the total spin S = 1/2 (doublet state).
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3. Energy Matrix and Method of Calculation

Let us analyze the bound states of three-nucleon systems
using the variational method with Gaussian bases. This
method is convenient, because all matrix elements of
Eq. (4) can be obtained in explicit form. Let’s treat the
spatial components of the variational wave function Φν

(ν = 1, 2 ) with zero orbital moment for 3He nucleus in
the Gaussian basis as

Φν = Ŝν

Nν∑

k=1

D
(ν)
k ϕ

(ν)
k ≡

≡ Ŝν

Nν∑

k=1

D
(ν)
k exp(−(a(ν)

k r2
12 + b

(ν)
k r2

13 + c
(ν)
k r2

23)), (5)

where ϕν are the Gaussian basis functions, Nν –
the basis dimension (N1 for Φ1 and N2 for Φ2), Ŝ
– the corresponding operator of symmetrization for
the functions Φ1 (symmetric) and Φ2 (antisymmetric)
relative to the permutation of identical protons (1↔2).
Each basis function with zero moment depends on only
three relative distances and has, respectively, three
nonlinear variational parameters a

(ν)
k , b

(ν)
k , and c

(ν)
k .

With the use of the Gaussian basis, the energy matrix
can be obtained in explicit form. The normalization for
elementary (nonsymmetrized) basis functions has the
form

〈ϕk|ϕm〉 =
π3

3
√

3
1

(akmbkm + akmckm + bkmckm)3/2
,

akm = ak + am, bkm = bk + bm, ckm = ck + cm. (6)

For convenience, we introduce the substitution

ukm
12 ≡ ak + am, ukm

13 ≡ bk + bm, ukm
23 ≡ ck + cm, (7)

and

ukm
12 ukm

13 + ukm
12 ukm

23 + ukm
13 ukm

23 ≡ Ukm. (8)

Then (6) simplifies to

〈ϕk|ϕm〉 =
π

3
√

3
(Ukm)−3/2. (9)

In the present work, we only take the coordinate
dependence of NN-potentials in the Gaussian form:

V (rij) =
∑

k

V(0)k exp(−r2
ij/r2

0k). (10)

Then the nonsymmetrized matrix element for one
Gaussian component from (10 for the 1-st and 2-nd
particles has the form

〈ϕk|V (r12)|ϕm〉 =
π3

3
√

3
V0×

×((ukm
12 +

1
r2
0

)(ukm
13 + ukm

23 ) + ukm
13 ukm

23 )−3/2, (11)

and the matrix elements for the other pairs of
particles are similar just with the replacement of the
corresponding numbering of particles.

The matrix element of the kinetic energy for three
nucleons in the case where the masses of a proton and a
neutron are equal has the form

〈ϕk|K|ϕm〉 =
π3

3
√

3
3~2

2M
U
−5/2
km ×

×((4akam + akbm + ambk + akcm + amck−

−bkcm − bmck)(ukm
13 + ukm

23 )+

+(4bkbm + akbm + ambk + bkcm + bmck−

−akcm − amck)(ukm
12 + ukm

23 )+

+(4ckcm + akcm + amck + bkcm + bmck−

−akbm − ambk)(ukm
12 + ukm

13 )). (12)

In its turn, the matrix element for the Coulomb potential
has the form

〈ϕk| e
2

r12
|ϕm〉 =

π3

3
√

3
2e2

(Ukm

√
ukm

13 + ukm
23 )

. (13)

Having the energy matrix, one can determine the bound
states in the variational Galerkin method by solving the
linear algebraic system for expansion coefficients D

(ν)
n of

the total spatial functions (5) in the Gaussian basis:

N1∑
n=1

(〈Ŝϕ(1)
m |Ĥ11|Ŝϕ(1)

n 〉 − E〈Ŝϕ(1)
m |Ŝϕ(1)

n 〉)D(1)
n +

+
N2∑

n=1

〈Ŝϕ(1)
m |Ĥ12|Ŝϕ(2)

n 〉 = 0,

N1∑
n=1

〈Ŝϕ
(2)
k |Ĥ21|Ŝϕ(1)

n 〉+
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+
N2∑

n=1

(〈Ŝϕ
(2)
k |Ĥ22|Ŝϕ(2)

n 〉 − E〈Ŝϕ
(2)
k |Ŝϕ(2)

n 〉)D(2)
n = 0,

m = 1, 2, ...N1; k = 1, 2, ..., N2. (14)

Here, the operator block Ĥ11 corresponds to the diagonal
transitions between symmetrized basis functions |Ŝϕ

(1)
n 〉

(and symmetrized total spatial functions Φ1), the block
Ĥ22 – the diagonal transitions between antisymmetrized
basis functions |Ŝϕ

(2)
n 〉 (and antisymmetrized functions

Φ2), and the blocks Ĥ12 and Ĥ21 correspond to the
nondiagonal transitions between functions of different
symmetries. From the system of linear algebraic
equations (14) for the possible energies of bound states
(which can be obtained from the equality of the
determinant of the energy matrix to zero), one can find
the linear coefficients D

(ν)
n (state vectors) and the total

wave functions in the form of a Gaussian superposition.
We note that the linear coefficients D

(ν)
n together with

other nonlinear parameters a
(ν)
k , b

(ν)
k , and c

(ν)
k play

the role of variational parameters in case of using the
straight variational Ritz principle.

The calculation of the variational parameters from
the condition of reaching the lowest value of the ground-
state energy with large bases can be a complicated
task (see [10]). In the present work on some stages
of precise calculations, we use the Ritz method along
with the system of equations in the Galerkin method
(14) with the optimization of the Gaussian bases
by nonlinear parameters to quicken the calculations
with large bases. The optimal scheme is to use
alternately the variational schemes of Galerkin and
Ritz.

There is the fundamental problem of optimization
by nonlinear parameters for obtaining a high controlled
accuracy in variational calculations. In the present
work, we combine efficiently the stochastic methods of
optimization (on the initial stage of optimization) with
the regular methods of minimization by separate groups
of parameters. Such an approach to the optimization
of the Gaussian basis allows to obtain results for few-
nucleon systems with high accuracy even for sufficiently
small dimensions of the basis.

4. The Peculiarities of Construction of a
Nuclear Potential for the Joint Description
of Few-Nucleon Nuclei

The possibility of construction of a NN-potential for
the simultaneous description of all the main parameters

of the few-nucleon systems is realized here. The two-
nucleon scattering phase-shifts and the low-energy
scattering parameters (scattering lengths and effective
interaction radii) are calculated with the use of the
variable phase approach [11]. The bound state of a
deuteron is calculated by using the standard difference
methods, as well as the variational method. We
calculated the bound states of three- and four-nucleon
systems with the help of the variational schemes
mentioned above.

Our general purpose is to construct NN-potentials
which can concord the low-energy characteristics of
few-nucleon systems such as the two-nucleon scattering
lengths and the ground-state energies of a deuteron
and T, 3He, 4He nuclei. Two ways are used: in
the first way, the potentials with spare parameters
are fitted to some two-nucleon parameters and then
the free (spare) parameters are used to describe
the bound states of three- and four-nucleon systems;
in the second, the two-, three- and four-nucleon
data are fitted simultaneously. The standard schemes
of potential construction are different: the realistic
potentials with complex form are constructed at first
to concord the two-nucleon phase-shifts, and then
they are used for more complicated systems. In our
work, we use the idea of the simultaneous description
of main characteristics of two-, three- and four-
nucleon systems without preference for the two-nucleon
problem.

Let us consider at first the simplest variant of charge-
independent potentials of nuclear interaction in the
triplet and singlet states in the form of one-component
attractive Gaussoids. Let’s carry out the ground-state
energy calculations in the simplest approximation (5)
using the basis of three symmetric (N1 = 3) and
one antisymmetric (N2 = 1) functions for economy.
The potentials in the singlet and triplet states of two
nucleons,

Vs(r) = −V0se
−( r

rs
)2 , Vt(r) = −V0te

−( r
rt

)2 , (15)

have two parameters – the attractive intensities and the
interaction radii. Let’s describe the experimental value of
the np-scattering length in the singlet state as and the
deuteron’s ground-state energy εd in the triplet state
with the use of the intensities of potentials (15) with
fixed radii rs,t. Then, in each state (s and t), we have
radii as free parameters (one at each state) which are
used to fit the experimental value of the triton binding
energy εT . Then, with a fixed triton binding energy, we
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Fig. 1. Radius of the singlet potential versus the radius of the
triplet potential at fixed ε(T) = 8.481 MeV, ε(3He) = 7.718 MeV,
εd = 2.224575 MeV, as = −23.748 fm

Fig. 2. Radius of the singlet potential versus the radius of the
triplet potential at fixed ε(T) = 8.481 MeV, ε(3He) = 7.718 MeV,
εd = 2.224575 MeV, as = −23.748 fm, at = 5.424 fm

have the one-parameter group of two-nucleon potentials
(the T -curve in Fig. 1), when the radii of the singlet and
triplet potentials are connected (dependence rs(rt)). In
Fig. 1, the potential radii are measured in fm (further, all
lengths are measured in fm, energies in MeV; moreover,
~2
m = 41.47MeV·fm2). This isoenergy curve encloses at
zero, when the interaction radii are very small, and the
intensities are large (V0s,t ≈ const

r2
s,t

). The points inside the
closed isoenergy curve for T suit the potentials which
overbind a T nucleus, the points outside the curve –
underbind a triton. Since, for the fixed large value of
binding energy of a T nucleus, the isoenergy curve passes
near very small potential radii, this reflects the well-
known fact of the existence of a collapse in the system
of three particles with zero interaction radii (the Thomas
effect). In a similar manner, the isoenergy curve of 3He
suits the fixed binding energy of 3He nucleus. Moreover,
in the case of small radii of nuclear interaction, the
Coulomb interaction becomes efficiently suppressed, and
curves for T and 3He are close to each other. The
isoenergy curves for T and 3He nuclei cross at two points
(marked by squares in Fig. 1), and we have two versions
of potentials which concord the binding energies of T
and 3He nuclei (along with the fixed binding energy of
a deuteron and the np-scattering length in the singlet
state). These two potentials have the form

1)Vs(r) = −20, 01e−( r
2.242 )2 , Vt(r) = −120.42e−( r

1.1 )2 ,

2)Vs(r) = −60, 59e−( r
1.315 )2 , Vt(r) = −28.15e−( r

2.7 )2 .
(16)

It should be noted that the first version of potential
is more preferable, because the triplet radius must be
smaller than the singlet radius. The obtained potentials
(16) are dependent of the description accuracy of
three-nucleon systems. In the case of a more accurate
calculation of three-nucleon systems, it is expected that
the situation will remain qualitatively the same – there
will be two versions of potentials which could describe
simultaneously the binding energies of two three-nucleon
nuclei.

Let us consider now the description of the binding
energy of alpha-particle (ε4He = 28.3) together with
energy of T (or 3He). In rough approximations of
three- and four-nucleon energy calculations (N1 = 3
and N2 = 1) with two parameters (the interaction
radii in triplet and singlet states), one fails to exactly
describe two values (binding energies of T and 4He),
and the corresponding isoenergy curves do not intersect.
On isocurves for three-nucleon nuclei, the values of
binding energies for four nucleons are always greater
than the experimental ones. In Fig. 1, the isocurve for
4He always lies outside the isocurves for three nucleons.
Moreover, the intersection between isocurves for three
and four nucleons is possible only when the binding
energy of four nucleons is slightly greater than 30.1 MeV.
When the more precise calculations are performed for
binding energies of three- and four-nucleon systems, the
isoenergy curves in Fig. 1 would cover larger regions, but
their intersection is improbable.

It is interesting to consider a more complicated form
of the triplet potential with two Gaussian components
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in (10) taking the short-range repulsion into account.
Let’s bring three parameters into this potential – two
intensities (attraction and repulsion) and one interaction
radius with a fixed connection between repulsion and
attraction radii

Vs(r) = −V0se
−( r

rs
)2 ,

Vt(r) = V
(1)
0t e−( r

rt
)2 − V

(2)
0t e−( r

2rt
)2 . (17)

We fit again the singlet potential (its intensity) to
the experimental value of scattering length, the triplet
potential (two intensities) to both the binding energy
of a deuteron and the scattering length in the triplet
state. The radii of the singlet and triplet potentials are
used to fit the values of the binding energies of T and
3He (N1 = 3 and N2 = 1). The isoenergy curves (Fig. 2)
have different forms, because of a repulsion in the triplet
potential – there is no short radius region. In Fig. 2,
we do not go beyond the region, where the radii of
potentials have no sense. The point of intersection of
the isoenergy curves for triton and 3He is indicated in
Fig. 2. In this case, there is one version of the potential
that simultaneously describes the experimental values
of scattering lengths in the singlet and triplet states and
the binding energies of deuteron, triton, and 3He. This
potential has the form

Vs(r) = −31.11e−( r
1.815 )2 .

Vt(r) = 330.0e−( r
0.63 )2 − 160.54e−( r

1.26 )2 . (18)

It is quite similar to the standard nucleon-nucleon
potentials. We note that, in case of potentials (18), the
isoenergy curve for 4He is situated outside three-nucleon
curves – the energies of the three-nucleon systems and
the four-nucleon system are incompatible again.

Above, we have presented the examples of
construction of simple potentials for the description
of bound states in a rough approximation. From
these examples, some general rules of the potential
construction can be seen. When we take potentials
in a more complicated form and use a higher
accuracy in calculations, the general scheme of potential
construction remains mainly the same. In this case, it
is reasonable to fit the parameters for physical values
on the average (not exactly) with the minimization of
root-mean-square deviations. Such potentials in different
two-nucleon states were built with regard for two
Gaussian components in (10) and were used in the
precise calculations of few-nucleon systems (let us call

this potential K2; do not mix it up with an analogous
notation in [10]):

Vs(nn)(r) = 817.0 exp
(
−

( r

0.63

)2
)
−

−206.34 exp
(
−

( r

1.18

)2
)

.

Vs(pp)(r) = 490.0 exp
(
−

( r

0.68

)2
)
−

−151.07 exp
(
−

( r

1.27

)2
)

.

Vs(np)(r) = 3950.0 exp
(
−

( r

0.55

)2
)
−

−381.38 exp
(
−

( r

1.1

)2
)

.

Vt(np)(r) = 3720.0 exp
(
−

( r

0.488

)2
)
−

−528.59 exp
(
−

( r

0.976

)2
)

. (19)

All potentials have the short-range repulsive part and
the attractive one at longer distances. We divide the
singlet potential Vs into three singlet potentials (Vs(nn),
Vs(pp), and Vs(np)) respectively to the nucleon pairs nn,
pp, and np, because it was possible to describe the
Coulomb energy (adjust the binding energies of triton
and 3He) only in such way. These singlet potentials
are fitted to experimental values of the nn, pp, and np
scattering lengths. The triplet potential was fitted to
both the scattering length in the triplet state and the
deuteron binding energy. The experimental values for
scattering lengths and effective radii of interaction are as
follows (all lengths are measured in fm, energies – MeV)
[12]: at(np) = 5.419 ± 0.007, as(np) = −23.740 ± 0.02,
as(nn) = −18.9 ± 0.4, as(pp) = −17.3 ± 0.4 (without
Coulomb); r0t(np) = 1.753± 0.008, r0s(np) = 2.77± 0.05,
r0s(nn) = 2.75 ± 0.11, r0s(pp) = 2.85 ± 0.04. Potential
(19) gives the following values of two-nucleon low-energy
parameters: ED = −2.2248, at(np) = 5.424, as(np) =
−23.746, as(nn) = −18.904, as(pp) = −17.308, r0t(np) =
1.785, r0s(np) = 2.752, r0s(nn) = 2.594, r0s(pp) = 2.670.

In the previous work [6], we already tried to build
a charge independent nucleon-nucleon potential in a
simple form for the precise description of the main
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parameters of few-nucleon nuclei. As a result, potential
K1 was obtained in the form

Vs(r) = −27.38e−( r
1.93 )2 ,

Vt(r) = 23789.46e−( r
0.42 )2 − 1169.92e−( r

0.85 )2 . (20)

This potential is built to fit experimental values of
the deuteron binding energy and scattering lengths in
the triplet and singlet states. Potential (20) gives the
following values for the energies of three- and four-
nucleon nuclei:

εT = 8.467, ε3He = 7.758, ε4He = 28.60.

Potential (20) gives worse results, on the average,
for the energies of few-nucleon systems than the new
version K2 (19). Moreover, the K1 potential in the triplet
state has large intensities, which produces the certain
difficulties in precise calculations of few-nucleon nuclei.

Let us return to the K2 potential (19). We note
that this potential fits well the experimental values of
scattering lengths. For the effective radii of interaction,
it gives slightly worse results. We rejected the precise
description of experimental values of the effective radii
of interaction in favor of a more accurate description of
the binding energies of T, 3He, 4He nuclei. The typical
example for the triplet phase-shifts with the K2 potential
is presented in Fig. 3, where one can see the degree of
agreement with experimental data [12].

Let us consider some calculational problems for
the binding energies and radii of few-nucleon systems
using potential (19). During the calculations of the
ground-state energies for T, 3He, and 4He nuclei, it
is determined that the symmetric component of the
coordinate function Φ1 makes the main contribution to
the energy. The antisymmetric component Φ2 makes a

T a b l e 1. Binding energies of T, 3He, 4He nuclei for
potentials K2, Minnesota(M), Afnan–Tang(AT+) and K1

Potentials E(T) E(3He) E(4He)

K2 –8.475 –7.691 –28.298
M –8.389 [6] –7.712 [6] –29.948 [6]

AT+ –8.494 [6] –7.836 [6] –29.733 [6]
K1 –8.467 [6] –7.758 [6] –28.60 [6]

Experiment –8.482 –7.718 –28.296

Fig. 3. Triplet phase shift for the K2 potential (dots – experimental
data)

noticeably less contribution. Therefore, it is appropriate
to represent accurately the symmetric function during
the expansion of the coordinate function in the Gaussian
basis. The optimal ratio between the numbers of basis
function components is 2.5 (in (5) N1 ≈ 2.5N2).
Generally, one should take two or three hundreds of
basis functions to gain a precise result. If the potential
contains an essential repulsion, then it is necessary to
use a greater dimension of the basis in order that the
wave function could reproduce a more drastic change of
regimes depending on distance.

The neutron, proton, and mass density distributions,
the r.m.s. radii of these distributions, and the
formfactors of three-nucleon nuclei are calculated with
help of the precise and simple variational wave functions
(5). The binding energies for the K2 potential and three
other potentials known from the literature are presented
in Table 1 together with experimental data [13].

One could see that the K2 potential gives sufficiently
good results for the binding energies of three- and four-
nucleon nuclei in comparison with other potentials. The
Minnesota (M) potential gives the most unsatisfactory
results for three-nucleon nuclei and for 4He [6]. The K1
and K2 potentials give values of the binding energies of
an alpha-particle close to experimental ones, whereas the

T a b l e 2. R.m.s. radii of T and 3He nuclei – proton Rp, neutron Rn, mass Rm

Potentials Rp(T) Rn(T) Rm(T) Rp(3He) Rn(3He) Rm(3He) Ref.
K2 1.613 1.769 1.718 1.814 1.636 1.757 Our work
M 1.586 1.736 1.706 1.798 1.604 1.736 [6]

AT+ 1.575 1.746 1.691 1.778 1.591 1.718 [6]
K1 1.602 1.758 1.708 1.794 1.621 1.738 [6]
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Fig. 4. Density distributions for 3He using the K2 potential (Exp –
experimental data, p – proton, n – neutron, m – mass, the dotted
line – charge distribution taking into account non-point nucleons)

Fig. 5. Difference between the density distributions of protons and
neutrons in a Т nucleus

Minnesota and Afnan–Tang potentials (AT+) overbind
this nucleus. The K2 potential gives also the value of
Coulomb energy close to the experimental one EC =
E(3He) − E(T) = 0.784 (experimental value EC =
0.765), whereas this is traditionally the significant
problem even for more complicated forms of potentials.
The results for the radii (when nucleons are point-like)
of T and 3He nuclei are presented in Table 2.

The K2 potential gives the following values of r.m.s.
radii for 4He: Rp = 1.494, Rn = 1.488, Rm = 1.491. The
values of r.m.s. radii for three-nucleon nuclei calculated
for the K2 potential are slightly bigger than the others,
because the K2 potential has considerable short-range
repulsion.

For comparison with the experimental values of
r.m.s. charge radii, the transition from proton radii
(point-like nucleons) to charge radii (non-point
nucleons) should be made with the help of the simple
formula [14]

〈R2
ch〉 = 〈R2

p〉+ 〈r2
p〉+

N

Z
〈r2

n〉. (21)

Here, rp = 0.811 Fm, and the hypothetical value r2
n =

−0.2 Fm2. For three-nucleon nuclei, we get the results:
Rch(T) = 1.613 Fm, Rch(3He) = 1.961 Fm. These values
are close to the experimental charge radii which were
obtained by different authors, for example, Rexp

ch (T) =
(1.70 ± 0.05) Fm [15], Rexp

ch (3He) = (1976 ± 0.013) Fm
[16] (see also [17–21]). Thus, one can see that the K2
potential gives sufficiently good qualitative results for
r.m.s. charge radii of T, 3He nuclei. It can be seen from
Table 2 that, in particular, the r.m.s. proton radius

of 3He nucleus is bigger than r.m.s. neutron radius,
because of the Coulomb repulsion between protons. On
the contrary, for T nucleus, the proton radius is lesser
than the neutron radius. This can be explained mainly
by the fact that the K2 potential has weaker attraction
between identical nucleons (neutron-neutron, proton-
proton) than that between a neutron and a proton.

5. Density Distributions for Three-nucleon
Systems

The variational method with a Gaussian basis allows one
to obtain the wave functions in a convenient form. Let
us determine the proton density distribution for 3He as

ρp(r) = 〈Ψ|1
2

2∑

i=1

δ(~r − (~ri − ~Rc.m))|Ψ〉. (22)

In the mass density distribution, there is a sum over
all nucleons, and, in the neutron distribution, only the
third particle (neutron) is taken into account. Here, the
wave function is normalized to unity, and ~Rc.m is the
center-of-mass coordinate. The density distributions for
a T nucleus are analogous.

The proton, neutron, and mass density distributions
for 3He (point-like nucleons) and the charge distribution
ρch (for non-point nucleons), which are calculated
using the K2 potential, and the “experimental” charge
distribution [17] are represented in Fig. 4. We note
that some irregularity in the short-range behavior of the
density distributions is a consequence of the presence of
the essential repulsion in the K2 potential (especially
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Fig. 6. Isolines of the density distribution in 3He nucleus – function
R(rpp, ρ) = const

Fig. 7. Proton formfactors of three-nucleon nuclei for the K2
potential (point-like nucleons)

that between a neutron and a proton in the singlet
and triplet potentials). If we modify the potentials,
then such an irregularity in the density distribution
disappears with decrease in the repulsion (the curves
become “smoother”). It should be mentioned that
the “experimental” curve for the charge density
distribution is obtained by the Fourier transformation
of the experimental formfactor in [17]) and has no
such irregularities. If we take into account non-
point nucleons, then the irregularity in the density
distributions calculated by us disappears, and the curve
for the charge distribution descends lower. The curve
for the neutron distribution at short distances lies
higher than the curve for the proton distribution.
At larger distances, the curve for protons in 3He
lies higher because of the Coulomb repulsion. In the
case of a T nucleus, the proton, neutron, and mass
density distributions together with oscillations repeat
the behavior of the density distributions for 3He
(the proton density for T lies close to the neutron
density of 3He, and the neutron density for T – to
the proton density of 3He). The difference between
the proton and neutron densities for a triton nucleus
is shown in Fig. 5. The difference of densities in
minimum makes one percent of the absolute value of
the distribution.

Let us consider also the function of the density
R(rpp, ρ) for a 3He nucleus (for a T nucleus, it will be
R(rnn, ρ))

R(rpp, ρ) = r2
ppρ

2〈|Ψ(rpp, ρ, θ)|2〉θ, (23)

where we carried out the averaging of the squared full
three-particle wave function of a 3He system by the angle
between the relative Jacobi coordinate ~rpp and the vector
~ρ that means the distance from a neutron to the center of
mass of two protons (analogously for a T nucleus with
replacement of protons to neutrons) and the distance
from the center of mass to the third particle. Function
(23) defines the possibility of a structure arrangement
of two protons and neutron in a 3He nucleus. In Fig.
6 for a 3He nucleus, the curves of rpp versus ρ are
built at fixed values of the density function R(rpp, ρ)
(isolines of density averaged over the angle). These
curves are the expected ellipse-like curves with one
center, where the density R(rpp, ρ) has its maximum
value, and this is a convenient arrangement (correlation
between the distances rpp and ρ) that is close to
an equilateral triangle for the system of three almost
equivalent nucleons. The analogous structure is typical
of a T nucleus (protons are replaced by neutrons).

6. Formfactor Properties

Let us consider the formfactors of three-nucleon systems,
particularly, the charge formfactor

Fp(q2) =
∫

ρp(r) exp(−i(~q ~r ))d~r. (24)

The neutron and mass formfactors are determined
analogously as the Fourier transform of the
corresponding density distributions. We note that
definition (24) corresponds to the approximation of
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Fig. 8. Charge formfactors in a 3He nucleus for the potentials K2
and AT+ (dots – experimental data)

structureless point-like nucleons (non-point nucleons will
be considered in what follows). The behavior of the
proton formfactors for 3He and T nuclei as functions
of the square momentum transfer q2 is shown in
Fig. 7. The formfactor for a 3He nucleus for small q2

decreases faster, because the proton r.m.s. radius in a
3He nucleus is bigger than the proton r.m.s. radius of a T
nucleus. Moreover, the “dip” in the formfactor for a 3He
nucleus is shifted essentially towards smaller transferred
momenta. For charge formfactors, let us consider non-
point nucleons. This can be done using the well-known
formula [10,22]

Fch = Fpfp +
N

Z
Fnfn, (25)

where we use the following parametrization for the
formfactors of individual protons and neutrons fp and
fn: fp = (1 + 1

12q2r2
p)−2 and fn = (1 + 1

12q2(rp −
0.06)2)−2 − (1 + 1

12q2(rp + 0.06)2)−2, where rp = 0.811
fm is the r.m.s. radius of the proton. The results of
calculations show that the neutron part gives a small
contribution to the formfactor as compared with the
proton part and, therefore, it can be neglected.

The behavior of the charge formfactor of a 3He
nucleus, calculated by us for the K2 potential with non-
point nucleons is shown in Fig. 8 together with the
corresponding experimental data [17]. It can be seen
that the result fits well the experimental data in the
region before the “dip”. The agreement is worse after
the dip. It should be mentioned that, in the region of
large momentum transfer (small distances, respectively),
our consideration of non-point nucleons adiabatically in

the form (25) is insufficient. It is possible, for example,
to use the adiabatic formula (25) before the first “dip”
(relatively large distances) and then, after the “dip” (in
region of small distances), to treat nucleons as point-
like particles, because there is no sense to use the
adiabatic approach (non-point nucleons strongly overlap
one another). Within such assumptions, the theoretical
formfactors better fit the experiment. The formfactor
calculated by us has also a good agreement with the
other experiment [21]. For a T nucleus, everything is
the same.

It is interesting to examine the properties of the
“dip” in the formfactor. The position of this “dip” is
connected directly with properties of the short-range
interaction between nucleons. For a purely attractive
potential, the formfactor of a three-nucleon system has
no “dip” at all. With the appearance and increase of
the repulsion, the “dip” appears in the region of large
q2 and then moves left (approaches the experimental
position). The essential repulsion in the K2 potential
puts the charge formfactor of a nucleus (for example,
3He) very close to the experimental data. One can
expect that some greater increase of the repulsion in
the nuclear interaction potential will be sufficient for
a full agreement with the experimental data on charge
formfactors. Since the formfactors are connected with
charge distributions, we can mention that the position
of the formfactor “dip” directly depends on a short-range
irregularity, which, in its turn, depends on the repulsion
part of the NN-potential.

We note that the formfactors can have other “dips”
at larger q2. The number of “dips” depends on the form
and the intensity of short-range repulsion in potentials as
well as on the accuracy of calculations and the dimension
of a Gaussian basis. There are some calculational
difficulties for the Gaussian representation of wave
functions during the description of the asymptotic
behavior of formfactors at very large q2.

7. Conclusions

The potential of nucleon-nucleon interaction is
constructed in a simple form (K2) for the simultaneous
description of low-energy two-nucleon experimental data
and the binding energies of a deuteron, triton, 3He, and
4He. The binding energies of three- and four-nucleon
nuclei are calculated with high precision for different
potentials using the representation without isospin and
variational methods with Gaussian bases. The density
distributions and the formfactors of nuclei T and 3He
for the K2 potential are calculated, and their agreement
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with experimental data is discussed. The presence
of some irregularity in the density behavior and the
dependence of the position of a “dip” in the formfactor
on the short-range potential behavior are revealed. The
wave functions of three-nucleon systems obtained in
the convenient form can be used in the examination of
other structure functions, such as the pair correlation
functions and the momentum distributions. This will be
done in our next work. The proposed simple potentials
also can be used for the analysis of scattering processes
including few-nucleon systems.
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ЯДЕРНI ПОТЕНЦIАЛИ ВЗАЄМОДIЇ ДЛЯ СУМIСНОГО
ОПИСУ МАЛОНУКЛОННИХ СИСТЕМ I СТРУКТУРНI
ФУНКЦIЇ ТРИНУКЛОННИХ ЯДЕР

Д.В. П’ятницький, I.В. Сименог

Р е з ю м е

Запропоновано варiант потенцiалу нуклон-нуклонної взає-
модiї, який задовiльно узгоджує опис низькоенергетичних па-
раметрiв двох нуклонiв i енергiй три- та чотиринуклонних
ядер. Описана схема конструювання таких потенцiалiв взає-
модiї. Виконано розрахунок з високою точнiстю енергiй зв’язку
та розмiрiв три- та чотиринуклонних ядер в рамках варiацiй-
ного методу з оптимiзованим гаусоїдним базисом з рiзними по-
тенцiалами взаємодiї, де використано переваги представлення
без iзоспiну. Проаналiзовано поведiнку структурних функцiй
ядер T та 3He.
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