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It is demonstrated that a two-parameter deformed oscillator with
the deformation parameters q, p such that 0 < q, p ≤ 1 exhibi-
ts the property of “accidental” two-fold (pairwise) energy level
degeneracy of the classes Em = Em+1 and E0 = Em. The
most general case of degeneracy of q, p -oscillators of the form
Em+k = Em (with k ≥ 1 for m ≥ 1 or k ≥ 2 for m = 0) is briefly
discussed.

1. Introduction

The so-called q-deformed oscillators (q-oscillators)
remain, from their appearance till now, a very popular
subject of investigations including their diverse appli-
cations (see, e.g., [1, 2] and references therein). Much
attention has been paid to the two most distinguished
versions of q-oscillators: the one proposed by Biedenharn
and Macfarlane [3, 4] (BM q-oscillator) and the other
introduced by Arik and Coon [5] (AC q-oscillator).

It is well known that, unlike the AC q-oscillator,
the BM version admits not only real but also phase-like
complex values of the deformation parameter q. Such a
distinction leads to essentially differing aspects of their
particular applications. Let us note that, among others,
there is the well-known property of the BM q-oscillator
consisting in a possibility of certain degeneracies and
periodicity appearing in case of q being a root of unity,
the most popular values for the BM-type q-oscillator.
Say, for q = exp( iπ

2n+2 ), the following two neighboring
energy levels coincide: En+1 = En. This equality along
with other coincidences leads to a kind of periodicity and

naturally makes the corresponding phase space both di-
screte and finite [6].

One can then wonder whether some kind of ’acci-
dental’ degeneracy (occurring without any obvious
underlying symmetry) can be a peculiar feature of the
AC q-oscillator, and the answer is negative: the only
possible case requires the value q = 0, but usually this
value is excluded from the treatment.

The latter conclusion is however not the ultimate
statement concerning q-deformed oscillators and, as
recently shown [7], yet another version of q-oscillator
which has been termed the “Tamm-Dancoff cutoff”
deformed oscillator in [8,9] and does possess the property
of “accidental” degeneracy of the kinds Em = Em+1,
E0 = Em, and some others.

The goal of the present paper is to analyze
the analogous question about possible ’accidental’
degeneracies if one deals with more general two-
parameter (or q, p -)deformed oscillators. The q, p -
deformed oscillators introduced in [10] more than 15
years ago provide the valuable and perspective tools for
obtaining nonstandard q-oscillators and for elaborating
diverse applications. It suffices to mention only a few
following ones.

First, the q, p -deformed oscillators turn out to be
rather effective [11] in the phenomenological descripti-
on of the rotational spectra of (super)deformed nuclei.

Second, the concept of q, p -deformation, unlike the
standard harmonic oscillator, allows to account for more
involved reasons/aspects of the extension of the standard
oscillator: for the situation where the included interacti-
on is highly nonlinear (non-polynomial, with inclusion
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of all anharmonisms) and/or employs the momentum
operator; it may also involve the non-constant position-
dependent mass of the quantum-mechanical particle [12].

Third, the application elaborated in [13] incorporates
the appropriate set of q, p -deformed oscillators (q, p -
bosons) for developing the corresponding q, p -Bose gas
model. Such a model is based on the analytical expressi-
ons for the intercepts (strengths) of the general n-
particle momentum correlation functions obtained for
the first time in explicit form in [14] (note that these
results generalize the previously known formulas for two-
particle correlations in the AC and BM versions of the
q-Bose gas model). As such, the mentioned results were
analyzed [13] in the context of their direct relevance
to experimental data on the 2- and 3-pion correlations
collected during the RHIC/STAR and CERN/SPS runs
of relativistic heavy ion collisions.

The paper is organized as follows. In Section 2, we
recall the main facts about the phenomenon of ’acci-
dental’ double degeneracy of energy levels within two
particular (BM or TD) versions of q-oscillators, respecti-
vely for q being a root of unity or q being real. The peculi-
arities of an analogous sort of degeneracies manifested by
the two-parameter (or the q, p -) deformed oscillators are
disclosed and explained in Section 3, where we formulate,
prove, and illustrate our basic statements. Section 4 is
devoted to concluding remarks.

2. “Accidental” Degeneracies of q-Oscillators

To explain the idea of ’accidental’ degeneracies of energy
levels, consider first the famous Biedenharn–Macfarlane
(or BM) q-oscillator [3, 4], whose defining relations are

aa† − qa†a = q−N , aa† − q−1a†a = qN , (1)

[N, a] = −a, [N, a†] = a†. (2)

Then, a†a = [N ]q and aa† = [N+1]q where the q-bracket
reads

[X]q ≡ qX − q−X

q − q−1
, [X]q

q→1−−−→ X. (3)

The Hamiltonian of the BM q-oscillator is taken to be

H =
}ω
2

(aa† + a†a).

For convenience, we put }ω = 1 in what follows. Using
the q-Fock space and its vacuum state |0〉 such that

a|0〉 = 0 , |n〉 =
(a†)n

√
[n]q!

|0〉, N |n〉 = n |n〉,

where [n]q! = [n]q[n−1]q...[2]q[1]q, [1]q = 1, [0]q = 1, the
creation/annihilation operators act by the formulas

a |n〉 =
√

[n]q |n− 1〉, a†|n〉 =
√

[n + 1]q |n + 1〉.

The spectrum H|n〉 = En|n〉 of the Hamiltonian reads

En =
1
2

(
[n + 1]q + [n]q

)
. (4)

If q → 1, En = n + 1
2 ; also E0 = 1

2 for any value of q.
For real q 6= 1, the spectrum is not equidistant.

The most interesting situation arises for phase-like q,
q = exp(iθ).

2.1. Level degeneracy of a q-oscillator with q=eiθ

In the next two statements, n is any positive integer.
Proposition 1.
(i) Fix the angle θ to be

θ =
π(2k + 1)

2n + 2
with k = 0,±1,±2, ...

Then Eq. (4) yields En+1 −En = cos (2n+2)θ
2 , and, with

the indicated θ, the degeneracy En+1 = En follows,
(ii) Fix the angle θ to be

θ =
π(2k + 1)

2n + 3
where k = 0,±1,±2, . . .

Then Eq. (4) yields En+2−En = 2 cos (2n+3)θ
2 cos θ

2 , and,
with this θ, the degeneracy En+2 = En follows.

This statement can be generalized as follows.
Proposition 2. For r≥1, let us fix the angle θ as

θ =
π(2k + 1)
2n + r + 1

with k = 0,±1,±2, . . . (5)

Then Eq. (4) yields the equality

En+r− En = 2
sin(rθ/2)

sin(θ)
cos

(2n +1+ r)θ
2

cos(θ/2), (6)

from which the degeneracy

En+r = En, r ≥ 1 (7)

follows for the values of θ given in (5).
The indicated degeneracies, for q = exp(iθ) being the

corresponding root of unity with θ a rational fraction of
π, lead to such consequences as periodicity, discreteness,
and finiteness [6] of the phase space of a BM-type q-
oscillator.
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Fig. 1. Spectrum of a q-oscillator (8) at fixed q =
p

6/8. Observe
the degeneracy E6 = E7

2.2. q-Oscillator with level degeneracy at real q

Although the AC q-oscillator does not allow any acci-
dental degeneracy, it was demonstrated in [7] that the
’accidental’ degeneracy at real values of the q-parameter
can occur in the case of a q-oscillator called [8, 9]
the Tamm–Dancoff deformed oscillator. Its creation,
destruction, and number operators obey the following
defining relation:

bb† − qb†b = qN , (8)

[N, b] = −b, [N, b†] = b†. (9)

Taking the Hamiltonian of this q-oscillator as

H =
}ω
2

(bb† + b†b) (10)

and putting }ω = 1, we consider its eigenvalues in
the states of the corresponding q-Fock space. With the
vacuum state |0〉, the relevant relations are

b|0〉 = 0, |n〉 =
(b†)n

√{n}q!
|0〉, N |n〉 = n |n〉, (11)

where {n}q! = {n}q{n− 1}q...{2}q{1}q, {0}! = 1,
{1}! = 1, and the q-bracket in this case being

{X}q ≡ XqX−1, {X}q
q→1−−−→ X (12)

[compare it with (3)],

b†b = {N}q, bb† = {N + 1}q, (13)

and the operators b, b† act by the formulas

b|n〉 =
√
{n}q|n−1〉, b†|n〉 =

√
{n+1}q |n+1〉. (14)

Note that, for any real q ≥ 0, the operators b and b† are
adjoint to each other.

From (12)–(14), the spectrum H|n〉 = En|n〉 of the
Hamiltonian reads

En =
1
2

(
(n + 1)qn + nqn−1

)
=

1
2
qn−1

(
q + n(1 + q)

)
.

(15)

At q → 1, we recover En = n+ 1
2 ; note also that E0 = 1

2
for any value of q.

If q 6= 1, the spectrum is not uniformly spaced (not
equidistant). Moreover, if q > 1, the spacing En+1 −En

gradually increases with growing n, so that En → ∞
as n → ∞. However, more interesting possibilities arise
when q belongs to the interval 0 < q < 1.

The energy spectrum given by expression (15) mani-
fests some sorts of degeneracies [7], with the strong
dependence on the particular fixed value of q. Let us
consider relevant cases.

Degeneracies Em = Em+1 and Em = Em+2

Proposition 3. If the parameter q is fixed as q =√
m

m+2 , where m ≥ 1 , then the following degeneracy of
the energy levels does occur:

Em = Em+1. (16)

Note that m=0 is excluded from (16) as the degeneracy
E0 =E1 would require the (excluded) value q=0.

Proposition 4. Let the parameter q be fixed as

q =
1 +

√
4m2 + 12m + 1
2(m + 3)

with m ≥ 0 . (17)

Then the following degeneracy of Em does occur:

Em = Em+2. (18)

For illustration, we show the particular cases E6 =
E7 and E4 = E6 of (16) and (18) in Figs. 1 and 2.

Degeneracy of the type E0 = Em

One more type of degeneracy, E0 = Em, was also poi-
nted out in [7], see the next proposition.
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Fig. 2. Spectrum of a q-oscillator (8) at fixed q = 1+
√

113
14

. Observe
the degeneracy E4 = E6

Fig. 3. Spectrum of the q-oscillator (8) at fixed q ' 0.5315645.
Observe the degeneracy E0 = E4

Proposition 5. For any integer m = 2, 3, 4, . . . ,
there exists an appropriate qm = q(m) such that

E0 = Em. (19)

The proof of this statement uses a graphical
treatment as demonstrated in [7].

Some values of the q-parameter which provide
degeneracy (19) are listed in the Table. The first three
values q2, q3, and q4 in the Table can be given in
radicals, while, for m ≥ 5 the values qm are found
approximately. Clearly, all the qm obey the relation
0 < qm < 1.

In Fig. 3, the particular case m = 4 of Eq. (19) is
presented. The latter degeneracy occurs, as seen from
the Table, at q ' 0.5315645.

“Accidental” degeneracy of the general type Em = Em+k

As was mentioned in [7], the diversity of possible cases
of two-fold degeneracy are given by the relation Em =
Em+k. The equation for the values q = q(m, k) of q-para-

Some values qm that yield degenerace E0 = Em

m = 2 q2 = 1
3
' 0.333333

m = 3 q3 ' 0.45541
m = 4 q4 ' 0.5315645
m = 5 q5 ' 0.585442
m = 6 q6 ' 0.626225
m = 10 q10 ' 0.725405
m = 25 q25 ' 0.851675
m = 100 q100 ' 0.948094
m = 400 q400 ' 0.983404

meter responsible for such degeneracies looks as

(m + k + 1)qm+k + (m + k)qm+k−1−

−(m + 1)qm −mqm−1 = 0,

or

(m + k + 1) qk+1 + (m + k) qk − (m + 1) q −m = 0.
(20)

For each pair (m, m + k), it can be proved that there
exists such real solution q = q(m, k) of (20) that 0 <
q < 1. Let us comment on few low k values. Obviously,
k = 1 resp. k = 2 correspond to the particular series of
degeneracies already considered, see (16) and (18) above.
For the next two cases, the equations to be solved are

(k = 3) q4 +
m + 3
m + 4

q3 − m + 1
m + 4

q − m

m + 4
= 0, (21)

(k=4) q4− 1
m + 5

q3+
1

m + 5
q2− 1

m + 5
q− m

m + 5
=0,

(22)

where, for k = 4, we have taken into account that the
fifth-degree equation divides exactly by q + 1. Note also
that the root q = −1 exists in all the cases of higher even
k in (20). Equations (21) and (22) can be solved in radi-
cals, which yields awkward expressions. Analogously to
the above Table, a set of values q = q(m, k) can be found
numerically and tabulated. Let us finally remark that
the case E0 = Em (see Proposition 5 above) is obviously
covered by the most general situation, Em = Em+k.

ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 6 589
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3. “Accidental” degeneracies of q, p -oscillators

The following main part of our paper deals with the issue
of degeneracies for the two-parameter extended or q, p -
deformed oscillators defined [10] by the relations

AA† − q A†A = pN , AA† − p A†A = qN , (23)

along with two relations involving A†, A and N
completely analogous to (2) and (9).

The pair of relations (23) is symmetric under q ↔ p
and leads to the formulas

A†A = [[N ]]q,p , AA† = [[N + 1]]q,p , (24)

where the q, p -bracket is

[[X]]q,p ≡ qX − pX

q − p
. (25)

Obviously, with p = q−1, we are back to the BM case
[3, 4] of q-oscillators and to the AC case [5] at p = 1.
The other special case [8, 9] of TD deformed oscillators
corresponds to p = q.

Similarly to BM and TD q-oscillators, we take the
Hamiltonian in the form

H =
1
2
(AA† + A†A). (26)

In the q, p -deformed Fock space for which A|0〉 = 0,

|n〉 =
(A†)n

√
[[n]]q,p!

|0〉 , N |n〉 = n |n〉 , (27)

the creation/annihilation operators act by the formulas

A |n〉=
√

[[n]]q,p |n− 1〉 , A† |n〉=
√

[[n + 1]]q,p |n + 1〉 .

(28)

The spectrum H|n〉 = En|n〉 of the Hamiltonian reads

En =
1
2

(
[[n + 1]]q,p + [[n]]q,p

)
. (29)

As q, p → 1, En = n + 1
2 . In addition, E0 = 1

2 for
any q, p .

To study the degeneracy properties of q, p -
oscillators, we consider q, p as real parameters valued
in the intervals

0 ≤ q ≤ 1, 0 ≤ p ≤ 1, (30)

where the point (0,0) is excluded.

Now we go over to ’accidental’ degeneracies and
demonstrate the validity of relevant statements.

Degeneracy of the type Em = E0

Proposition 6. There exists a continuum of pairs of the
values (q, p) or the equivalent continuum of points of the
curve Fm,0(p, q) = 0, for which the degeneracy

Em − E0 = 0 , m = 2, 3, 4, . . . (31)

does hold. The curve is given by the equation

Fm,0(q, p) ≡
m∑

r=0

pm−rqr +
m−1∑
s=0

pm−1−sqs − 1 = 0. (32)

To prove the statement, take account of Eqs. (29),
(25) in Eq. (31). Then, Eq. (32) obviously follows. This
formula implies nothing but a certain implicit functi-
on p = fm,0(q) which is continuous and monotoni-
cally decreases on the q-interval in (30). To confirm this
assertion, let us consider the derivative

dp

dq
= f ′m,0(q) = −∂Fm,0

∂q

(
∂Fm,0

∂p

)−1

=

= −

m∑
r=1

rpm−rqr−1 +
m−1∑
s=1

spm−1−sqs−1

m−1∑
r=0

qr(m−r)pm−1−r +
m−2∑
s=0

qs(m−1−s)pm−2−s

.

(33)

One can prove the following two facts: 1) for none point
(p, q) obeying (30), the derivative ∂Fm,0

∂p in the denomi-
nator of (33) turns into zero. 2) For the intervals in (30),
both ∂Fm,0

∂q and ∂Fm,0
∂p are positive. Then, the derivative

dp
dq in Eq.(33) is always negative, and, thus, fm,0(q) is
a continuously decreasing implicit function represented
by a flat curve in the quadrant given by (30).

Remark 1. In fact, the values of p and q from the
admissible pairs (p, q), i.e., those solving Eq. (32), belong
to the intervals 0 < q < qm and 0 < p < pm which, since
pm, qm < 1, are smaller than the intervals in (30) (the
value pm = qm that solve (32) at either q = 0 or p = 0
being put, clearly depends on the fixed m). Moreover,
denoting q∞ ≡ 1 (since qm

m→∞−→ 1), we have

q2 < q3 < q4 < . . . < qm−1 < qm < . . . < q∞ = 1. (34)

Now consider, for all m ≥ 2, the above derivative
f ′m,0(q) at the end points (q, p) = (0, pm) and (q, p) =

590 ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 6
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(qm, 0), where qm = pm, as well as the derivative of each
fm,0(q) at the midpoint of the curve fixed by p = q. It
is easy to see that f ′m,0(q)|q=p = −1 for any m, whereas
at the both endpoints the derivatives are negative and
such that

f ′m,0(q)|q=qm,p=0 < −1 < f ′m,0(q)|q=0,p=pm
< 0.

As a result, with q growing from zero to qm, the derivati-
ve f ′m,0(q) is always negative and continuously decreases
from f ′m,0(q)|q=0,p=pm

through −1 to f ′m,0(q)|q=qm,p=0 .

Example 1. Let m = 2. In this case, the relation

F2,0(q, p) = p2 + pq + q2 + p + q − 1 = 0

yields the function (explicit for this case only)

p = f2,0(q) =
−1− q +

√
(1 + q)(1− 3q) + 4

2
(35)

which monotonically decreases for 0 ≤ q ≤ q2, where

q2 = (
√

5− 1)/2, p2 = q2. (36)

Then, with account of (33) and (36), we have

f ′2,0(q) = −p + 2q + 1
2p + q + 1

=





− p2+1
2p2+1 ' −0.7236, q = 0;

−1, p = q;

− 2q2+1
q2+1 ' −1.382, p = 0.

Figure 4 illustrates this case (and also the cases m = 4
and 7).

Remark 2. The equations, from which the values
qm are deduced (see Remark 1), can be presented in the
form q + 1 = 1

q for m = 2, q + 1 = 1
q2 for m = 3,

. . . , q+1 = 1
qm−1 for any m. Such a form is convenient

for applying the graphical treatment. From these equali-
ties, the above inequalities (34) become more obvious.

Degeneracy of the type Em+1 = Em

Proposition 7. There exists a continuous curve
Fm+1,m(q, p) = 0 given by the continuum of pairs (q, p ),
for which the degeneracy

Em+1 − Em = 0 , m ≥ 1 , (37)

does hold. The equation for this curve is

Fm+1,m(q, p) ≡
m+1∑
r=0

pm+1−rqr −
m−1∑
s=0

pm−1−sqs = 0. (38)

Fig. 4. Three cases of pairwise degeneracies: E0 = E2, E0 = E4

and E0 = E7 in the energy spectrum (29) of a q, p -oscillator. The
corresponding curves are given by (31)–(32)

In order to prove the statement, we substitute
formula (29) in Eq. (37), and Eq. (38) readily follows.
Clearly, this equation implies the continuous implicit
function p = fm+1,m(q). To prove that this implicit
function monotonically decreases on the q-interval in
(30), we examine the derivative

dp

dq
= f ′m+1,m(q) = −

∂
∂q Fm+1,m(q, p)
∂
∂pFm+1,m(q, p)

, (39)

where

∂

∂q
Fm+1,m(q, p) =

=
m+1∑
r=1

rpm+1−rqr−1 −
m−1∑
s=1

spm−1−sqs−1, (40)

∂

∂p
Fm+1,m(q, p) =

=
m∑

r=0

(m+1−r)qrpm−r−
m−2∑
s=0

(m−1−s)pm−2−sqs. (41)

Obviously, the both partial derivatives are continuous
(polynomial) functions of two variables. The derivative
in (41) should be nonzero for each point of the flat curve

ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 6 591
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Fig. 5. Two cases of pairwise degeneracies, E1 = E2 and E4 = E5,
in the energy spectrum (29) of a q, p -oscillator

given by (38). To check this, we consider the set of zeros
of (41), that is, the set of pairs (q0, p0) which solve

∂

∂p
Fm+1,m(q, p) = 0. (42)

One can show, for generic m, that such solutions (q0, p0)
form a set of points none of which belongs to curve (38).
Let us see this in the particular cases of m = 1, 2, 3.

For m = 1 from (38)–(41), we have

F2,1 ≡ p2 + pq + q2−1 = 0,
dp

dq
= −2q + p

2p + q
< 0.

Inserting p + q = 1
p (1 − q2) drawn from the equation

of the curve F2,1 = 0 (or E2 − E1 = 0) in the denomi-
nator of dp

dq , we find that for the points of the curve the

denominator is p+ 1
p (1− q2) = p2+1−q2

p which is strictly
positive. Note also that 2p + q > 0 for all q, p from (30).

For m = 2, relations (38)–(41) yield

F3,2 ≡ p3 + p2q + pq2 + q3− p− q = 0,

dp

dq
= −p2 + 2qp + 3q2 − 1

q2 + 2pq + 3p2 − 1
< 0. (43)

Inserting p2 + pq + q2 − 1 = q
p (1 − q2) drawn from the

equation of the curve F3,2 = 0 (or E3 − E2 = 0) in the
denominator of dp

dq in (43), we find that for the points of

the curve the denominator is q
p (1− q2) + pq + 2p2. That

is, it is always strictly positive (never turns into zero).
Since the same conclusion about strict positivity can be
deduced for the numerator in (43), the overall negative
sign of the derivative dp

dq in (43) then follows.
For m = 3, relations (38)–(41) yield

F4,3 ≡ p4 + p3q + p2q2 + pq3 + q4 − p2 − pq − q2 = 0,

dp

dq
= −p3 + 2qp2 + 3q2p + 4q3 − p− 2q

q3 + 2pq2 + 3p2q + 4p3 − q − 2p
< 0. (44)

From the above equation F4,3 = 0 for the curve of
degeneracy E4 = E3, we draw p3+qp2+q2p+q3−p−q =
q2

p (1 − q2) and insert it in the denominator of dp
dq to

get: for the points of the curve, the denominator is
q
p (1−q2)+p(q2+2pq+3p2−1). The latter is always posi-
tive1 never turning into zero except for the single point
(1, 0). Since the same conclusion about strict positivity
can be deduced for the numerator in (44), the overall
negative sign of the derivative dp

dq is confirmed.
So, for the cases of m = 1, 2, 3, we have demonstrated

that the above implicit function p=fm+1,m(q) is a conti-
nuous monotonically decreasing one. The proof can be
extended to higher values of m and also to arbitrary m.
In Fig. 5, the two particular (different) degeneracy cases
E2 − E1 = 0 and E5 − E4 = 0 are shown.

Remark 3. The case m = 1 of (38) (i.e. E1 = E2) di-
ffers from all other cases m ≥ 2 since, at the end points
(q, p) = (0, 1) and (q, p) = (1, 0), the above derivative
f ′m+1,m(q) has, for the m = 1 case, the values differing
from the rest m ≥ 2 cases. Namely, f ′2,1(q)|q=0 = − 1

2
and f ′2,1(q)|q=1 = −2. This implies that, as q runs from
zero to one, the derivative f ′2,1(q) continuously changes
from − 1

2 to −2. On the other hand, for all m ≥ 2, we

have f ′m+1,m(q)|q=0 = 0 and f ′m+1,m(q)
q→1−−−→ −∞, i.e.,

f ′m+1,m(q) continuously decreases from 0 to −∞ as q
grows from zero to one. The distinction of m = 1 (i.e.
E2 = E1) case from all other m ≥ 2 cases (e.g., E5 = E4)
is clearly seen in Fig. 5.

Let us emphasize that, contrary to the distinction
just discussed in Remark 3, all the degeneracy curves
(38) of Em+1 − Em = 0, with m = 1, 2, . . . , share the
same value of the derivative at their midpoints given
by p = q: f ′m+1,m(q)|q=p = −1 (note also its coinci-
dence with the value f ′m,0(q)|q=p = −1 mentioned in
the paragraph immediately after Eq.(34)). Clearly, this
is rooted in the q ↔ p symmetry of the energy function
[see (29) and (25)] inherited by curves (38) and (32).

1Note that the polynomial in the second parenthesis is identical to the denominator in (43) and, as argued there, is strictly positive.
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Remark 4. Recall that the one-parameter deformed
Tamm–Dancoff oscillator, which stems from the q, p -
oscillator if p = q, possesses double degeneracy [7] of
energy levels Em1 = Em2 at a certain value of the
parameter q. In the present paper, the two-parameter
q, p -oscillator was shown to possess the same type of
degeneracy, Em1 = Em2 , for the appropriate (continuum
of) pairs (q, p), where q, p∈(0, 1]. This gives a hint of how
is it possible to obtain, besides the TD, numerous other
q-deformed oscillators with a similar property of double
(pairwise) degeneracy of energy levels [15]. For such a
degeneracy to occur in the chosen pair Em1 = Em2 ,
it is necessary that the curve (in q, p -plane) of the
relation p = f(q) generating the particular q-oscillator
intersects the curve of degeneracy Em1 − Em2 = 0 at
least once. This is displayed in Fig. 6 for a sample relati-
on p = q5 which crosses the indicated degeneracy curves
E3 − E0 = 0 and E5 − E4 = 0.

It is clearly seen from Fig. 6 that the non-standard
q-oscillator inferred by substituting in (23)–(25) and
(29) the relation p = q5 does possess the degeneracy
E3 −E0 = 0 at a definite value of q and the degeneracy
E5 − E4 = 0 at a distinct value of q. Details of this
approach with many particular cases are given in [15].

4. Conclusions and Outlook

The study of deformed oscillators demonstrates that,
due to modified commutation relations, such oscillators
possess nontrivial properties very different from those of
the standard quantum oscillator. In our papers [7,15,16],
we studied the unusual property of accidental two-fold or
double two-fold energy level degeneracies of definite one-
parameter deformed oscillators. The present paper deals
with the degeneracy of energy levels of two-parameter
deformed q, p -oscillators.

After recalling the special degeneracies occurring for
the Biedenharn–Macfarlane q-oscillator at q being some
roots of unity, we placed a sketch of the ’accidental’
double degeneracy properties [7] of energy levels of the
Tamm–Dancoff deformed oscillator. The peculiarity of
the latter consists in the fact that, for each pair Em+k =
Em of energy levels, there exists a special real value of
the q-parameter which provides their degeneracy.

In the main part of the paper, we have examined
the ability of the two-parameter q, p -oscillators to have
pairwise energy level degeneracies. As is shown, the q, p -
oscillator possesses the two-fold (pairwise) degeneracy of
a definite type, i.e., within some pair Em1 = Em2 , at the
corresponding values (q, p) from a continual set identical
to the curve of Em2 − Em1 = 0 in the q, p -plane.

Fig. 6. Curve p = q5 yielding a respective q-oscillator crosses the
degeneracy curves E0 = E3 and E4 = E5 at different values of q

What is important, the pairwise degeneracy of the
energy levels of q, p -oscillators observed at certain values
of q and p is “accidental” (as it occurs without any
underlying symmetry) and involves a single fixed pair
of levels.

Let us also remark that the degeneracy in q, p -
oscillators shown in this paper is not in conflict, as it was
already commented in [16], with the well-known “no-go”
theorem [17, 18] about the absence, in one dimension,
of degenerate discrete states in any standard quantum-
mechanical system. Indeed, the q, p -oscillators analyzed
in our paper go beyond the scope of customary systems
of traditional quantum mechanics, due to such more
general nontrivial features (see, e.g., [12]) as the non-
constant position-dependent mass given by an inertia
function, the complicated interaction depending on both
the position and the momentum, etc.

On the base of the considered (seemingly, unnoti-
ced earlier) important peculiarity of the q, p -oscillators,
we can infer a plenty of new nonlinear one-parameter
deformed oscillators which exhibit nontrivial and
unusual degeneracy properties (diverse patterns of levels
degeneracies, including rather complicated ones). As
some step already made in this direction, let us quote the
paper [16], where a number of p-oscillators is presented
exhibiting a rather nontrivial pattern of two-fold double
degeneracies (two pairwise degeneracies within each of
two fixed pairs of energy levels, e.g., E1 = E2 and
E3 = E4).
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It is worth to mention again the fact of the applicabi-
lity [13] of q, p -oscillators (q, p -bosons) in the context of
the efficiency of a description of the observed non-Bose
properties of the two- and multi-pion (-kaon) correlati-
ons in the experiments on relativistic heavy-ion collisi-
ons like that of the other types, e.g., the one-parameter
BM-type q-oscillator and the q-Bose gas model [19, 20].
In that context, it would be interesting to find some
peculiarity (if any) connected with the feature of ’acci-
dental’ double degeneracy of q, p -oscillators considered
in the present paper. The same can be said about the
usage (see [13]) of TD q-oscillators and the “TD q-Bose
gas” model which is just the one-parameter p = q limit
of the q, p -Bose gas model.

One may also hope that the unusual novel q-bosons
(related with non-standard q-oscillators treated in [7, 15,
16]) and possibly some others will be useful in the study
of explicitly solvable problems, say, along the lines simi-
lar to those described in [21], and also for diverse physical
applications.

Of course, it is desirable to give explicit and exhausti-
ve proofs of the pairwise degeneracy of the energy levels
of q, p -oscillators for more involved cases like Em+2 =
Em and, also, for the most general case of degeneracy:
Em+k1 = Em+k2 , k1 6= k2. This will be done in a separate
paper.
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ДВОКРАТНЕ ВИПАДКОВЕ ВИРОДЖЕННЯ
ЕНЕРГЕТИЧНИХ РIВНIВ У МОДЕЛI q, p-ОСЦИЛЯТОРА

О.М. Гаврилик, А.П. Ребеш

Р е з ю м е

Показано, що двопараметрично деформованi осцилятори з па-
раметрами деформацiї q, p , де 0 < q, p ≤ 1, мають властивiсть
“випадкового” двократного виродження енергетичних рiвнiв
типу Em = Em+1 та типу E0 = Em при вiдповiдних значеннях
q i p. Коротко обговорено також найбiльш загальний випадок
виродження Em+k = Em, де k ≥ 1 для m ≥ 1 або k ≥ 2 для
m = 0.

594 ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 6


