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The method of irregular impedance network developed by the
authors has been applied to studying the electrical fluctuations of
a protein molecule located between two ohmic contacts. Specific
calculations have been carried out for a bovine rhodopsin molecule.
Random fluctuations of distances between amino acids (the
link oscillation model) or random fluctuations of amino acids
themselves about relevant fixed positions (the node oscillation
model) have been analyzed. The mean network impedance and
its dispersion have been calculated as functions of the fluctuation
amplitude. The similarity and the difference between the results
obtained in the framework of these two models have been
discussed. A universal dependence of the impedance dispersion
on the oscillation amplitude has been found.

1. Introduction

The forecasting and the interpretation of structural
modifications in protein molecules (“protein folding”)
belong to the fundamental problems of modern
biophysics, but they are far from being ultimately solved
[1, 2]. For instance, the fluctuation dynamics of protein
molecules was described in work [3] in the framework
of the model of a network of elementary elastic linkers.
On the other hand, complex networks made up of
resistances and/or impedances comprise a useful and
rather widespread approach to the simulation of a lot
of phenomena [4], in particular, in the framework of
the so-called percolation theory [5]. Earlier, we have
proposed an analogous method for simulating the electric
properties of a protein molecule [6] in order to solve
the problem of creation of a nano-sized biosensor on
the basis of an olfactory receptor molecule [7]. In this
method, the molecule is considered as a set of nodes,
which correspond to amino acids, and linkers, which
represent the electric interaction between amino acids.
Linkers are characterized by elementary impedances
which contribute to the total network impedance. In this
work, in the framework of the method described above,

two complementary models of internal fluctuations
of the total network impedance have been proposed
and analyzed (the fluctuations are associated with
oscillations of elementary components), as well as the
topology of a structure. As a source that causes the
values of elementary impedances to oscillate, there were
selected the oscillations of either the lengths of linkers
between nodes – the link oscillation model (LOM) – or
the nodes themselves about relevant fixed positions –
the node oscillation model (NOM). The models have
been applied to a network which corresponds to a
rhodopsin molecule located between two ohmic contacts.
The dependences of the key input parameters (the link
number, the impedance, and so on) on the model ones
have been studied. Our main goals were the attempt
to single out individual properties of the molecule of a
specific protein (or its configuration) on the basis of the
models proposed and searching for the ways to calibrate
the model parameters.

2. Model of the Irregular Impedance Network
and Its Application to a Protein Molecule

We consider the spatial structure of a protein molecule
connecting two metal electrodes [6], which an external
voltage is applied to, as is shown in Fig. 1,a. An
elementary RC impedance is attributed to every pair
of amino acids that are located from each other at a
distance no more than a twice interaction radius 2Ra

(Fig. 1.b). In such a way, a network of impedances [7,8],
which simulates the electric properties of the rhodopsin
molecule [9], is constructed. The total impedance of the
network depends on the interaction radius Ra which is
a model parameter and can be calculated making use
of the Kirchhoff laws, if the network topology and the
values of elementary impedances are known.
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Fig. 1. a) A protein molecule between contacts. b) Overlapping
between two amino acids and its equivalent circuit. Ca denotes
the center of the sphere and corresponds to the alpha-carbon atom
of the amino acid, the parameter Ra is the radius of interaction
between amino acids, z is the impedance of the link between two
nodes. c) An example of a graph for a network of elementary
impedances

3. Fluctuation Models

We propose to consider two models of electric
fluctuations in such a network. Both models use the
distribution of probabilities over the coordinate of a
classical harmonic oscillator:

– In the LOM, the network changes its characteristics
– such as the link number and the impedance – through
an independent variation of the effective distance
between nodes in every pair.

– In the NOM, the characteristics are varied by
changing isotropically the position of every node in the
three-dimensional space.

3.1. Link oscillation model

In the LOM, the current state of the molecule can be
entirely described by a matrix D0 of distances between
nodes of each pair. Hence, D0 is a symmetric square
matrix with the dimension equal to the number of amino
acid residues in the molecule concerned; for rhodopsin,
this is a 348×348-matrix. In order to calculate the total
impedance of the structure, each distance is compared
with a selected interaction length, and, if this distance
does not exceed 2Ra, a link between corresponding
nodes is established. In order to describe fluctuations,
a computer generates a series of D-matrices on the
basis of the ground state matrix D0; in so doing, the
shift of each distance is selected randomly, on the basis
of the probability distribution for a classical harmonic
oscillator.

The state of a classical harmonic oscillator is
described by the formula

x = xmax sin ωt, (1)

where xmax is the amplitude, and ω the angular
frequency of oscillations. The probability for the
coordinate x to have a value xa is reciprocal to the rate
of its variation at the corresponding point:

P (xa) ∼
(

∂x

∂t

)−1
∣∣∣∣∣
x=xa

. (2)

For numerical simulations, we should obtain a
dependence between a random number r, which is
regularly distributed within the interval from 0 to 1,
and the quantity xa:

r =

xa∫

−xmax

P (x)dx /

xmax∫

−xmax

P (x)dx. (3)

By expressing t in terms of x in Eq. (1), substituting
Eq. (1) into Eq. (2) and the result obtained into Eq. (3),
and expressing xa in terms of r, we obtain xa(r) =
−xmax cos πr or, equivalently,

xa(r) = xmax cosπr. (4)
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Fig 2. a) Block diagram of the link oscillation model: N is the node number, km the number of iterations, D0 the matrix of initial
distances, D the matrix of current distances, and xm the amplitude of oscillations. b) Block diagram of the node oscillation model:
X0N , Y 0N , and Z0N the arrays of initial node coordinates; XN , YN , and ZN the arrays of current node coordinates; and Ra the
maximal radius of interaction

Equation (4) can be used for the random choice of a
state of the harmonic oscillator. Hence, the effective link
length is determined as

l = |l0 + xa(r)| = |l0 + xmax cos πr |. (5)

Here, l0 is the distance between amino acids (different for
each amino acid pair) in the initial state of the molecule
which is described by the matrix D0.

The next step of calculations includes the filling of
the matrix D with the values of the effective lengths and
the evaluation of the key characteristics of the structure
– the number of links and the network impedance. The
latter is calculated on the basis of the Kirchhoff laws and
the known values of elementary impedances. Two models
of elementary impedances were used: a steep – z = const

– and a smooth one –
(

z =
1
π

l

R2
a − (l2/4)

1
ρ−1 + iε0εω

)

(see Fig. 1). Here, ρ is the specific resistance, ε is the
dielectric permittivity (both are selected as in work [6]),

and i is the imaginary unity. To calculate the required
average values, such iterations are repeated until the
necessary statistics is gathered (5 thousand iterations
per every point). The details of the described Monte-
Carlo procedure are illustrated by the block diagram
of calculations (Fig. 2,a). Afterwards, the obtained set
of values is treated statistically, and, as a result, the
averaged values of key characteristics and the root-
mean-square deviations are calculated.

In the case of thermal fluctuations, the amplitude
of an oscillator, according to the classical statistics, is
proportional to the square root of the temperature:

xmax = A
√

T , (6)

where A is a parameter. In principle, the value of
A depends on the elastic properties of the whole
structure; hence, it depends on the distance between
amino acids. Nevertheless, as the first approximation,
the value of A can be considered constant. Since the

ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 6 597



V.I. AKIMOV, A.V. SHESTOPALOVA, V.M. TULUPENKO, L. REGGIANI

absolute value of the impedance in our model can only
decrease with increase in the interaction radius (see the
formulas for the elementary impedance), the structures
corresponding to the minimum or the maximum of the
impedance can be created. However, the probability
of the natural generation of such structures is very
low and quickly vanishes, if the number of nodes
grows.

It is worth noting that the approach proposed allows
one to find – in both models (Fig. 2) – only statistically
averaged values for the quantities concerned. However,
the temporal characteristics of the noise generated by
structure fluctuations cannot be determined, because
every following state is calculated irrespective of the
previous one; so that it is the statistics of entirely
independent states, rather than the temporal dynamics,
that is simulated. For the same reason, the application
of a similar procedure does not allow one to simulate
the dynamics of structural variations of a protein
molecule. In the future, the method can be improved,
if necessary, by introducing the parameter of elasticity
for the interaction between amino acids of every pair
(in the LOM case) and, correspondingly, by introducing
the individual values of angular frequency for every
oscillator, which would allow the process to be simulated
in dynamics.

3.2. Node oscillation model

In this model, at every step, each node is described by a
random shift in a random isotropically (i.e. uniformly
distributed over the solid angle) selected direction
around a relevant static position. Then, every new state
of the molecule is described by the arrays including
the absolute coordinates (X, Y, Z) of the nodes. For
every i-th node, Xi = X0i + δx, Yi = Y 0i + δy, and
Zi = Z0i + δz. Here, the shifts δx, δy, and δz are
randomly selected in the spherical coordinates: δx =
r sin θ cosϕ; δy = r sin θ sin ϕ, and δz = r cos θ; the
angles satisfy the relations ϕ = 2πr1 and cos θ = 2r2−1;
and the absolute shift, according to formula (4), equals
r = rm cosπr3. The arrays X0, Y 0, and Z0 describe the
initial state; r1, r2, and r3 are random numbers from
the interval [0, 1]. Then, on the basis of the selected
Ra and a new set of nodes, the matrix of states is
constructed, and the network impedance is determined.
The further steps of the algorithm are the same as those
in the LOM case. For details, see the block diagram
in Fig. 2,b.

4. Results of Averaging

In this section, we consider the quantities characterizing
the network – namely, the link number and the
absolute value of network impedance – averaged over all
randomly selected states, as well as their dependences
on the amplitude and the radius of interaction in two
models. In the LOM, the average link number can be
derived analytically. Proceeding from formula (5) and
taking into account that a link exists if l ≤ 2 × Ra, it
can be shown that the probability for a link to exist is
determined as

Pl =
1
π

(arcsin c2 − arcsin c1) , (7)

where c1 = min
[
1, max

(
−2Ra−l0

xmax
,−1

)]
and c2 =

max
[
−1,min

(
2Ra−l0

xmax
, 1

)]
, and each of the functions

min and max depends on two arguments. Accordingly,
the expected average link number is equal to the sum of
Pl over all pairs of nodes. Figure 3 makes it evident that
the link numbers obtained by these formulas entirely
coincide with the corresponding values averaged by the
Monte-Carlo method described in the previous section.
This testifies to both the validity of formula (7) and
the sufficiency of the statistical sample for the fulfilled
numerical simulation. Note that the link number per
one amplitude decreases with increase in the interaction
radius.

In the NOM, the link number was calculated making
use of the Monte-Carlo method only. From Fig. 3, one
can see that now, in contrast to the LOM, the average
link number decreases with the growth of interaction
amplitude and increases with increase in the interaction
radius.

The calculated dependences of the average
impedance on the interaction amplitude in both
fluctuation models and for two models of elementary
impedance (the smooth and the steep one, see
Fig. 1) are depicted in Fig. 4. One can see that the
average impedance of a structure, which undergoes
fluctuations, can differ from the impedance of the initial
stable structure. The averaged impedance considerably
decreases in the LOM case and substantially increases in
the NOM one. Since the amplitude xmax depends on the
temperature, the plots in Fig. 4 can be interpreted as a
forecast of the temperature dependence of the molecular
impedance. One can see that, in the NOM case, the
dependences were obtained only in the range xmax < Ra.
This stems from the fact that, in this model, there
appears the appreciable probability for an open random
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Fig. 3. Dependences of the normalized average link number on the amplitude for various values of interaction radius Ra

Fig. 4. Dependences of the average relative impedance on the amplitude for various values of interaction radius and different elementary
impedance models

structure to be generated, so that we failed in gathering
a large enough statistics correctly.

5. Dispersion of Impedance Fluctuations

In this section, we consider the dependences of the
fluctuation dispersion (the root-mean-square deviation)
of the network impedance (the total impedance of
the structure) on the interaction amplitude and the
radius for two models of fluctuations and two models
of elementary impedance. The obtained dependences of
the relative dispersion on the ratio xmax/Ra are shown
in Fig. 5. One can see that, in the LOM and the smooth
model of elementary impedance, the dependences of the
relative dispersion of the network impedance Z are in

good agreement with the formula 〈δ2|Z|〉
〈|Z|〉2 =

(
xmax
5Ra

)2

,
provided that the xmax-values are small. At the same
time, in the steep model, the same dependences behave
in different and unpredictable ways.

One of the reasons for such a difference is the
presence of a random telegraph signal (as one of the
terms) stimulated by the availability of "bottle necks"in
the topology of the structure under consideration. As
corresponding factors, such links can be those which give
a significant contribution to the network impedance at
given Ra-values and, at the same time, can be either
switched on (if l ≤ 2Ra) or switched off (if l > 2Ra)
at given xmax-values in the course of fluctuations. They
can enhance the dispersion, especially at small xmax,
depending on the structure features.
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Fig 5. Dependences of the relative impedance dispersion on the ratio xmax/Ra for different models

Another reason is a weaker sensitivity of the
smooth model of elementary impedance to fluctuations;
it dominates, if xmax is large. Hence, the steep
model is more sensitive to features of the structure
topology and can be of interest from the viewpoint of
recognition of various structures belonging to a definite
type, e.g., different structural variants of a protein
molecule. The smooth model of elementary impedance
ensures a more general and universal behavior which
is mainly associated with a whole class of similar
structures.

In the NOM, a universal law for the smooth model
of elementary impedances was also revealed: the relative

dispersion behavior satisfies well the formula 〈δ2|Z|〉
〈|Z|〉2 =

(
xmax
2Ra

)2

. It is the same law as that in the LOM, but
with a different multiplier. Such a difference can be
explained, first, by the nonequivalence of the parameter
xmax in two models: a symmetric shift of nodes in
opposite directions by x generates a change 2x for the
link length. Second, the number of links in the considered
range of the interaction radii is several times larger than
the number of nodes; therefore, the LOM provides a
better averaging of the extreme values of elementary

shifts in the total impedance than the NOM does and,
hence, a lower impedance dispersion. This means that a
larger shift of a node brings about larger shifts of several
links connected with this node. Therefore, the NOM –
in comparison with the LOM – produces a sort of the
cumulative effect.

The steep model, similarly to the NOM, is
characterized by an unpredictable individual behavior
caused by features of the topology of a specific
structure. It should be noted that, as the plots in
Fig. 5 demonstrate, the relevant features of the curves
obtained, in the framework of the steep model, for the
LOM and the NOM qualitatively correlate with one
another (making relevant corrections to the universal
law). This means that the determination of specific
structural features is robust with respect to the selection
of the elementary impedance model.

6. Conclusions

The fluctuation models have been developed in the
framework of the elementary impedance network, and
their application to the protein molecule of rhodopsin
located between two ohmic contacts has been considered.
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The results of the corresponding simulation are as
follows.

The specific features of a definite structure, which
allow different molecules or different states of the same
molecule to be distinguished, are most pronounced in the
dependences of the total impedance dispersion on the
amplitude of oscillations (the temperature dependences)
which are calculated in the framework of the steep model
for an elementary impedance. It has also been revealed
that the dependences of the impedance dispersion
demonstrate a similar behavior in different fluctuation
models, which evidences for a stability of the dispersion
concerned to the type of a fluctuation model, and can
be described by a universal law for the smooth model of
elementary impedance.

The averaged value of the link number reveals the
opposite dependences on the amplitude in the link and
node oscillation models and, at the same time, a similar
behavior for the smooth and steep elementary impedance
models.

The method can be made more accurate and allows
a further development.
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СПОСОБИ МОДЕЛЮВАННЯ ФЛУКТУАЦIЙ МОЛЕКУЛИ
БIЛКА В РАМКАХ МЕТОДУ НЕРЕГУЛЯРНОЇ СIТКИ
IМПЕДАНСIВ

В.I. Акiмов, А.В. Шестопалова, В.М. Тулупенко,
Л. Реджианi

Р е з ю м е

Розроблений нами метод нерегулярної сiтки iмпедансiв за-
стосовано для дослiдження електричних флуктуацiй бiлкової
молекули, розмiщеної мiж омiчними контактами. Розрахунки
проведено для молекули коров’ячого родопсину, а як джерело
флуктуацiй прийнято випадковi осциляцiї вiдстаней мiж амi-
нокислотами (модель зв’язкiв, що осцилюють) чи, як альтерна-
тива, випадковi осциляцiї положення амiнокислот в околi фiк-
сованих точок (модель вузлiв, що осцилюють). Розраховано се-
реднiй iмпеданс сiтки i його дисперсiю як функцiї амплiтуди
флуктуацiй. Результат розрахункiв для двох моделей порiвня-
но мiж собою. Виявлено унiверсальний закон залежностi дис-
персiї вiд амплiтуди коливань.

ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 6 601


