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The coupled-wave method (CWM), which is used for the analysis
of electromagnetic wave diffraction at planar 1D gratings, has
been demonstrated to be able to quickly determine whether
the propagation of an electromagnetic wave with an intended
frequency is allowed in a 2D photonic crystal, provided that
periodic boundary conditions are imposed. The problem is reduced
to the solution of the equation W1X = ρW2X and the verification
of whether |ρ| = 1. If so, the propagation of the intended frequency
is allowed. The dimension of the vector X is equal to 2N – two
times the number of the coupled waves used at calculations –
and is determined by an accuracy needed for analysis. Since the
dielectric constants of typical photonic crystals are characterized
by a symmetric spatial dependence, the symmetry considerations
allow the dimension of the vector X to be reduced to N ± 1 or
N , depending on the symmetry type. In so doing, the calculation
time becomes about 8 times shorter, without any loss of resulting
accuracy. A modified, robust R-algorithm has been used for the
numerical analysis.

1. Introduction

Intensive researches of photonic crystals, which become
the basis for the development of optoelectronic devices
of a new type, have been carried out lately. Most
of those works were devoted to two-dimensional (2D)
photonic crystals [1]. According to work [1], the relative
numbers of published works dealing with 3D, 1D,
and 2D photonic crystals equal 2, 15, and more than
80%, respectively. Such a statistical distribution may
probably be associated with the fact that 1D photonic
crystals are the most simple ones for fabrication and
there exist accurate methods of their analysis. 1D
photonic crystals have been used for rather a long
time, even before the term “photonic crystals” has
been introduced [2, 3]; nevertheless, they have not
exhausted their potential. 3D photonic crystals are
the most difficult for the analysis, and there is no
reliable technology of their fabrication with controlled
defects in the spatial structure of the crystal. From
this point of view, 2D photonic crystals occupy an

intermediate position: the available method of plane
waves [4], although demanding a significant time of
computation, provides the accuracy necessary for the
analysis of photonic structures; and there are techniques
for fabricating such crystals. Therefore, scientific works
in this domain are mainly devoted to the properties of
2D photonic crystals and to the development of devices
of a new type on their basis [1, 5, 6].

High interest in photonic crystals has been started
by E. Yablonovitch’s works [2,3]; the terms “a photonic
crystal” and “a photonic band structure” have been
introduced at the same time. Nevertheless, it should be
noted that it was 3D periodic structures on the basis
of a dielectric medium that were proposed for the first
time and studied by N.A. Khizhnyak as early as in
1957 [7]. The scientist called such structures artificial
anisotropic insulators [7–9]. They were demonstrated
to be characterized by a negative effective dielectric
constant (or a negative effective magnetic constant in
the case of a spatially modulated magnetic insulator)
in a certain range of frequencies [8], i.e. – in modern
terminology – this frequency range falls within a
photonic energy gap. In works [7–9], to analyze the
properties of artificial anisotropic insulators, the method
of Green’s functions was used, which is also applied to
the analysis of photonic crystals [10].

For the analysis of the properties of photonic crystals,
the plane-wave method [4] is mostly used, where an
electromagnetic field in a crystal is considered as a
sum of plane waves, and the allowed frequencies are
determined as the eigenvalues of a square 2Nd × 2Nd-
matrix, where N is the number of plane waves used in
one direction, and d is the dimensionality of the photonic
crystal [11]. Even in the case of a 2D photonic crystal,
at least 529 plane waves (N = 23) have to be taken into
account in order to obtain a desired accuracy [12], i.e.
one has to determine the eigenvalues of a 1058 × 1058
matrix. For 3D photonic crystals, the problem evidently
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becomes even more difficult and demands a large time
for computation; moreover, there appears the problem
of result convergence [13]. It should be noticed as well
that, in the plane-wave method, the allowed frequencies
are determined at a given wave vector k. In practice, a
somewhat different problem arises often enough, namely,
to determine whether a given frequency (for instance, a
lasing one) is allowed or forbidden to propagate in a 2D
photonic crystal, provided that one component of the
wave vector is fixed.

Therefore, to analyze 2D photonic crystals quickly,
the CWM was proposed [11] which is usually applied to
the analysis of 1D diffraction gratings. In this method, a
2D photonic crystal is considered as a stack of gratings,
with the thickness of every grating being equal to the
period of a photonic crystal in one of the directions.
Such a grating system was placed in a homogeneous
environment. The CWM was used to calculate the
coefficients of transmission through and reflection from
the stack of gratings, as well as their dependences
on the wavelength. The magnitude of the reflection
(transmission) coefficient makes it possible to judge the
character of propagation of an electromagnetic wave
with a given frequency. However, in any case, this
method demands a substantial time for computation,
because it is necessary to find a solution in the interval
of more than 10 periods. Nevertheless, a comparison
between the classical method of calculation of the band
structure and the method expounded in work [11], as well
as the use of periodic boundary conditions [4], allows a
conclusion to be drawn that it is sufficient to obtain the
CWM solution in a single period of the photonic crystal
only, in order to determine whether the given frequency
is allowed or forbidden at all. That is, a method can be
formulated to calculate the band structure of a photonic
crystal quickly and with a high accuracy. This method
was presented in work [14] for the first time. Essentially,
it is reduced to a problem of matrix algebra of the type
TX = ρRX concerning eigenvalues and eigenvectors.
The square matrices T and R were determined within
a single period of the structure in the framework of
the CWM and following a robust S-algorithm [15]. The
dimension of square matrices was equal to 2N × 2N ,
where N is the number of coupled waves taken into
consideration. It is clear that the accuracy and the
time of computations increase with increase in N . This
method was used to construct the band structure of
photonic crystals with the simplest square elementary
cell and made up of rods with square cross-sections.
It means that this method was verified for elementary
photonic crystals, but there are no instructions on how

it can be used for 2D photonic crystals with a triangular
cell. In addition, the method of work [14] does not
take the spatial symmetry of photonic crystals [16] into
account, although the CWM makes it possible to use the
spatial symmetry of the grating and diffraction and to
reduce the body of computations by a factor of 4 to 8
without any loss of accuracy [17]. At the same time, in
work [14], a robust numerical S-algorithm was used for
computations, which is rather cumbersome when being
applied to 2D photonic crystals composed of rods with
non-square cross-sections.

Hence, this work aims at improving the CWM
to analyze the band structure of 2D photonic
crystals, studying the features of its application, and
demonstrating that the advanced method – by its
universality – does not concede the classical plane-wave
method. At the same time, the improved method is
advantageous, because, in the course of computations,
one has to operate with matrices, which include a many
less number of elements, and this circumstance becomes
inevitably reflected in the accuracy and the time of
computations.

2. Coupled-wave Method

Let us briefly describe the CWM and present the
corresponding systems of differential equations for the
diffraction of waves with TE- and TM-polarization; in so
doing, we will mainly base on works [14,15,18,19]. In the
framework of our researches, the wave vector k, which
describes the wave propagation in a 2D photonic crystal,
is supposed to lie in a plane that is perpendicular to the
parallel axes of cylinders the crystal is made up of. If
the vector of the electric field strength is parallel to the
cylinder axes, we deal with waves of TE-polarization;
if the vector of the magnetic field is parallel to the
cylinder axes, such waves will be referred to as TM-
polarized. In Fig. 1, the scheme of a 2D photonic crystal
with an a × a-square elementary cell, which is made
up of cylindrical rods as an infinite stack of gratings
of thickness a each, arranged normally to the oz-axis, is
presented. The gratings are periodic along the ox-axis
with the period Λ = a. The relative dielectric constant
of the rods equals εa, and that of a surrounding material
εb.

Consider a grating in the photonic crystal confined
by two planes, z = −a/2 and z = a/2, and thus having
the thickness a in the direction of the oz-axis. First, we
examine the case of TE-polarization. The corresponding
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equations look like [14,15,18]

dGn(z)
dz

= −ik0Fn(z), (1)

dFn(z)
dz

= i
k2

nx

k0
Gn(z)− ik0

∑
p

‖ε‖n−pGp(z), (2)

where Gn(z) is the electric field strength of the coupled
wave characterized by the index n, Fn(z) the strength
of the tangential component of the magnetic field of the
coupled wave with the index n, k0 = 2π/λ, knx is the
projection of the wave vector of the coupled wave with
the index n onto the ox-axis, and ‖ε‖n−p is the Toeplitz
matrix [18] composed of the coefficients of the expansion
of the dielectric constant in a complex Fourier series.
The wave vector knx is determined by the expression
knx = k0x − 2πn/Λ, where k0x is the projection of the
wave vector onto the axis ox of the zero-order Fourier
component of the electromagnetic field, and Λ is the
grating period along the ox-axis.

The CWM equations for TM-polarization look like
[14,15,18,19]

dGn(z)
dz

= −ik0Fn(z) + i
knx

k0

∑
p

‖ε‖−1
n−pkpxFp(z), (3)

dFn(z)
dz

= −ik0

∑
p

∥∥∥1
ε

∥∥∥
−1

n−p
Gp(z). (4)

The system of differential equations (1) and (2) can
be reduced to a system of equations of the second order,
which – in the matrix form – is written down as

d2G(z)
dz2

= BeG(z) = B1B2G(z), (5)

while, the corresponding equations (3) and (4) for TM-
polarization can be written down as

d2F(z)
dz2

= BmF(z) = B2B1F(z), (6)

where B1 and B2 are matrices which correspond to
Eqs. (1) and (2) for TE-polarization and to Eqs. (3) and
(4) for TM-one.

3. Equation Symmetry

In general case, the system of equations (5) and (6) is
characterized by infinite dimensionality. However, in

Fig. 1. 2D photonic crystal simulated as an infinite stack of
gratings

practice, calculations are carried out by taking into
account a finite number of coupled waves. This number
affects the accuracy of the analysis; but one has to bear
in mind that making the dimensionality of the system
of differential equations twice as large results in the
increasing of computation time by a factor of about
8 [20].

Practically all 2D photonic crystals are spatially
symmetric [16]; mathematically, this fact is expressed by
the following dependences of the dielectric constant on
the coordinates x and z: ε(x, z) = ε(−x, z) = ε(x,−z).
One may hope that such a symmetry can be used in
order to speed up computations [17].

Consider the matrices Be and Bm, provided that
either of the two following conditions holds true:

εn = ε−n, k0x = 0, (7)

or

εn = ε−n, k0x =
π

Λ
. (8)

Condition (7) is fulfilled, when a beam falls onto a
grating normally to it. In this case, an odd number
of coupled waves, N = 2N1 + 1, should be taken into
account in calculations. The coupled wave, for which
kx = 0, propagates normally to the grating; it will be
designated as G0 (F0). Accordingly, the first and the last
component of vectors G(z) and F(z) will be designated
as G−N1 , GN1 and F−N1 , FN1 , respectively.

Condition (8) is obeyed, if |k1x| = k0x, i.e. –
from the viewpoint of the lattice theory – if a beam
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falls onto the grating at the first Bragg angle. In this
case, it is expedient to consider an even number of
waves, N = 2N1, in calculations. The coupled wave,
for which k0x = π/Λ, will be designated as G0 (F0).
Accordingly, the first and the last component of vectors
G(z) and F(z) will be designated as G−N1+1, GN1

and F−N1+1, FN1 , respectively. It is conditions (7)
and (8) that are fulfilled at constructing the band
structure of a photonic crystal in the framework of
the CWM.

For one thing, we intend to change over from the
system of equations (5) to two equivalent systems of
differential equations, the orders of which are half as
large (and analogously for system (6)). To build the
first system of equations, we sum up the first and the
last equation in system (5), the second and the last
but one, and so on. As a result, we obtain a linear
system of N1 differential equations for new variables,
where the matrix elements b+

n,p of the matrix B+
e

are related to the elements bn,p of the matrix Be as
follows:

b+
n,p = bN1+n,N1+p + bN1−n+1,N1+p. (9)

To build the second system of equations, we
subtract the last equation in system (5) from the
first one; the same operation is to be done with
the second and the last but one equation, and
so on. As a result, we obtain a linear system of
N1 differential equations for new variables, where
the matrix elements b−n,p of the matrix B−

e are
related to the elements bn,p of the matrix Be as
follows:

b−n,p = bN1+n,N1+p − bN1−n+1,N1+p. (10)

Provided that the beam falls onto the grating
normally and system (5) includes 2N1 +1 equations, the
consideration is the same as if the Bragg condition holds
true. But, in this case, there is no corresponding pair
member for G0 (F0). The relevant procedure for this
case is described in work [17].

After summation, we obtain a linear system of N1+1
differential equations for new variables, with the matrix
elements b+

n,p of the matrix B+
e being related to the

elements bn,p of the matrix Be as follows:

b+
1,p =

bN1+1,2N1+2−p

2
+

bN1+1,2N1+2−p

2
,

b+
n>1,p = bN1+2−n,N1+2−p + bN1+2−n,N1+p. (11)

After subtraction, the matrix elements b−n,p of the matrix
B−

e are related to the elements bn,p of the matrix Be as
follows:

b−1,p =
bN1+1,2N1+2−p

2
− bN1+1,2N1+2−p

2
,

b−n>1,p = bN1+2−n,N1+2−p − bN1+2−n,N1+p. (12)

From Eq. (12), it follows that the elements in the first
row and the first column of the matrix B−

e equal zero;
whence, one can draw a conclusion that the additional
system of differential equations includes N1 equations.

4. Robust R-Algorithm

Let us split the intervals [0, a/2] and [0,−a/2] into J
layers (see Fig. 1). The thickness of the j-th layer is
hj . The number of layers depends on the form of the
function ε(x, z), so that the z-dependence for ε(x, z)
could be neglected and the product B1

(j)B(j)
2 could be

considered constant within each layer. The thicknesses
of the extreme layers (hJ and h−J) with a homogeneous
dielectric constant are equal (in the case of a photonic
crystal with a square elementary cell) to

hJ = a/2−
J−1∑

j=1

hj ' a/2−R,

where R is the cylinder radius.
A question arise: how can the parameters of

rectangles, hj and bj , be selected in order that the
set of rectangles would best approximate a circle. In
our opinion, rather a reasonable approximation is the
following one:

hj = R

[
sin

jπ

2J
− sin

(j − 1)π
2J

]
, bj = 2R cos

jπ

2J
.

In these expressions, j varies from 1 to J−1. Application
of these equations to the lower and upper semicircles
allows the circle to be approximated by a polygon which
is characterized by the central symmetry and has four
symmetry axes. With the growth of J , the accuracy of
circle approximation becomes evidently better. In the
course of our calculations, the value of the parameter
R was made somewhat larger in order that the area of
the approximation polygon be equal to that of the initial
circle.

Having determined – for each layer – the eigenvalues
γ2

j,n of the matrix B(j)
1 B(j)

2 for TE-polarization (B(j)
2 B(j)

1

for TM-one) and the corresponding eigenvectors, which
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form the matrix Uj , the solution of system (5) in the
interval [0, hj ] can be presented in the following form:

Gj(z) = exp(−Ajz)C(j)
1 +

+exp[−Aj(hj − z)]C(j)
2 , (13)

Fj(z) = −Qj exp(−Ajz)C(j)
1 +

+Qj exp[−Aj(hj − z)]C(j)
2 , (14)

where the matrix Aj = UjΓjU−1
j ; Γj is a

diagonal matrix formed on the basis of the arranged
sequence of numbers γj,n = +

√
γ2

j,n; exp(−Ajhj) =

Uj exp(−Γjdj)U−1
j ; Qj = iAj/k0; and C(j)

1 and C(j)
2

are vectors which are determined by the boundary
conditions at z = 0 and z = hj . The solution of the
system of equations (6) is expressed in a similar form.
Within each layer, the coordinate z varies either from 0
to hj for positive or from 0 to −hj for negative z, i.e.
the local coordinate system is used.

In the robust R-algorithm, we express C(j)
1 and C(j)

2

– and, respectively, Fj(0) and Fj(hj) – in terms of
Gj(0) and Gj(hj) in each local coordinate system. In
the case of TM-polarized wave propagation, it is more
expedient to express Gj(0) and Gj(hj) in terms of
Fj(0) and Fj(hj), taking into account that the body
of computations becomes smaller at that.

Hence, on the basis of Eqs. (13) and (14), we can
write down the following expressions for waves with
TE-polarization (for waves with TM-polarization, the
expressions are analogous):

Fj(0) = r(j)
1 Gj(0) + r(j)

2 Gj(hj), (15)

Fj(hj) = −r(j)
2 Gj(0)− r(j)

1 Gj(hj), (16)

where

r(j)
1 = −QjP

(j)
2 + Qj exp(−Ajhj)P

(j)
1 ,

r(j)
2 = −QjP

(j)
1 + Qj exp(−Ajhj)P

(j)
2 .

In their turn,

P(j)
1 = −[I− exp(−2Ajhj)]−1 exp(−Ajhj),

P(j)
2 = [I− exp(−2Ajhj)]−1.

Using the condition of equality between the
tangential components of the electric and magnetic
field strengths at the interface between layers j and
j + 1, the quantities Gj(0), Gj(hj), Fj(0), and Fj(hj)
must be excluded in sequence, and the quantities F1(0)
and FJ(hJ ) must be expressed in terms of G1(0) and
GJ(hJ). For this purpose, we proceed from the first layer
and determine F1(0) and F1(h1) in terms of G1(0) and
G1(h1) as follows:

F1(0) = R(1)
11 G1(0) + R(1)

12 G1(h1), (17)

F1(h1) = R(1)
21 G1(0) + R(1)

22 G1(h1), (18)

where R(1)
11 = r(1)

1 , R(1)
12 = r(1)

2 , R(1)
21 = −r(1)

2 ,
and R(1)

22 = −r(1)
1 . Taking the equality between the

tangential components of the electric and magnetic field
strengths at the interface between the first and the
second layer, as well as relations (15), (16), (17), and
(18), into account, we can express F1(0) and F2(h2) in
terms of G1(0) and G2(h2) in the following manner:

F1(0) = R(2)
11 G1(0) + R(2)

12 G2(h2), (19)

F2(h2) = R(2)
21 G1(0) + R(2)

22 G2(h2), (20)

where R(2)
11 = R(1)

11 + R(1)
12 D(1)

1 , R(2)
12 = R(1)

12 D(1)
2 ,

R(2)
21 = −r(2)

2 D(1)
1 , R(2)

22 = −r(2)
2 D(1)

2 − r(1)
1 , D(1)

1 =
−[R(1)

22 − r(1)
1 ]−1R(1)

21 , and D(1)
2 = [R(1)

22 − r(1)
1 ]−1r(2)

2 .
Considering the next layers by turn and making use of
the method described above, we can ultimately express
the quantities F1(0) and FJ(hJ) in terms of G1(0) and
GJ(hJ) in the following form (here, the super- and
subscripts are omitted):

F(0) = R11G(0) + R12G(az/2), (21)

F(az/2) = R21G(0) + R22G(az/2). (22)

From the analysis of the way used to obtain the R(j)
ms

matrices (m, s = 1, 2) in accordance with expressions
(15), (16), (19), and (20) and owing to the symmetry
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Fig. 2. Band structure of a photonic crystal with a square
elementary cell (rods in air)

relation ε(x, z) = ε(x,−z), a conclusion can be drawn
that the following expressions are valid:

F(0) = −R11G(0)−R12G(−az/2), (23)

F(−az/2) = −R21G(0)−R22G(−az/2), (24)

with the matrices Rms in expressions (21), (22), (23),
and (24) being identical.

Having equated the right-hand sides in the systems
of equations (21) and (23), we can express G(0) in terms
of G(−az/2) and G(az/2), so that

G(0) = −1
2
R−1

11 R12[G(−az/2) + G(az/2)]. (25)

The next step comprises the substitution of Eq. (25)
into systems of equations (22) and (24). Then, the final
expressions read

F(az/2) = −1
2
R21R−1

11 R12G(−az/2) +

+[R22 − 1
2
R21R−1

11 R12]G(az/2) =

= R1G(−az/2) + R2G(az/2),

F(−az/2) = −[R22 − 1
2
R21R−1

11 R12]×

×G(−az/2) +
1
2
R21R−1

11 R12G(az/2) =

= −R2G(−az/2)−R1G(az/2).

Accordingly, the eigenvalue and eigenvector problem
[4,14] looks like
(

0 I
R1 R2

)(
G(−az/2)
G(az/2)

)
=

= ρ

(
I 0
−R2 −R1

) (
G(−az/2)
G(az/2)

)
, (26)

where 0 is a square zero matrix, and I a unit diagonal
matrix.

From the theory of photonic crystals [4], it follows
that ρ = exp(ikzaz). Therefore, for an electromagnetic
wave to freely propagate in a photonic crystal without
damping, the parameter kz must be real-valued, i.e. the
eigenvalues of problem (26) must be equal to unity by
absolute value. In this case, the specific value of kz can
be calculated by the expression

kz = arg(ρ)/az. (27)

In order to construct the band structure of photonic
crystals, it is necessary to vary the frequency of a
propagating wave and, making use of expressions (26)
and (27), to evaluate kz at fixed kx (equal to either 0 or
π/ax).

It is worth noting that, in expressions (21)–(27), we
used the notation az, which corresponds to the period of
the photonic crystal along the oz-axis; hence, in Fig. 1,
az = a.

5. Numerical analysis of 2D photonic crystals

In Fig. 2, the band structure of a photonic crystal with a
square elementary cell characterized by the parameters
εa = 8.9, εb = 1, and R = 0.38a is exhibited. Points
Γ X,, and M are referred to as the points of high
symmetry. On the way from point Γ to point X, the
wavevector component kx = 0, while kz varies from
0 to π/a. Therefore, the elements of the symmetrized
matrix can be determined by expressions (11) or (12).
On the way from point X to point M , kx = π/a, while
kz varies from 0 to π/a. So, we have another type of
symmetry, and the elements of the symmetrized matrix
are determined by expressions (9) and (10). On the way
from point M to point Γ, kx and kz vary synchronously
from π/a to zero. To calculate the band structure in this
interval, we rotate the coordinate system by an angle of
π/4 and superpose its origin with the cylinder center.
In a new coordinate system, we select an elementary cell
once more, but now its dimensions are different:
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Fig. 3. Dependences of the calculated frequencies at high symmetry
points on the number of diffraction orders N taken into
account (pluses, J = 105) and on the number of rectangles J

approximating the semicircle (circles, N = 23)

ax = az =
√

2a; now, in the new coordinate system,
kx = 0, and kz varies from

√
2π/a to zero, i.e. the

elements of the symmetrized matrix are determined by
expressions (11) or (12).

In Fig. 2, in the branches of the band structure
which contain points 1, 2, and 3, one may discern pluses,
which means that expressions (9) and (11) were used
to calculate the corresponding sections of the branches,
and circles, which means that expressions (10) and
(12) were used. The corresponding modes are either
symmetric (pluses) or antisymmetric (circles). However,
at the high symmetry points, both the symmetric and
antisymmetric modes with the same frequency can exist
simultaneously; in this case, they are referred to as
degenerate [4]. The calculation of this band structure
was executed for N = 23 between points Γ and X and
between points M and Γ, and N = 22 between points
X and M ; in this case, J = 105.

Point pairs (1,2) and (3,4) define the widths of two
energy gaps. Therefore, it is of importance to determine
the coordinates of those points, because they depend on
N and J . In Fig. 3, these dependences are plotted for
points 3 and 4.

The coordinates of points 3 and 4 were calculated for
both kx = π/a, i.e. N was an even number, and kx = 0,
i.e. N was an odd number. Here, it is of interest to find
whether there is or there is not a frequency jump, when
we approach the high symmetry points from the left and
from the right. The frequency was calculated with an
accuracy of five digits after the decimal point. One can
see that, in order to obtain sufficiently exact results in
this frequency range (from 0 to 0.47), the value for N
must be taken not less than 10, and that for J larger

Fig. 4. Dependences of kza on N and J

than 50. For point 4, a small frequency jump (in the
fourth digit after the decimal point) is observed while
approaching this point from the right and the left, which
is practically unnoticeable in Fig. 2. This jump can be
explained that the approximation cross-section of the
rod is somewhat different in those two cases. If the
parameter J is increased to 200, the jump magnitude
becomes substantially reduced.

It should be noted that the band structure depicted
in Fig. 2 coincides – qualitatively and quantitatively
– with that presented in Fig. 13 of Chapter 5 in
monography [4].

In Fig. 4, we give the dependences of kza on N
(pluses, J = 105) and J (circles, N = 35) calculated
for kx = 0, εa = 8.9, εb = 1, R = 0.38a, and
frequencies ωa

2πc = 0.5 (points 1 ) and 0.55 (points 2 ).
From this figure, it follows that, for point set 2, i.e. for
the frequency of 0.55, stable results can be obtained at
N = 11 and J = 50; at the same time, for the frequency
of 0.50, calculations have to be carried out at N > 21
and J > 50. Such a different sensitivity at different
frequencies is governed by the derivative dω/dkz: if this
derivative is small, the sensitivity to N and J is high.
Therefore, our calculations of the band structure were
executed at N ≥ 21 and J ≥ 50.

In Fig. 5, the band structure of a 2D photonic crystal
with a triangular elementary cell and the parameters
εa = 13, εb = 1, and R = 0.24a is shown. In the interval
from point Γ to point M , calculations were executed
at ax = a and az =

√
3a; in this case, kx = 0, while

kz was varied from zero to 2π/(
√

3a). In order to built
the band structure branches from point M to point Γ
(intermediate point K), the coordinate axes must be
rotated by an angle of π/2; so that, in a new coordinate
system, az = a, ax =

√
3a, kx = 0, and kz varies from

2π/a to 0. Between points M and K, kz varies from 2π/a
to 4π/3a, and, between points K and Γ, from 4π/3a to 0.
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Fig. 5. Band structure of a 2D photonic crystal with a triangular
elementary cell (cylindrical rods in air)

That is, while constructing the band structure of a
photonic crystal with a triangular elementary cell, it
is sufficient to use – at symmetrization – the rules
according to expressions (11) and (12) – see pluses and
circles, respectively, in the branches.

Making use of the method proposed, we also
calculated the band structure of a photonic crystal
with a triangular elementary cell and the parameters
εa = 1, εb = 13, and R = 0.48a, i.e. for a system of
regularly arranged holes in an insulator. According to
our calculations, the ratio between the energy gap width
and the medium band frequency is equal to 0.189 for
εb = 13, which is in good agreement with the data of
work [4], where the corresponding number was reported
to be 0.186.

In the course of our calculations which demonstrated
a new method by applying it to analyze the band
structure of 2D photonic crystals, the values of dielectric
constants taken from book [4] were used; the higher
dielectric constant is close to the dielectric constant of
GaAs (11.4 in the wavelength range 1–10 µm). The
method proposed makes it possible to determine the
allowed frequencies at arbitrary values of εa and εb and
for an arbitrary structure of the elementary cell which
can be characterized by definite periods along the ox-
and oz-axes in a rectangular coordinate system.

It should be noted that the photonic forbidden energy
gap can exist in such 2D photonic crystals, which are
characterized by a large difference between the dielectric
constants εa and εb. In the case where R = 0.48a, εa = 1,
and εb < 6, the energy gap is absent [12]. Therefore,
2D photonic crystals can be fabricated on the basis of
chalcogenide glasses, the dielectric constant of which in
the transparency range is higher than 6 [21]; the more
so that the etching rate for such materials substantially
varies at their illumination, and these materials are used
in manufacturing relief holograms [22].

We also studied the dependence of the time of
computation by the method proposed on N at a fixed
J , and on J at a given N for a photonic crystal
with a square elementary cell. The computation time
increases linearly with the increase of J ; at the same
time, it increases by a factor of approximately 23, if
N becomes twice as large. These results coincide with
the conclusions of work [20]. If J = 256 and N =
32, the value of the parameter kz can be determined
– at fixed ωa

2πc and kx – within 115 conditional time
units of computation (one conditional time unit is
needed to determine eigenvalues and eigenvectors of
expression (26), provided N = 32). Supposing that,
at N = 32, the method proposed is equivalent to
the plane-wave method, where the eigenvalues and
eigenvectors of a matrix with dimensionality 2N2 ×
2N2 = 2048 × 2048 are to be found, the corresponding
time of computation by the plane-wave method would
amount to (2N2/N)3 = 218 standard units. Hence, the
ratio between the computation times by the plane-wave
and coupled-wave methods is equal to 218/115 > 211 =
2048. Therefore, the method proposed makes it possible
to quickly determine whether the given frequency ωa

2πc is
allowed to propagate in a photonic crystal at a definite
value of kx and, accordingly, to calculate kz. In the
framework of our method, operations of matrix algebra
are carried out for matrix dimensions much lower than
those in the plane-wave method, which also brings about
a higher accuracy of the analysis.

In addition, the method proposed has an extra
advantage; namely, it is capable to determine at once
whether the given frequency is allowed to propagate in
a photonic crystal at a given kx-value, which corresponds
to practical needs in the course of developing the optical
elements on the basis of 2D photonic crystals. In the
framework of the plane-wave method, many numerical
experiments are required to determine whether the given
frequency is allowed or not at a fixed value of the
component kx.

6. Conclusions

A method proposed in work [14] to analyze the band
structure of 2D photonic crystals (the coupled-wave
method) has been developed further. A modified robust
R-algorithm for numerical analysis of periodic structures
was derived. Imposing the periodic boundary conditions
gives rise to a necessity to solve an eigenvalue problem
of the type W1X = ρW2X and to verify whether or
not the absolute value of ρ equals unity. If |ρ| = 1,
the intended frequency is allowed. In general case, the
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dimensionality of the vector X is equal to 2N , two times
the number of coupled waves used at the analysis. Owing
to the spatial symmetry of the dielectric constant, a
changeover can be made to the dimensionality N±1 or N
of the vector X, without any loss of the analysis accuracy
and with a simultaneous reduction of the computational
time by a factor of about 8. The computational accuracy
depends on the number of coupled waves N , which are
taken into consideration, and the number J , which is
defined as a number of rectangles needed to approximate
the cross-section of the cylinder. With the growth of the
frequencies of waves propagating in a photonic crystal,
both N and J must be increased. The computational
time increases almost linearly with growing J and
follows the cubic law with increasing N . The method
proposed was applied to photonic crystals with a square
or a triangular elementary cell, which are made up of
cylindrical rods or include cylindrical holes. The further
development of this coupled-wave method, which was
created for 2D gratings, should include 3D photonic
crystals into consideration, and a substantial gain in
time and computation accuracy is expected.
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АНАЛIЗ ЗОННОЇ СТРУКТУРИ 2D ФОТОННИХ
КРИСТАЛIВ МЕТОДОМ ЗВ’ЯЗАНИХ ХВИЛЬ:
СТIЙКИЙ R-АЛГОРИТМ

В.М. Фiтьо, Я.В. Бобицький

Р е з ю м е

Показано, що методом зв’язаних хвиль (МЗХ), який викори-
стовують для аналiзу дифракцiї електромагнiтних хвиль на
плоских 1D-ґратках, при накладеннi перiодичних граничних
умов можна швидко встановити, чи задана частота електро-
магнiтної хвилi є дозволеною для поширення в 2D фотонному
кристалi. Проблема зводиться до задачi на власнi значення та
власнi вектори W1X = ρW2X i перевiрки, чи власне число
ρ за модулем дорiвнює одиницi. Якщо |ρ| = 1, то задана ча-
стота дозволена. Вимiрнiсть вектора X у розрахунку дорiвнює
подвоєному числу використаних зв’язаних хвиль N×2 i визна-
чається необхiдною точнiстю аналiзу. Завдяки тому, що типовi
фотоннi кристали мають симетричну просторову залежнiсть
дiелектричної сталої, використання симетрiї в залежностi вiд
її типу дозволяє перейти до вимiрностi вектора X (N ± 1) чи
N без втрати точностi аналiзу з одночасним зменшенням часу
розрахунку приблизно у 8 разiв. Для числового аналiзу вико-
ристано модифiкований стiйкий R-алгоритм.
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